File:  [local] / rpl / lapack / lapack / zpbrfs.f
Revision 1.19: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:33 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZPBRFS
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZPBRFS + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpbrfs.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpbrfs.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpbrfs.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZPBRFS( UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, B,
   22: *                          LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          UPLO
   26: *       INTEGER            INFO, KD, LDAB, LDAFB, LDB, LDX, N, NRHS
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
   30: *       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
   31: *      $                   WORK( * ), X( LDX, * )
   32: *       ..
   33: *
   34: *
   35: *> \par Purpose:
   36: *  =============
   37: *>
   38: *> \verbatim
   39: *>
   40: *> ZPBRFS improves the computed solution to a system of linear
   41: *> equations when the coefficient matrix is Hermitian positive definite
   42: *> and banded, and provides error bounds and backward error estimates
   43: *> for the solution.
   44: *> \endverbatim
   45: *
   46: *  Arguments:
   47: *  ==========
   48: *
   49: *> \param[in] UPLO
   50: *> \verbatim
   51: *>          UPLO is CHARACTER*1
   52: *>          = 'U':  Upper triangle of A is stored;
   53: *>          = 'L':  Lower triangle of A is stored.
   54: *> \endverbatim
   55: *>
   56: *> \param[in] N
   57: *> \verbatim
   58: *>          N is INTEGER
   59: *>          The order of the matrix A.  N >= 0.
   60: *> \endverbatim
   61: *>
   62: *> \param[in] KD
   63: *> \verbatim
   64: *>          KD is INTEGER
   65: *>          The number of superdiagonals of the matrix A if UPLO = 'U',
   66: *>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
   67: *> \endverbatim
   68: *>
   69: *> \param[in] NRHS
   70: *> \verbatim
   71: *>          NRHS is INTEGER
   72: *>          The number of right hand sides, i.e., the number of columns
   73: *>          of the matrices B and X.  NRHS >= 0.
   74: *> \endverbatim
   75: *>
   76: *> \param[in] AB
   77: *> \verbatim
   78: *>          AB is COMPLEX*16 array, dimension (LDAB,N)
   79: *>          The upper or lower triangle of the Hermitian band matrix A,
   80: *>          stored in the first KD+1 rows of the array.  The j-th column
   81: *>          of A is stored in the j-th column of the array AB as follows:
   82: *>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
   83: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
   84: *> \endverbatim
   85: *>
   86: *> \param[in] LDAB
   87: *> \verbatim
   88: *>          LDAB is INTEGER
   89: *>          The leading dimension of the array AB.  LDAB >= KD+1.
   90: *> \endverbatim
   91: *>
   92: *> \param[in] AFB
   93: *> \verbatim
   94: *>          AFB is COMPLEX*16 array, dimension (LDAFB,N)
   95: *>          The triangular factor U or L from the Cholesky factorization
   96: *>          A = U**H*U or A = L*L**H of the band matrix A as computed by
   97: *>          ZPBTRF, in the same storage format as A (see AB).
   98: *> \endverbatim
   99: *>
  100: *> \param[in] LDAFB
  101: *> \verbatim
  102: *>          LDAFB is INTEGER
  103: *>          The leading dimension of the array AFB.  LDAFB >= KD+1.
  104: *> \endverbatim
  105: *>
  106: *> \param[in] B
  107: *> \verbatim
  108: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
  109: *>          The right hand side matrix B.
  110: *> \endverbatim
  111: *>
  112: *> \param[in] LDB
  113: *> \verbatim
  114: *>          LDB is INTEGER
  115: *>          The leading dimension of the array B.  LDB >= max(1,N).
  116: *> \endverbatim
  117: *>
  118: *> \param[in,out] X
  119: *> \verbatim
  120: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
  121: *>          On entry, the solution matrix X, as computed by ZPBTRS.
  122: *>          On exit, the improved solution matrix X.
  123: *> \endverbatim
  124: *>
  125: *> \param[in] LDX
  126: *> \verbatim
  127: *>          LDX is INTEGER
  128: *>          The leading dimension of the array X.  LDX >= max(1,N).
