File:  [local] / rpl / lapack / lapack / zlatrs.f
Revision 1.4: download - view: text, annotated - select for diffs - revision graph
Fri Aug 6 15:32:47 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Cohérence

    1:       SUBROUTINE ZLATRS( UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X, SCALE,
    2:      $                   CNORM, INFO )
    3: *
    4: *  -- LAPACK auxiliary routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     .. Scalar Arguments ..
   10:       CHARACTER          DIAG, NORMIN, TRANS, UPLO
   11:       INTEGER            INFO, LDA, N
   12:       DOUBLE PRECISION   SCALE
   13: *     ..
   14: *     .. Array Arguments ..
   15:       DOUBLE PRECISION   CNORM( * )
   16:       COMPLEX*16         A( LDA, * ), X( * )
   17: *     ..
   18: *
   19: *  Purpose
   20: *  =======
   21: *
   22: *  ZLATRS solves one of the triangular systems
   23: *
   24: *     A * x = s*b,  A**T * x = s*b,  or  A**H * x = s*b,
   25: *
   26: *  with scaling to prevent overflow.  Here A is an upper or lower
   27: *  triangular matrix, A**T denotes the transpose of A, A**H denotes the
   28: *  conjugate transpose of A, x and b are n-element vectors, and s is a
   29: *  scaling factor, usually less than or equal to 1, chosen so that the
   30: *  components of x will be less than the overflow threshold.  If the
   31: *  unscaled problem will not cause overflow, the Level 2 BLAS routine
   32: *  ZTRSV is called. If the matrix A is singular (A(j,j) = 0 for some j),
   33: *  then s is set to 0 and a non-trivial solution to A*x = 0 is returned.
   34: *
   35: *  Arguments
   36: *  =========
   37: *
   38: *  UPLO    (input) CHARACTER*1
   39: *          Specifies whether the matrix A is upper or lower triangular.
   40: *          = 'U':  Upper triangular
   41: *          = 'L':  Lower triangular
   42: *
   43: *  TRANS   (input) CHARACTER*1
   44: *          Specifies the operation applied to A.
   45: *          = 'N':  Solve A * x = s*b     (No transpose)
   46: *          = 'T':  Solve A**T * x = s*b  (Transpose)
   47: *          = 'C':  Solve A**H * x = s*b  (Conjugate transpose)
   48: *
   49: *  DIAG    (input) CHARACTER*1
   50: *          Specifies whether or not the matrix A is unit triangular.
   51: *          = 'N':  Non-unit triangular
   52: *          = 'U':  Unit triangular
   53: *
   54: *  NORMIN  (input) CHARACTER*1
   55: *          Specifies whether CNORM has been set or not.
   56: *          = 'Y':  CNORM contains the column norms on entry
   57: *          = 'N':  CNORM is not set on entry.  On exit, the norms will
   58: *                  be computed and stored in CNORM.
   59: *
   60: *  N       (input) INTEGER
   61: *          The order of the matrix A.  N >= 0.
   62: *
   63: *  A       (input) COMPLEX*16 array, dimension (LDA,N)
   64: *          The triangular matrix A.  If UPLO = 'U', the leading n by n
   65: *          upper triangular part of the array A contains the upper
   66: *          triangular matrix, and the strictly lower triangular part of
   67: *          A is not referenced.  If UPLO = 'L', the leading n by n lower
   68: *          triangular part of the array A contains the lower triangular
   69: *          matrix, and the strictly upper triangular part of A is not
   70: *          referenced.  If DIAG = 'U', the diagonal elements of A are
   71: *          also not referenced and are assumed to be 1.
   72: *
   73: *  LDA     (input) INTEGER
   74: *          The leading dimension of the array A.  LDA >= max (1,N).
   75: *
   76: *  X       (input/output) COMPLEX*16 array, dimension (N)
   77: *          On entry, the right hand side b of the triangular system.
   78: *          On exit, X is overwritten by the solution vector x.
   79: *
   80: *  SCALE   (output) DOUBLE PRECISION
   81: *          The scaling factor s for the triangular system
   82: *             A * x = s*b,  A**T * x = s*b,  or  A**H * x = s*b.
   83: *          If SCALE = 0, the matrix A is singular or badly scaled, and
   84: *          the vector x is an exact or approximate solution to A*x = 0.
   85: *
   86: *  CNORM   (input or output) DOUBLE PRECISION array, dimension (N)
   87: *
   88: *          If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
   89: *          contains the norm of the off-diagonal part of the j-th column
   90: *          of A.  If TRANS = 'N', CNORM(j) must be greater than or equal
   91: *          to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
   92: *          must be greater than or equal to the 1-norm.
   93: *
   94: *          If NORMIN = 'N', CNORM is an output argument and CNORM(j)
   95: *          returns the 1-norm of the offdiagonal part of the j-th column
   96: *          of A.
