Annotation of rpl/lapack/lapack/zpbrfs.f, revision 1.1.1.1

1.1       bertrand    1:       SUBROUTINE ZPBRFS( UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, B,
                      2:      $                   LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO )
                      3: *
                      4: *  -- LAPACK routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH.
                     10: *
                     11: *     .. Scalar Arguments ..
                     12:       CHARACTER          UPLO
                     13:       INTEGER            INFO, KD, LDAB, LDAFB, LDB, LDX, N, NRHS
                     14: *     ..
                     15: *     .. Array Arguments ..
                     16:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
                     17:       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
                     18:      $                   WORK( * ), X( LDX, * )
                     19: *     ..
                     20: *
                     21: *  Purpose
                     22: *  =======
                     23: *
                     24: *  ZPBRFS improves the computed solution to a system of linear
                     25: *  equations when the coefficient matrix is Hermitian positive definite
                     26: *  and banded, and provides error bounds and backward error estimates
                     27: *  for the solution.
                     28: *
                     29: *  Arguments
                     30: *  =========
                     31: *
                     32: *  UPLO    (input) CHARACTER*1
                     33: *          = 'U':  Upper triangle of A is stored;
                     34: *          = 'L':  Lower triangle of A is stored.
                     35: *
                     36: *  N       (input) INTEGER
                     37: *          The order of the matrix A.  N >= 0.
                     38: *
                     39: *  KD      (input) INTEGER
                     40: *          The number of superdiagonals of the matrix A if UPLO = 'U',
                     41: *          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
                     42: *
                     43: *  NRHS    (input) INTEGER
                     44: *          The number of right hand sides, i.e., the number of columns
                     45: *          of the matrices B and X.  NRHS >= 0.
                     46: *
                     47: *  AB      (input) DOUBLE PRECISION array, dimension (LDAB,N)
                     48: *          The upper or lower triangle of the Hermitian band matrix A,
                     49: *          stored in the first KD+1 rows of the array.  The j-th column
                     50: *          of A is stored in the j-th column of the array AB as follows:
                     51: *          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
                     52: *          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
                     53: *
                     54: *  LDAB    (input) INTEGER
                     55: *          The leading dimension of the array AB.  LDAB >= KD+1.
                     56: *
                     57: *  AFB     (input) COMPLEX*16 array, dimension (LDAFB,N)
                     58: *          The triangular factor U or L from the Cholesky factorization
                     59: *          A = U**H*U or A = L*L**H of the band matrix A as computed by
                     60: *          ZPBTRF, in the same storage format as A (see AB).
                     61: *
                     62: *  LDAFB   (input) INTEGER
                     63: *          The leading dimension of the array AFB.  LDAFB >= KD+1.
                     64: *
                     65: *  B       (input) COMPLEX*16 array, dimension (LDB,NRHS)
                     66: *          The right hand side matrix B.
                     67: *
                     68: *  LDB     (input) INTEGER
                     69: *          The leading dimension of the array B.  LDB >= max(1,N).
                     70: *
                     71: *  X       (input/output) COMPLEX*16 array, dimension (LDX,NRHS)
                     72: *          On entry, the solution matrix X, as computed by ZPBTRS.
                     73: *          On exit, the improved solution matrix X.
                     74: *
                     75: *  LDX     (input) INTEGER
                     76: *          The leading dimension of the array X.  LDX >= max(1,N).
                     77: *
                     78: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
                     79: *          The estimated forward error bound for each solution vector
                     80: *          X(j) (the j-th column of the solution matrix X).
                     81: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
                     82: *          is an estimated upper bound for the magnitude of the largest
                     83: *          element in (X(j) - XTRUE) divided by the magnitude of the
                     84: *          largest element in X(j).  The estimate is as reliable as
                     85: *          the estimate for RCOND, and is almost always a slight
                     86: *          overestimate of the true error.
                     87: *
                     88: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
                     89: *          The componentwise relative backward error of each solution
                     90: *          vector X(j) (i.e., the smallest relative change in
                     91: *          any element of A or B that makes X(j) an exact solution).
                     92: *
                     93: *  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
                     94: *
                     95: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
                     96: *
                     97: *  INFO    (output) INTEGER
                     98: *          = 0:  successful exit
                     99: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                    100: *
                    101: *  Internal Parameters
                    102: *  ===================
                    103: *
                    104: *  ITMAX is the maximum number of steps of iterative refinement.
                    105: *
                    106: *  =====================================================================
                    107: *
                    108: *     .. Parameters ..
                    109:       INTEGER            ITMAX
                    110:       PARAMETER          ( ITMAX = 5 )
                    111:       DOUBLE PRECISION   ZERO
                    112:       PARAMETER          ( ZERO = 0.0D+0 )
                    113:       COMPLEX*16         ONE
                    114:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
                    115:       DOUBLE PRECISION   TWO
                    116:       PARAMETER          ( TWO = 2.0D+0 )
                    117:       DOUBLE PRECISION   THREE
                    118:       PARAMETER          ( THREE = 3.0D+0 )
                    119: *     ..