  129: *> \endverbatim
  130: *>
  131: *> \param[out] FERR
  132: *> \verbatim
  133: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
  134: *>          The estimated forward error bound for each solution vector
  135: *>          X(j) (the j-th column of the solution matrix X).
  136: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
  137: *>          is an estimated upper bound for the magnitude of the largest
  138: *>          element in (X(j) - XTRUE) divided by the magnitude of the
  139: *>          largest element in X(j).  The estimate is as reliable as
  140: *>          the estimate for RCOND, and is almost always a slight
  141: *>          overestimate of the true error.
  142: *> \endverbatim
  143: *>
  144: *> \param[out] BERR
  145: *> \verbatim
  146: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
  147: *>          The componentwise relative backward error of each solution
  148: *>          vector X(j) (i.e., the smallest relative change in
  149: *>          any element of A or B that makes X(j) an exact solution).
  150: *> \endverbatim
  151: *>
  152: *> \param[out] WORK
  153: *> \verbatim
  154: *>          WORK is COMPLEX*16 array, dimension (2*N)
  155: *> \endverbatim
  156: *>
  157: *> \param[out] RWORK
  158: *> \verbatim
  159: *>          RWORK is DOUBLE PRECISION array, dimension (N)
  160: *> \endverbatim
  161: *>
  162: *> \param[out] INFO
  163: *> \verbatim
  164: *>          INFO is INTEGER
  165: *>          = 0:  successful exit
  166: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  167: *> \endverbatim
  168: *
  169: *> \par Internal Parameters:
  170: *  =========================
  171: *>
  172: *> \verbatim
  173: *>  ITMAX is the maximum number of steps of iterative refinement.
  174: *> \endverbatim
  175: *
  176: *  Authors:
  177: *  ========
  178: *
  179: *> \author Univ. of Tennessee
  180: *> \author Univ. of California Berkeley
  181: *> \author Univ. of Colorado Denver
  182: *> \author NAG Ltd.
  183: *
  184: *> \ingroup complex16OTHERcomputational
  185: *
  186: *  =====================================================================
  187:       SUBROUTINE ZPBRFS( UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, B,
  188:      $                   LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO )
  189: *
  190: *  -- LAPACK computational routine --
  191: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  192: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  193: *
  194: *     .. Scalar Arguments ..
  195:       CHARACTER          UPLO
  196:       INTEGER            INFO, KD, LDAB, LDAFB, LDB, LDX, N, NRHS
  197: *     ..
  198: *     .. Array Arguments ..
  199:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
  200:       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
  201:      $                   WORK( * ), X( LDX, * )
  202: *     ..
  203: *
  204: *  =====================================================================
  205: *
  206: *     .. Parameters ..
  207:       INTEGER            ITMAX
  208:       PARAMETER          ( ITMAX = 5 )
  209:       DOUBLE PRECISION   ZERO
  210:       PARAMETER          ( ZERO = 0.0D+0 )
  211:       COMPLEX*16         ONE
  212:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
  213:       DOUBLE PRECISION   TWO
  214:       PARAMETER          ( TWO = 2.0D+0 )
  215:       DOUBLE PRECISION   THREE
  216:       PARAMETER          ( THREE = 3.0D+0 )
  217: *     ..
  218: *     .. Local Scalars ..
  219:       LOGICAL            UPPER
  220:       INTEGER            COUNT, I, J, K, KASE, L, NZ
  221:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
  222:       COMPLEX*16         ZDUM
  223: *     ..
  224: *     .. Local Arrays ..
  225:       INTEGER            ISAVE( 3 )
  226: *     ..
  227: *     .. External Subroutines ..
  228:       EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZHBMV, ZLACN2, ZPBTRS
  229: *     ..
  230: *     .. Intrinsic Functions ..
  231:       INTRINSIC          ABS, DBLE, DIMAG, MAX, MIN
  232: *     ..
  233: *     .. External Functions ..
  234:       LOGICAL            LSAME
  235:       DOUBLE PRECISION   DLAMCH
  236:       EXTERNAL           LSAME, DLAMCH
  237: *     ..
  238: *     .. Statement Functions ..
  239:       DOUBLE PRECISION   CABS1
  240: *     ..