   97: *
   98: *  INFO    (output) INTEGER
   99: *          = 0:  successful exit
  100: *          < 0:  if INFO = -k, the k-th argument had an illegal value
  101: *
  102: *  Further Details
  103: *  ======= =======
  104: *
  105: *  A rough bound on x is computed; if that is less than overflow, ZTRSV
  106: *  is called, otherwise, specific code is used which checks for possible
  107: *  overflow or divide-by-zero at every operation.
  108: *
  109: *  A columnwise scheme is used for solving A*x = b.  The basic algorithm
  110: *  if A is lower triangular is
  111: *
  112: *       x[1:n] := b[1:n]
  113: *       for j = 1, ..., n
  114: *            x(j) := x(j) / A(j,j)
  115: *            x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
  116: *       end
  117: *
  118: *  Define bounds on the components of x after j iterations of the loop:
  119: *     M(j) = bound on x[1:j]
  120: *     G(j) = bound on x[j+1:n]
  121: *  Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
  122: *
  123: *  Then for iteration j+1 we have
  124: *     M(j+1) <= G(j) / | A(j+1,j+1) |
  125: *     G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
  126: *            <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
  127: *
  128: *  where CNORM(j+1) is greater than or equal to the infinity-norm of
  129: *  column j+1 of A, not counting the diagonal.  Hence
  130: *
  131: *     G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
  132: *                  1<=i<=j
  133: *  and
  134: *
  135: *     |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
  136: *                                   1<=i< j
  137: *
  138: *  Since |x(j)| <= M(j), we use the Level 2 BLAS routine ZTRSV if the
  139: *  reciprocal of the largest M(j), j=1,..,n, is larger than
  140: *  max(underflow, 1/overflow).
  141: *
  142: *  The bound on x(j) is also used to determine when a step in the
  143: *  columnwise method can be performed without fear of overflow.  If
  144: *  the computed bound is greater than a large constant, x is scaled to
  145: *  prevent overflow, but if the bound overflows, x is set to 0, x(j) to
  146: *  1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
  147: *
  148: *  Similarly, a row-wise scheme is used to solve A**T *x = b  or
  149: *  A**H *x = b.  The basic algorithm for A upper triangular is
  150: *
  151: *       for j = 1, ..., n
  152: *            x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
  153: *       end
  154: *
  155: *  We simultaneously compute two bounds
  156: *       G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
  157: *       M(j) = bound on x(i), 1<=i<=j
  158: *
  159: *  The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
  160: *  add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
  161: *  Then the bound on x(j) is
  162: *
  163: *       M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
  164: *
  165: *            <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
  166: *                      1<=i<=j
  167: *
  168: *  and we can safely call ZTRSV if 1/M(n) and 1/G(n) are both greater
  169: *  than max(underflow, 1/overflow).
  170: *
  171: *  =====================================================================
  172: *
  173: *     .. Parameters ..
  174:       DOUBLE PRECISION   ZERO, HALF, ONE, TWO
  175:       PARAMETER          ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0,
  176:      $                   TWO = 2.0D+0 )
  177: *     ..
  178: *     .. Local Scalars ..
  179:       LOGICAL            NOTRAN, NOUNIT, UPPER
  180:       INTEGER            I, IMAX, J, JFIRST, JINC, JLAST
  181:       DOUBLE PRECISION   BIGNUM, GROW, REC, SMLNUM, TJJ, TMAX, TSCAL,
  182:      $                   XBND, XJ, XMAX
  183:       COMPLEX*16         CSUMJ, TJJS, USCAL, ZDUM
  184: *     ..
  185: *     .. External Functions ..
  186:       LOGICAL            LSAME
  187:       INTEGER            IDAMAX, IZAMAX
  188:       DOUBLE PRECISION   DLAMCH, DZASUM
  189:       COMPLEX*16         ZDOTC, ZDOTU, ZLADIV
  190:       EXTERNAL           LSAME, IDAMAX, IZAMAX, DLAMCH, DZASUM, ZDOTC,
  191:      $                   ZDOTU, ZLADIV
  192: *     ..
  193: *     .. External Subroutines ..
  194:       EXTERNAL           DSCAL, XERBLA, ZAXPY, ZDSCAL, ZTRSV
  195: *     ..
  196: *     .. Intrinsic Functions ..
  197:       INTRINSIC          ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX, MIN
  198: *     ..
  199: *     .. Statement Functions ..
  200:       DOUBLE PRECISION   CABS1, CABS2
  201: *     ..
  202: *     .. Statement Function definitions ..
  203:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  204:       CABS2( ZDUM ) = ABS( DBLE( ZDUM ) / 2.D0 ) +
  205:      $                ABS( DIMAG( ZDUM ) / 2.D0 )
  206: *     ..
