File:  [local] / rpl / lapack / lapack / zlaunhr_col_getrfnp2.f
Revision 1.1: download - view: text, annotated - select for diffs - revision graph
Thu May 21 21:46:10 2020 UTC (3 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, HEAD
Mise à jour de Lapack.

    1: *> \brief \b ZLAUNHR_COL_GETRFNP2
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZLAUNHR_COL_GETRFNP2 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaunhr_col_getrfnp2.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaunhr_col_getrfnp2.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaunhr_col_getrfnp2.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       RECURSIVE SUBROUTINE ZLAUNHR_COL_GETRFNP2( M, N, A, LDA, D, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       INTEGER            INFO, LDA, M, N
   25: *       ..
   26: *       .. Array Arguments ..
   27: *       COMPLEX*16         A( LDA, * ), D( * )
   28: *       ..
   29: *
   30: *
   31: *> \par Purpose:
   32: *  =============
   33: *>
   34: *> \verbatim
   35: *>
   36: *> ZLAUNHR_COL_GETRFNP2 computes the modified LU factorization without
   37: *> pivoting of a complex general M-by-N matrix A. The factorization has
   38: *> the form:
   39: *>
   40: *>     A - S = L * U,
   41: *>
   42: *> where:
   43: *>    S is a m-by-n diagonal sign matrix with the diagonal D, so that
   44: *>    D(i) = S(i,i), 1 <= i <= min(M,N). The diagonal D is constructed
   45: *>    as D(i)=-SIGN(A(i,i)), where A(i,i) is the value after performing
   46: *>    i-1 steps of Gaussian elimination. This means that the diagonal
   47: *>    element at each step of "modified" Gaussian elimination is at
   48: *>    least one in absolute value (so that division-by-zero not
   49: *>    possible during the division by the diagonal element);
   50: *>
   51: *>    L is a M-by-N lower triangular matrix with unit diagonal elements
   52: *>    (lower trapezoidal if M > N);
   53: *>
   54: *>    and U is a M-by-N upper triangular matrix
   55: *>    (upper trapezoidal if M < N).
   56: *>
   57: *> This routine is an auxiliary routine used in the Householder
   58: *> reconstruction routine ZUNHR_COL. In ZUNHR_COL, this routine is
   59: *> applied to an M-by-N matrix A with orthonormal columns, where each
   60: *> element is bounded by one in absolute value. With the choice of
   61: *> the matrix S above, one can show that the diagonal element at each
   62: *> step of Gaussian elimination is the largest (in absolute value) in
   63: *> the column on or below the diagonal, so that no pivoting is required
   64: *> for numerical stability [1].
   65: *>
   66: *> For more details on the Householder reconstruction algorithm,
   67: *> including the modified LU factorization, see [1].
   68: *>
   69: *> This is the recursive version of the LU factorization algorithm.
   70: *> Denote A - S by B. The algorithm divides the matrix B into four
   71: *> submatrices:
   72: *>
   73: *>        [  B11 | B12  ]  where B11 is n1 by n1,
   74: *>    B = [ -----|----- ]        B21 is (m-n1) by n1,
   75: *>        [  B21 | B22  ]        B12 is n1 by n2,
   76: *>                               B22 is (m-n1) by n2,
   77: *>                               with n1 = min(m,n)/2, n2 = n-n1.
   78: *>
   79: *>
   80: *> The subroutine calls itself to factor B11, solves for B21,
   81: *> solves for B12, updates B22, then calls itself to factor B22.
   82: *>
   83: *> For more details on the recursive LU algorithm, see [2].
   84: *>
   85: *> ZLAUNHR_COL_GETRFNP2 is called to factorize a block by the blocked
   86: *> routine ZLAUNHR_COL_GETRFNP, which uses blocked code calling
   87: *. Level 3 BLAS to update the submatrix. However, ZLAUNHR_COL_GETRFNP2
   88: *> is self-sufficient and can be used without ZLAUNHR_COL_GETRFNP.
   89: *>
   90: *> [1] "Reconstructing Householder vectors from tall-skinny QR",
   91: *>     G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.D. Nguyen,
   92: *>     E. Solomonik, J. Parallel Distrib. Comput.,
   93: *>     vol. 85, pp. 3-31, 2015.
