File:  [local] / rpl / lapack / lapack / zlatsqr.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:32 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZLATSQR
    2: *
    3: *  Definition:
    4: *  ===========
    5: *
    6: *       SUBROUTINE ZLATSQR( M, N, MB, NB, A, LDA, T, LDT, WORK,
    7: *                           LWORK, INFO)
    8: *
    9: *       .. Scalar Arguments ..
   10: *       INTEGER           INFO, LDA, M, N, MB, NB, LDT, LWORK
   11: *       ..
   12: *       .. Array Arguments ..
   13: *       COMPLEX*16        A( LDA, * ), T( LDT, * ), WORK( * )
   14: *       ..
   15: *
   16: *
   17: *> \par Purpose:
   18: *  =============
   19: *>
   20: *> \verbatim
   21: *>
   22: *> ZLATSQR computes a blocked Tall-Skinny QR factorization of
   23: *> a complex M-by-N matrix A for M >= N:
   24: *>
   25: *>    A = Q * ( R ),
   26: *>            ( 0 )
   27: *>
   28: *> where:
   29: *>
   30: *>    Q is a M-by-M orthogonal matrix, stored on exit in an implicit
   31: *>    form in the elements below the diagonal of the array A and in
   32: *>    the elements of the array T;
   33: *>
   34: *>    R is an upper-triangular N-by-N matrix, stored on exit in
   35: *>    the elements on and above the diagonal of the array A.
   36: *>
   37: *>    0 is a (M-N)-by-N zero matrix, and is not stored.
   38: *>
   39: *> \endverbatim
   40: *
   41: *  Arguments:
   42: *  ==========
   43: *
   44: *> \param[in] M
   45: *> \verbatim
   46: *>          M is INTEGER
   47: *>          The number of rows of the matrix A.  M >= 0.
   48: *> \endverbatim
   49: *>
   50: *> \param[in] N
   51: *> \verbatim
   52: *>          N is INTEGER
   53: *>          The number of columns of the matrix A. M >= N >= 0.
   54: *> \endverbatim
   55: *>
   56: *> \param[in] MB
   57: *> \verbatim
   58: *>          MB is INTEGER
   59: *>          The row block size to be used in the blocked QR.
   60: *>          MB > N.
   61: *> \endverbatim
   62: *>
   63: *> \param[in] NB
   64: *> \verbatim
   65: *>          NB is INTEGER
   66: *>          The column block size to be used in the blocked QR.
   67: *>          N >= NB >= 1.
   68: *> \endverbatim
   69: *>
   70: *> \param[in,out] A
   71: *> \verbatim
   72: *>          A is COMPLEX*16 array, dimension (LDA,N)
   73: *>          On entry, the M-by-N matrix A.
   74: *>          On exit, the elements on and above the diagonal
   75: *>          of the array contain the N-by-N upper triangular matrix R;
   76: *>          the elements below the diagonal represent Q by the columns
   77: *>          of blocked V (see Further Details).
   78: *> \endverbatim
   79: *>
   80: *> \param[in] LDA
   81: *> \verbatim
   82: *>          LDA is INTEGER
   83: *>          The leading dimension of the array A.  LDA >= max(1,M).
   84: *> \endverbatim
   85: *>
   86: *> \param[out] T
   87: *> \verbatim
   88: *>          T is COMPLEX*16 array,
   89: *>          dimension (LDT, N * Number_of_row_blocks)
   90: *>          where Number_of_row_blocks = CEIL((M-N)/(MB-N))
   91: *>          The blocked upper triangular block reflectors stored in compact form
   92: *>          as a sequence of upper triangular blocks.
   93: *>          See Further Details below.
   94: *> \endverbatim
   95: *>
   96: *> \param[in] LDT
   97: *> \verbatim
   98: *>          LDT is INTEGER
   99: *>          The leading dimension of the array T.  LDT >= NB.
  100: *> \endverbatim
  101: *>
  102: *> \param[out] WORK
  103: *> \verbatim
  104: *>         (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK))
  105: *> \endverbatim
  106: *>
  107: *> \param[in] LWORK
  108: *> \verbatim
  109: *>          The dimension of the array WORK.  LWORK >= NB*N.
  110: *>          If LWORK = -1, then a workspace query is assumed; the routine
  111: *>          only calculates the optimal size of the WORK array, returns
  112: *>          this value as the first entry of the WORK array, and no error
  113: *>          message related to LWORK is issued by XERBLA.
  114: *> \endverbatim
  115: *>
  116: *> \param[out] INFO
  117: *> \verbatim
  118: *>          INFO is INTEGER
  119: *>          = 0:  successful exit
  120: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  121: *> \endverbatim
  122: *
  123: *  Authors:
  124: *  ========
  125: *
  126: *> \author Univ. of Tennessee
  127: *> \author Univ. of California Berkeley
  128: *> \author Univ. of Colorado Denver
  129: *> \author NAG Ltd.
  130: *
  131: *> \par Further Details:
  132: *  =====================
  133: *>
  134: *> \verbatim
  135: *> Tall-Skinny QR (TSQR) performs QR by a sequence of orthogonal transformations,
  136: *> representing Q as a product of other orthogonal matrices
  137: *>   Q = Q(1) * Q(2) * . . . * Q(k)
  138: *> where each Q(i) zeros out subdiagonal entries of a block of MB rows of A:
  139: *>   Q(1) zeros out the subdiagonal entries of rows 1:MB of A
  140: *>   Q(2) zeros out the bottom MB-N rows of rows [1:N,MB+1:2*MB-N] of A
  141: *>   Q(3) zeros out the bottom MB-N rows of rows [1:N,2*MB-N+1:3*MB-2*N] of A
  142: *>   . . .