                    120: *     .. Local Scalars ..
                    121:       LOGICAL            UPPER
                    122:       INTEGER            COUNT, I, J, K, KASE, L, NZ
                    123:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
                    124:       COMPLEX*16         ZDUM
                    125: *     ..
                    126: *     .. Local Arrays ..
                    127:       INTEGER            ISAVE( 3 )
                    128: *     ..
                    129: *     .. External Subroutines ..
                    130:       EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZHBMV, ZLACN2, ZPBTRS
                    131: *     ..
                    132: *     .. Intrinsic Functions ..
                    133:       INTRINSIC          ABS, DBLE, DIMAG, MAX, MIN
                    134: *     ..
                    135: *     .. External Functions ..
                    136:       LOGICAL            LSAME
                    137:       DOUBLE PRECISION   DLAMCH
                    138:       EXTERNAL           LSAME, DLAMCH
                    139: *     ..
                    140: *     .. Statement Functions ..
                    141:       DOUBLE PRECISION   CABS1
                    142: *     ..
                    143: *     .. Statement Function definitions ..
                    144:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
                    145: *     ..
                    146: *     .. Executable Statements ..
                    147: *
                    148: *     Test the input parameters.
                    149: *
                    150:       INFO = 0
                    151:       UPPER = LSAME( UPLO, 'U' )
                    152:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    153:          INFO = -1
                    154:       ELSE IF( N.LT.0 ) THEN
                    155:          INFO = -2
                    156:       ELSE IF( KD.LT.0 ) THEN
                    157:          INFO = -3
                    158:       ELSE IF( NRHS.LT.0 ) THEN
                    159:          INFO = -4
                    160:       ELSE IF( LDAB.LT.KD+1 ) THEN
                    161:          INFO = -6
                    162:       ELSE IF( LDAFB.LT.KD+1 ) THEN
                    163:          INFO = -8
                    164:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    165:          INFO = -10
                    166:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    167:          INFO = -12
                    168:       END IF
                    169:       IF( INFO.NE.0 ) THEN
                    170:          CALL XERBLA( 'ZPBRFS', -INFO )
                    171:          RETURN
                    172:       END IF
                    173: *
                    174: *     Quick return if possible
                    175: *
                    176:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
                    177:          DO 10 J = 1, NRHS
                    178:             FERR( J ) = ZERO
                    179:             BERR( J ) = ZERO
                    180:    10    CONTINUE
                    181:          RETURN
                    182:       END IF
                    183: *
                    184: *     NZ = maximum number of nonzero elements in each row of A, plus 1
                    185: *
                    186:       NZ = MIN( N+1, 2*KD+2 )
                    187:       EPS = DLAMCH( 'Epsilon' )
                    188:       SAFMIN = DLAMCH( 'Safe minimum' )
                    189:       SAFE1 = NZ*SAFMIN
                    190:       SAFE2 = SAFE1 / EPS
                    191: *
                    192: *     Do for each right hand side
                    193: *
                    194:       DO 140 J = 1, NRHS
                    195: *
                    196:          COUNT = 1
                    197:          LSTRES = THREE
                    198:    20    CONTINUE
                    199: *
                    200: *        Loop until stopping criterion is satisfied.
                    201: *
                    202: *        Compute residual R = B - A * X
                    203: *
                    204:          CALL ZCOPY( N, B( 1, J ), 1, WORK, 1 )
                    205:          CALL ZHBMV( UPLO, N, KD, -ONE, AB, LDAB, X( 1, J ), 1, ONE,
                    206:      $               WORK, 1 )
                    207: *
                    208: *        Compute componentwise relative backward error from formula
                    209: *
                    210: *        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
                    211: *
                    212: *        where abs(Z) is the componentwise absolute value of the matrix
                    213: *        or vector Z.  If the i-th component of the denominator is less
                    214: *        than SAFE2, then SAFE1 is added to the i-th components of the
                    215: *        numerator and denominator before dividing.
                    216: *
                    217:          DO 30 I = 1, N
                    218:             RWORK( I ) = CABS1( B( I, J ) )
                    219:    30    CONTINUE
                    220: *
                    221: *        Compute abs(A)*abs(X) + abs(B).