   94: *>
   95: *> [2] "Recursion leads to automatic variable blocking for dense linear
   96: *>     algebra algorithms", F. Gustavson, IBM J. of Res. and Dev.,
   97: *>     vol. 41, no. 6, pp. 737-755, 1997.
   98: *> \endverbatim
   99: *
  100: *  Arguments:
  101: *  ==========
  102: *
  103: *> \param[in] M
  104: *> \verbatim
  105: *>          M is INTEGER
  106: *>          The number of rows of the matrix A.  M >= 0.
  107: *> \endverbatim
  108: *>
  109: *> \param[in] N
  110: *> \verbatim
  111: *>          N is INTEGER
  112: *>          The number of columns of the matrix A.  N >= 0.
  113: *> \endverbatim
  114: *>
  115: *> \param[in,out] A
  116: *> \verbatim
  117: *>          A is COMPLEX*16 array, dimension (LDA,N)
  118: *>          On entry, the M-by-N matrix to be factored.
  119: *>          On exit, the factors L and U from the factorization
  120: *>          A-S=L*U; the unit diagonal elements of L are not stored.
  121: *> \endverbatim
  122: *>
  123: *> \param[in] LDA
  124: *> \verbatim
  125: *>          LDA is INTEGER
  126: *>          The leading dimension of the array A.  LDA >= max(1,M).
  127: *> \endverbatim
  128: *>
  129: *> \param[out] D
  130: *> \verbatim
  131: *>          D is COMPLEX*16 array, dimension min(M,N)
  132: *>          The diagonal elements of the diagonal M-by-N sign matrix S,
  133: *>          D(i) = S(i,i), where 1 <= i <= min(M,N). The elements can be
  134: *>          only ( +1.0, 0.0 ) or (-1.0, 0.0 ).
  135: *> \endverbatim
  136: *>
  137: *> \param[out] INFO
  138: *> \verbatim
  139: *>          INFO is INTEGER
  140: *>          = 0:  successful exit
  141: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  142: *> \endverbatim
  143: *>
  144: *  Authors:
  145: *  ========
  146: *
  147: *> \author Univ. of Tennessee
  148: *> \author Univ. of California Berkeley
  149: *> \author Univ. of Colorado Denver
  150: *> \author NAG Ltd.
  151: *
  152: *> \date November 2019
  153: *
  154: *> \ingroup complex16GEcomputational
  155: *
  156: *> \par Contributors:
  157: *  ==================
  158: *>
  159: *> \verbatim
  160: *>
  161: *> November 2019, Igor Kozachenko,
  162: *>                Computer Science Division,
  163: *>                University of California, Berkeley
  164: *>
  165: *> \endverbatim
  166: *
  167: *  =====================================================================
  168:       RECURSIVE SUBROUTINE ZLAUNHR_COL_GETRFNP2( M, N, A, LDA, D, INFO )
  169:       IMPLICIT NONE
  170: *
  171: *  -- LAPACK computational routine (version 3.9.0) --
  172: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  173: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  174: *     November 2019
  175: *
  176: *     .. Scalar Arguments ..
  177:       INTEGER            INFO, LDA, M, N
  178: *     ..
  179: *     .. Array Arguments ..
  180:       COMPLEX*16         A( LDA, * ), D( * )
  181: *     ..
  182: *
  183: *  =====================================================================
  184: *
  185: *     .. Parameters ..
  186:       DOUBLE PRECISION   ONE
  187:       PARAMETER          ( ONE = 1.0D+0 )
  188:       COMPLEX*16         CONE
  189:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
  190: *     ..
  191: *     .. Local Scalars ..
  192:       DOUBLE PRECISION   SFMIN
  193:       INTEGER            I, IINFO, N1, N2
  194:       COMPLEX*16         Z
  195: *     ..
  196: *     .. External Functions ..
  197:       DOUBLE PRECISION   DLAMCH
  198:       EXTERNAL           DLAMCH
  199: *     ..
  200: *     .. External Subroutines ..
  201:       EXTERNAL           ZGEMM, ZSCAL, ZTRSM, XERBLA
  202: *     ..
  203: *     .. Intrinsic Functions ..
  204:       INTRINSIC          ABS, DBLE, DCMPLX, DIMAG, DSIGN, MAX, MIN
  205: *     ..
  206: *     .. Statement Functions ..