  143: *>
  144: *> Q(1) is computed by GEQRT, which represents Q(1) by Householder vectors
  145: *> stored under the diagonal of rows 1:MB of A, and by upper triangular
  146: *> block reflectors, stored in array T(1:LDT,1:N).
  147: *> For more information see Further Details in GEQRT.
  148: *>
  149: *> Q(i) for i>1 is computed by TPQRT, which represents Q(i) by Householder vectors
  150: *> stored in rows [(i-1)*(MB-N)+N+1:i*(MB-N)+N] of A, and by upper triangular
  151: *> block reflectors, stored in array T(1:LDT,(i-1)*N+1:i*N).
  152: *> The last Q(k) may use fewer rows.
  153: *> For more information see Further Details in TPQRT.
  154: *>
  155: *> For more details of the overall algorithm, see the description of
  156: *> Sequential TSQR in Section 2.2 of [1].
  157: *>
  158: *> [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,”
  159: *>     J. Demmel, L. Grigori, M. Hoemmen, J. Langou,
  160: *>     SIAM J. Sci. Comput, vol. 34, no. 1, 2012
  161: *> \endverbatim
  162: *>
  163: *  =====================================================================
  164:       SUBROUTINE ZLATSQR( M, N, MB, NB, A, LDA, T, LDT, WORK,
  165:      $                    LWORK, INFO)
  166: *
  167: *  -- LAPACK computational routine --
  168: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  169: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. --
  170: *
  171: *     .. Scalar Arguments ..
  172:       INTEGER           INFO, LDA, M, N, MB, NB, LDT, LWORK
  173: *     ..
  174: *     .. Array Arguments ..
  175:       COMPLEX*16        A( LDA, * ), WORK( * ), T(LDT, *)
  176: *     ..
  177: *
  178: *  =====================================================================
  179: *
  180: *     ..
  181: *     .. Local Scalars ..
  182:       LOGICAL    LQUERY
  183:       INTEGER    I, II, KK, CTR
  184: *     ..
  185: *     .. EXTERNAL FUNCTIONS ..
  186:       LOGICAL            LSAME
  187:       EXTERNAL           LSAME
  188: *     .. EXTERNAL SUBROUTINES ..
  189:       EXTERNAL    ZGEQRT, ZTPQRT, XERBLA
  190: *     .. INTRINSIC FUNCTIONS ..
  191:       INTRINSIC          MAX, MIN, MOD
  192: *     ..
  193: *     .. EXECUTABLE STATEMENTS ..
  194: *
  195: *     TEST THE INPUT ARGUMENTS
  196: *
  197:       INFO = 0
  198: *
  199:       LQUERY = ( LWORK.EQ.-1 )
  200: *
  201:       IF( M.LT.0 ) THEN
  202:         INFO = -1
  203:       ELSE IF( N.LT.0 .OR. M.LT.N ) THEN
  204:         INFO = -2
  205:       ELSE IF( MB.LT.1 ) THEN
  206:         INFO = -3
  207:       ELSE IF( NB.LT.1 .OR. ( NB.GT.N .AND. N.GT.0 )) THEN
  208:         INFO = -4
  209:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  210:         INFO = -6
  211:       ELSE IF( LDT.LT.NB ) THEN
  212:         INFO = -8
  213:       ELSE IF( LWORK.LT.(N*NB) .AND. (.NOT.LQUERY) ) THEN
  214:         INFO = -10
  215:       END IF
  216:       IF( INFO.EQ.0)  THEN
  217:         WORK(1) = NB*N
  218:       END IF
  219:       IF( INFO.NE.0 ) THEN
  220:         CALL XERBLA( 'ZLATSQR', -INFO )
  221:         RETURN
  222:       ELSE IF (LQUERY) THEN
  223:        RETURN
  224:       END IF
  225: *
  226: *     Quick return if possible
  227: *
  228:       IF( MIN(M,N).EQ.0 ) THEN
  229:           RETURN
  230:       END IF
  231: *
  232: *     The QR Decomposition
  233: *
  234:        IF ((MB.LE.N).OR.(MB.GE.M)) THEN
  235:          CALL ZGEQRT( M, N, NB, A, LDA, T, LDT, WORK, INFO)
  236:          RETURN
  237:        END IF
  238:        KK = MOD((M-N),(MB-N))
  239:        II=M-KK+1
  240: *
  241: *      Compute the QR factorization of the first block A(1:MB,1:N)
  242: *
  243:        CALL ZGEQRT( MB, N, NB, A(1,1), LDA, T, LDT, WORK, INFO )
  244:        CTR = 1
  245: *
  246:        DO I = MB+1, II-MB+N ,  (MB-N)
  247: *
  248: *      Compute the QR factorization of the current block A(I:I+MB-N,1:N)
  249: *
  250:          CALL ZTPQRT( MB-N, N, 0, NB, A(1,1), LDA, A( I, 1 ), LDA,
  251:      $                 T(1, CTR * N + 1),
  252:      $                  LDT, WORK, INFO )
  253:          CTR = CTR + 1
  254:        END DO
  255: *
  256: *      Compute the QR factorization of the last block A(II:M,1:N)
  257: *
  258:        IF (II.LE.M) THEN
  259:          CALL ZTPQRT( KK, N, 0, NB, A(1,1), LDA, A( II, 1 ), LDA,
  260:      $                 T(1,CTR * N + 1), LDT,
  261:      $                  WORK, INFO )
  262:        END IF
  263: *
  264:       work( 1 ) = N*NB
  265:       RETURN
  266: *
  267: *     End of ZLATSQR
  268: *
  269:       END

CVSweb interface <joel.bertrand@systella.fr>