                    222: *
                    223:          IF( UPPER ) THEN
                    224:             DO 50 K = 1, N
                    225:                S = ZERO
                    226:                XK = CABS1( X( K, J ) )
                    227:                L = KD + 1 - K
                    228:                DO 40 I = MAX( 1, K-KD ), K - 1
                    229:                   RWORK( I ) = RWORK( I ) + CABS1( AB( L+I, K ) )*XK
                    230:                   S = S + CABS1( AB( L+I, K ) )*CABS1( X( I, J ) )
                    231:    40          CONTINUE
                    232:                RWORK( K ) = RWORK( K ) + ABS( DBLE( AB( KD+1, K ) ) )*
                    233:      $                      XK + S
                    234:    50       CONTINUE
                    235:          ELSE
                    236:             DO 70 K = 1, N
                    237:                S = ZERO
                    238:                XK = CABS1( X( K, J ) )
                    239:                RWORK( K ) = RWORK( K ) + ABS( DBLE( AB( 1, K ) ) )*XK
                    240:                L = 1 - K
                    241:                DO 60 I = K + 1, MIN( N, K+KD )
                    242:                   RWORK( I ) = RWORK( I ) + CABS1( AB( L+I, K ) )*XK
                    243:                   S = S + CABS1( AB( L+I, K ) )*CABS1( X( I, J ) )
                    244:    60          CONTINUE
                    245:                RWORK( K ) = RWORK( K ) + S
                    246:    70       CONTINUE
                    247:          END IF
                    248:          S = ZERO
                    249:          DO 80 I = 1, N
                    250:             IF( RWORK( I ).GT.SAFE2 ) THEN
                    251:                S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
                    252:             ELSE
                    253:                S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
                    254:      $             ( RWORK( I )+SAFE1 ) )
                    255:             END IF
                    256:    80    CONTINUE
                    257:          BERR( J ) = S
                    258: *
                    259: *        Test stopping criterion. Continue iterating if
                    260: *           1) The residual BERR(J) is larger than machine epsilon, and
                    261: *           2) BERR(J) decreased by at least a factor of 2 during the
                    262: *              last iteration, and
                    263: *           3) At most ITMAX iterations tried.
                    264: *
                    265:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
                    266:      $       COUNT.LE.ITMAX ) THEN
                    267: *
                    268: *           Update solution and try again.
                    269: *
                    270:             CALL ZPBTRS( UPLO, N, KD, 1, AFB, LDAFB, WORK, N, INFO )
                    271:             CALL ZAXPY( N, ONE, WORK, 1, X( 1, J ), 1 )
                    272:             LSTRES = BERR( J )
                    273:             COUNT = COUNT + 1
                    274:             GO TO 20
                    275:          END IF
                    276: *
                    277: *        Bound error from formula
                    278: *
                    279: *        norm(X - XTRUE) / norm(X) .le. FERR =
                    280: *        norm( abs(inv(A))*
                    281: *           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
                    282: *
                    283: *        where
                    284: *          norm(Z) is the magnitude of the largest component of Z
                    285: *          inv(A) is the inverse of A
                    286: *          abs(Z) is the componentwise absolute value of the matrix or
                    287: *             vector Z
                    288: *          NZ is the maximum number of nonzeros in any row of A, plus 1
                    289: *          EPS is machine epsilon
                    290: *
                    291: *        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
                    292: *        is incremented by SAFE1 if the i-th component of
                    293: *        abs(A)*abs(X) + abs(B) is less than SAFE2.
                    294: *
                    295: *        Use ZLACN2 to estimate the infinity-norm of the matrix
                    296: *           inv(A) * diag(W),
                    297: *        where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
                    298: *
                    299:          DO 90 I = 1, N
                    300:             IF( RWORK( I ).GT.SAFE2 ) THEN
                    301:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
                    302:             ELSE
                    303:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
                    304:      $                      SAFE1
                    305:             END IF
                    306:    90    CONTINUE
                    307: *
                    308:          KASE = 0
                    309:   100    CONTINUE
                    310:          CALL ZLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
                    311:          IF( KASE.NE.0 ) THEN
                    312:             IF( KASE.EQ.1 ) THEN
                    313: *
                    314: *              Multiply by diag(W)*inv(A').
                    315: *
                    316:                CALL ZPBTRS( UPLO, N, KD, 1, AFB, LDAFB, WORK, N, INFO )
                    317:                DO 110 I = 1, N
                    318:                   WORK( I ) = RWORK( I )*WORK( I )
                    319:   110          CONTINUE
                    320:             ELSE IF( KASE.EQ.2 ) THEN
                    321: *
                    322: *              Multiply by inv(A)*diag(W).
                    323: *
                    324:                DO 120 I = 1, N
                    325:                   WORK( I ) = RWORK( I )*WORK( I )
                    326:   120          CONTINUE
                    327:                CALL ZPBTRS( UPLO, N, KD, 1, AFB, LDAFB, WORK, N, INFO )
                    328:             END IF
                    329:             GO TO 100
                    330:          END IF
                    331: *
                    332: *        Normalize error.
                    333: *
                    334:          LSTRES = ZERO
                    335:          DO 130 I = 1, N
                    336:             LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
                    337:   130    CONTINUE
                    338:          IF( LSTRES.NE.ZERO )
                    339:      $      FERR( J ) = FERR( J ) / LSTRES
                    340: *
                    341:   140 CONTINUE
                    342: *
                    343:       RETURN
                    344: *
                    345: *     End of ZPBRFS
                    346: *
                    347:       END

CVSweb interface <joel.bertrand@systella.fr>