  241: *     .. Statement Function definitions ..
  242:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  243: *     ..
  244: *     .. Executable Statements ..
  245: *
  246: *     Test the input parameters.
  247: *
  248:       INFO = 0
  249:       UPPER = LSAME( UPLO, 'U' )
  250:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  251:          INFO = -1
  252:       ELSE IF( N.LT.0 ) THEN
  253:          INFO = -2
  254:       ELSE IF( KD.LT.0 ) THEN
  255:          INFO = -3
  256:       ELSE IF( NRHS.LT.0 ) THEN
  257:          INFO = -4
  258:       ELSE IF( LDAB.LT.KD+1 ) THEN
  259:          INFO = -6
  260:       ELSE IF( LDAFB.LT.KD+1 ) THEN
  261:          INFO = -8
  262:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  263:          INFO = -10
  264:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  265:          INFO = -12
  266:       END IF
  267:       IF( INFO.NE.0 ) THEN
  268:          CALL XERBLA( 'ZPBRFS', -INFO )
  269:          RETURN
  270:       END IF
  271: *
  272: *     Quick return if possible
  273: *
  274:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  275:          DO 10 J = 1, NRHS
  276:             FERR( J ) = ZERO
  277:             BERR( J ) = ZERO
  278:    10    CONTINUE
  279:          RETURN
  280:       END IF
  281: *
  282: *     NZ = maximum number of nonzero elements in each row of A, plus 1
  283: *
  284:       NZ = MIN( N+1, 2*KD+2 )
  285:       EPS = DLAMCH( 'Epsilon' )
  286:       SAFMIN = DLAMCH( 'Safe minimum' )
  287:       SAFE1 = NZ*SAFMIN
  288:       SAFE2 = SAFE1 / EPS
  289: *
  290: *     Do for each right hand side
  291: *
  292:       DO 140 J = 1, NRHS
  293: *
  294:          COUNT = 1
  295:          LSTRES = THREE
  296:    20    CONTINUE
  297: *
  298: *        Loop until stopping criterion is satisfied.
  299: *
  300: *        Compute residual R = B - A * X
  301: *
  302:          CALL ZCOPY( N, B( 1, J ), 1, WORK, 1 )
  303:          CALL ZHBMV( UPLO, N, KD, -ONE, AB, LDAB, X( 1, J ), 1, ONE,
  304:      $               WORK, 1 )
  305: *
  306: *        Compute componentwise relative backward error from formula
  307: *
  308: *        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
  309: *
  310: *        where abs(Z) is the componentwise absolute value of the matrix
  311: *        or vector Z.  If the i-th component of the denominator is less
  312: *        than SAFE2, then SAFE1 is added to the i-th components of the
  313: *        numerator and denominator before dividing.
  314: *
  315:          DO 30 I = 1, N
  316:             RWORK( I ) = CABS1( B( I, J ) )
  317:    30    CONTINUE
  318: *
  319: *        Compute abs(A)*abs(X) + abs(B).
  320: *
  321:          IF( UPPER ) THEN
  322:             DO 50 K = 1, N
  323:                S = ZERO
  324:                XK = CABS1( X( K, J ) )
  325:                L = KD + 1 - K
  326:                DO 40 I = MAX( 1, K-KD ), K - 1
  327:                   RWORK( I ) = RWORK( I ) + CABS1( AB( L+I, K ) )*XK
  328:                   S = S + CABS1( AB( L+I, K ) )*CABS1( X( I, J ) )
  329:    40          CONTINUE
  330:                RWORK( K ) = RWORK( K ) + ABS( DBLE( AB( KD+1, K ) ) )*
  331:      $                      XK + S
  332:    50       CONTINUE
  333:          ELSE
  334:             DO 70 K = 1, N
  335:                S = ZERO
  336:                XK = CABS1( X( K, J ) )
  337:                RWORK( K ) = RWORK( K ) + ABS( DBLE( AB( 1, K ) ) )*XK
  338:                L = 1 - K
  339:                DO 60 I = K + 1, MIN( N, K+KD )
  340:                   RWORK( I ) = RWORK( I ) + CABS1( AB( L+I, K ) )*XK
  341:                   S = S + CABS1( AB( L+I, K ) )*CABS1( X( I, J ) )
  342:    60          CONTINUE
  343:                RWORK( K ) = RWORK( K ) + S
  344:    70       CONTINUE
  345:          END IF
  346:          S = ZERO
  347:          DO 80 I = 1, N
  348:             IF( RWORK( I ).GT.SAFE2 ) THEN
  349:                S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
  350:             ELSE
  351:                S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
  352:      $             ( RWORK( I )+SAFE1 ) )
  353:             END IF
  354:    80    CONTINUE
  355:          BERR( J ) = S
  356: *
  357: *        Test stopping criterion. Continue iterating if
  358: *           1) The residual BERR(J) is larger than machine epsilon, and
  359: *           2) BERR(J) decreased by at least a factor of 2 during the
  360: *              last iteration, and
  361: *           3) At most ITMAX iterations tried.