  207: *     .. Executable Statements ..
  208: *
  209:       INFO = 0
  210:       UPPER = LSAME( UPLO, 'U' )
  211:       NOTRAN = LSAME( TRANS, 'N' )
  212:       NOUNIT = LSAME( DIAG, 'N' )
  213: *
  214: *     Test the input parameters.
  215: *
  216:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  217:          INFO = -1
  218:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  219:      $         LSAME( TRANS, 'C' ) ) THEN
  220:          INFO = -2
  221:       ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
  222:          INFO = -3
  223:       ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
  224:      $         LSAME( NORMIN, 'N' ) ) THEN
  225:          INFO = -4
  226:       ELSE IF( N.LT.0 ) THEN
  227:          INFO = -5
  228:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  229:          INFO = -7
  230:       END IF
  231:       IF( INFO.NE.0 ) THEN
  232:          CALL XERBLA( 'ZLATRS', -INFO )
  233:          RETURN
  234:       END IF
  235: *
  236: *     Quick return if possible
  237: *
  238:       IF( N.EQ.0 )
  239:      $   RETURN
  240: *
  241: *     Determine machine dependent parameters to control overflow.
  242: *
  243:       SMLNUM = DLAMCH( 'Safe minimum' )
  244:       BIGNUM = ONE / SMLNUM
  245:       CALL DLABAD( SMLNUM, BIGNUM )
  246:       SMLNUM = SMLNUM / DLAMCH( 'Precision' )
  247:       BIGNUM = ONE / SMLNUM
  248:       SCALE = ONE
  249: *
  250:       IF( LSAME( NORMIN, 'N' ) ) THEN
  251: *
  252: *        Compute the 1-norm of each column, not including the diagonal.
  253: *
  254:          IF( UPPER ) THEN
  255: *
  256: *           A is upper triangular.
  257: *
  258:             DO 10 J = 1, N
  259:                CNORM( J ) = DZASUM( J-1, A( 1, J ), 1 )
  260:    10       CONTINUE
  261:          ELSE
  262: *
  263: *           A is lower triangular.
  264: *
  265:             DO 20 J = 1, N - 1
  266:                CNORM( J ) = DZASUM( N-J, A( J+1, J ), 1 )
  267:    20       CONTINUE
  268:             CNORM( N ) = ZERO
  269:          END IF
  270:       END IF
  271: *
  272: *     Scale the column norms by TSCAL if the maximum element in CNORM is
  273: *     greater than BIGNUM/2.
  274: *
  275:       IMAX = IDAMAX( N, CNORM, 1 )
  276:       TMAX = CNORM( IMAX )
  277:       IF( TMAX.LE.BIGNUM*HALF ) THEN
  278:          TSCAL = ONE
  279:       ELSE
  280:          TSCAL = HALF / ( SMLNUM*TMAX )
  281:          CALL DSCAL( N, TSCAL, CNORM, 1 )
  282:       END IF
  283: *
  284: *     Compute a bound on the computed solution vector to see if the
  285: *     Level 2 BLAS routine ZTRSV can be used.
  286: *
  287:       XMAX = ZERO
  288:       DO 30 J = 1, N
  289:          XMAX = MAX( XMAX, CABS2( X( J ) ) )
  290:    30 CONTINUE
  291:       XBND = XMAX
  292: *
  293:       IF( NOTRAN ) THEN
  294: *
  295: *        Compute the growth in A * x = b.
  296: *
  297:          IF( UPPER ) THEN
  298:             JFIRST = N
  299:             JLAST = 1
  300:             JINC = -1
  301:          ELSE
  302:             JFIRST = 1
  303:             JLAST = N
  304:             JINC = 1
  305:          END IF
  306: *
  307:          IF( TSCAL.NE.ONE ) THEN
  308:             GROW = ZERO
  309:             GO TO 60
  310:          END IF
  311: *
  312:          IF( NOUNIT ) THEN
  313: *
  314: *           A is non-unit triangular.
  315: *
  316: *           Compute GROW = 1/G(j) and XBND = 1/M(j).
  317: *           Initially, G(0) = max{x(i), i=1,...,n}.
  318: *
  319:             GROW = HALF / MAX( XBND, SMLNUM )
  320:             XBND = GROW
  321:             DO 40 J = JFIRST, JLAST, JINC
  322: *
  323: *              Exit the loop if the growth factor is too small.
  324: *
  325:                IF( GROW.LE.SMLNUM )
  326:      $            GO TO 60
  327: *
  328:                TJJS = A( J, J )
  329:                TJJ = CABS1( TJJS )
  330: *
  331:                IF( TJJ.GE.SMLNUM ) THEN
  332: *
  333: *                 M(j) = G(j-1) / abs(A(j,j))
  334: *
  335:                   XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
  336:                ELSE
  337: *
  338: *                 M(j) could overflow, set XBND to 0.