  207:       DOUBLE PRECISION   CABS1
  208: *     ..
  209: *     .. Statement Function definitions ..
  210:       CABS1( Z ) = ABS( DBLE( Z ) ) + ABS( DIMAG( Z ) )
  211: *     ..
  212: *     .. Executable Statements ..
  213: *
  214: *     Test the input parameters
  215: *
  216:       INFO = 0
  217:       IF( M.LT.0 ) THEN
  218:          INFO = -1
  219:       ELSE IF( N.LT.0 ) THEN
  220:          INFO = -2
  221:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  222:          INFO = -4
  223:       END IF
  224:       IF( INFO.NE.0 ) THEN
  225:          CALL XERBLA( 'ZLAUNHR_COL_GETRFNP2', -INFO )
  226:          RETURN
  227:       END IF
  228: *
  229: *     Quick return if possible
  230: *
  231:       IF( MIN( M, N ).EQ.0 )
  232:      $   RETURN
  233: 
  234:       IF ( M.EQ.1 ) THEN
  235: *
  236: *        One row case, (also recursion termination case),
  237: *        use unblocked code
  238: *
  239: *        Transfer the sign
  240: *
  241:          D( 1 ) = DCMPLX( -DSIGN( ONE, DBLE( A( 1, 1 ) ) ) )
  242: *
  243: *        Construct the row of U
  244: *
  245:          A( 1, 1 ) = A( 1, 1 ) - D( 1 )
  246: *
  247:       ELSE IF( N.EQ.1 ) THEN
  248: *
  249: *        One column case, (also recursion termination case),
  250: *        use unblocked code
  251: *
  252: *        Transfer the sign
  253: *
  254:          D( 1 ) = DCMPLX( -DSIGN( ONE, DBLE( A( 1, 1 ) ) ) )
  255: *
  256: *        Construct the row of U
  257: *
  258:          A( 1, 1 ) = A( 1, 1 ) - D( 1 )
  259: *
  260: *        Scale the elements 2:M of the column
  261: *
  262: *        Determine machine safe minimum
  263: *
  264:          SFMIN = DLAMCH('S')
  265: *
  266: *        Construct the subdiagonal elements of L
  267: *
  268:          IF( CABS1( A( 1, 1 ) ) .GE. SFMIN ) THEN
  269:             CALL ZSCAL( M-1, CONE / A( 1, 1 ), A( 2, 1 ), 1 )
  270:          ELSE
  271:             DO I = 2, M
  272:                A( I, 1 ) = A( I, 1 ) / A( 1, 1 )
  273:             END DO
  274:          END IF
  275: *
  276:       ELSE
  277: *
  278: *        Divide the matrix B into four submatrices
  279: *
  280:          N1 = MIN( M, N ) / 2
  281:          N2 = N-N1
  282: 
  283: *
  284: *        Factor B11, recursive call
  285: *
  286:          CALL ZLAUNHR_COL_GETRFNP2( N1, N1, A, LDA, D, IINFO )
  287: *
  288: *        Solve for B21
  289: *
  290:          CALL ZTRSM( 'R', 'U', 'N', 'N', M-N1, N1, CONE, A, LDA,
  291:      $               A( N1+1, 1 ), LDA )
  292: *
  293: *        Solve for B12
  294: *
  295:          CALL ZTRSM( 'L', 'L', 'N', 'U', N1, N2, CONE, A, LDA,
  296:      $               A( 1, N1+1 ), LDA )
  297: *
  298: *        Update B22, i.e. compute the Schur complement
  299: *        B22 := B22 - B21*B12
  300: *
  301:          CALL ZGEMM( 'N', 'N', M-N1, N2, N1, -CONE, A( N1+1, 1 ), LDA,
  302:      $               A( 1, N1+1 ), LDA, CONE, A( N1+1, N1+1 ), LDA )
  303: *
  304: *        Factor B22, recursive call
  305: *
  306:          CALL ZLAUNHR_COL_GETRFNP2( M-N1, N2, A( N1+1, N1+1 ), LDA,
  307:      $                              D( N1+1 ), IINFO )
  308: *
  309:       END IF
  310:       RETURN
  311: *
  312: *     End of ZLAUNHR_COL_GETRFNP2
  313: *
  314:       END

CVSweb interface <joel.bertrand@systella.fr>