  362: *
  363:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
  364:      $       COUNT.LE.ITMAX ) THEN
  365: *
  366: *           Update solution and try again.
  367: *
  368:             CALL ZPBTRS( UPLO, N, KD, 1, AFB, LDAFB, WORK, N, INFO )
  369:             CALL ZAXPY( N, ONE, WORK, 1, X( 1, J ), 1 )
  370:             LSTRES = BERR( J )
  371:             COUNT = COUNT + 1
  372:             GO TO 20
  373:          END IF
  374: *
  375: *        Bound error from formula
  376: *
  377: *        norm(X - XTRUE) / norm(X) .le. FERR =
  378: *        norm( abs(inv(A))*
  379: *           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
  380: *
  381: *        where
  382: *          norm(Z) is the magnitude of the largest component of Z
  383: *          inv(A) is the inverse of A
  384: *          abs(Z) is the componentwise absolute value of the matrix or
  385: *             vector Z
  386: *          NZ is the maximum number of nonzeros in any row of A, plus 1
  387: *          EPS is machine epsilon
  388: *
  389: *        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
  390: *        is incremented by SAFE1 if the i-th component of
  391: *        abs(A)*abs(X) + abs(B) is less than SAFE2.
  392: *
  393: *        Use ZLACN2 to estimate the infinity-norm of the matrix
  394: *           inv(A) * diag(W),
  395: *        where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
  396: *
  397:          DO 90 I = 1, N
  398:             IF( RWORK( I ).GT.SAFE2 ) THEN
  399:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
  400:             ELSE
  401:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
  402:      $                      SAFE1
  403:             END IF
  404:    90    CONTINUE
  405: *
  406:          KASE = 0
  407:   100    CONTINUE
  408:          CALL ZLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
  409:          IF( KASE.NE.0 ) THEN
  410:             IF( KASE.EQ.1 ) THEN
  411: *
  412: *              Multiply by diag(W)*inv(A**H).
  413: *
  414:                CALL ZPBTRS( UPLO, N, KD, 1, AFB, LDAFB, WORK, N, INFO )
  415:                DO 110 I = 1, N
  416:                   WORK( I ) = RWORK( I )*WORK( I )
  417:   110          CONTINUE
  418:             ELSE IF( KASE.EQ.2 ) THEN
  419: *
  420: *              Multiply by inv(A)*diag(W).
  421: *
  422:                DO 120 I = 1, N
  423:                   WORK( I ) = RWORK( I )*WORK( I )
  424:   120          CONTINUE
  425:                CALL ZPBTRS( UPLO, N, KD, 1, AFB, LDAFB, WORK, N, INFO )
  426:             END IF
  427:             GO TO 100
  428:          END IF
  429: *
  430: *        Normalize error.
  431: *
  432:          LSTRES = ZERO
  433:          DO 130 I = 1, N
  434:             LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
  435:   130    CONTINUE
  436:          IF( LSTRES.NE.ZERO )
  437:      $      FERR( J ) = FERR( J ) / LSTRES
  438: *
  439:   140 CONTINUE
  440: *
  441:       RETURN
  442: *
  443: *     End of ZPBRFS
  444: *
  445:       END

CVSweb interface <joel.bertrand@systella.fr>