  339: *
  340:                   XBND = ZERO
  341:                END IF
  342: *
  343:                IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
  344: *
  345: *                 G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
  346: *
  347:                   GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
  348:                ELSE
  349: *
  350: *                 G(j) could overflow, set GROW to 0.
  351: *
  352:                   GROW = ZERO
  353:                END IF
  354:    40       CONTINUE
  355:             GROW = XBND
  356:          ELSE
  357: *
  358: *           A is unit triangular.
  359: *
  360: *           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  361: *
  362:             GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
  363:             DO 50 J = JFIRST, JLAST, JINC
  364: *
  365: *              Exit the loop if the growth factor is too small.
  366: *
  367:                IF( GROW.LE.SMLNUM )
  368:      $            GO TO 60
  369: *
  370: *              G(j) = G(j-1)*( 1 + CNORM(j) )
  371: *
  372:                GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
  373:    50       CONTINUE
  374:          END IF
  375:    60    CONTINUE
  376: *
  377:       ELSE
  378: *
  379: *        Compute the growth in A**T * x = b  or  A**H * x = b.
  380: *
  381:          IF( UPPER ) THEN
  382:             JFIRST = 1
  383:             JLAST = N
  384:             JINC = 1
  385:          ELSE
  386:             JFIRST = N
  387:             JLAST = 1
  388:             JINC = -1
  389:          END IF
  390: *
  391:          IF( TSCAL.NE.ONE ) THEN
  392:             GROW = ZERO
  393:             GO TO 90
  394:          END IF
  395: *
  396:          IF( NOUNIT ) THEN
  397: *
  398: *           A is non-unit triangular.
  399: *
  400: *           Compute GROW = 1/G(j) and XBND = 1/M(j).
  401: *           Initially, M(0) = max{x(i), i=1,...,n}.
  402: *
  403:             GROW = HALF / MAX( XBND, SMLNUM )
  404:             XBND = GROW
  405:             DO 70 J = JFIRST, JLAST, JINC
  406: *
  407: *              Exit the loop if the growth factor is too small.
  408: *
  409:                IF( GROW.LE.SMLNUM )
  410:      $            GO TO 90
  411: *
  412: *              G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
  413: *
  414:                XJ = ONE + CNORM( J )
  415:                GROW = MIN( GROW, XBND / XJ )
  416: *
  417:                TJJS = A( J, J )
  418:                TJJ = CABS1( TJJS )
  419: *
  420:                IF( TJJ.GE.SMLNUM ) THEN
  421: *
  422: *                 M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
  423: *
  424:                   IF( XJ.GT.TJJ )
  425:      $               XBND = XBND*( TJJ / XJ )
  426:                ELSE
  427: *
  428: *                 M(j) could overflow, set XBND to 0.
  429: *
  430:                   XBND = ZERO
  431:                END IF
  432:    70       CONTINUE
  433:             GROW = MIN( GROW, XBND )
  434:          ELSE
  435: *
  436: *           A is unit triangular.
  437: *
  438: *           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  439: *
  440:             GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
  441:             DO 80 J = JFIRST, JLAST, JINC
  442: *
  443: *              Exit the loop if the growth factor is too small.
  444: *
  445:                IF( GROW.LE.SMLNUM )
  446:      $            GO TO 90
  447: *
  448: *              G(j) = ( 1 + CNORM(j) )*G(j-1)
  449: *
  450:                XJ = ONE + CNORM( J )
  451:                GROW = GROW / XJ
  452:    80       CONTINUE
  453:          END IF
  454:    90    CONTINUE
  455:       END IF
  456: *
  457:       IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
  458: *
  459: *        Use the Level 2 BLAS solve if the reciprocal of the bound on
  460: *        elements of X is not too small.
  461: *
  462:          CALL ZTRSV( UPLO, TRANS, DIAG, N, A, LDA, X, 1 )
  463:       ELSE
  464: *
  465: *        Use a Level 1 BLAS solve, scaling intermediate results.
  466: *
  467:          IF( XMAX.GT.BIGNUM*HALF ) THEN
  468: *
  469: *           Scale X so that its components are less than or equal to
  470: *           BIGNUM in absolute value.
  471: *
  472:             SCALE = ( BIGNUM*HALF ) / XMAX
  473:             CALL ZDSCAL( N, SCALE, X, 1 )
  474:             XMAX = BIGNUM
  475:          ELSE
  476:             XMAX = XMAX*TWO
  477:          END IF
  478: *
  479:          IF( NOTRAN ) THEN
  480: *
  481: *           Solve A * x = b
  482: *
  483:             DO 120 J = JFIRST, JLAST, JINC
  484: *
  485: *              Compute x(j) = b(j) / A(j,j), scaling x if necessary.
  486: *
  487:                XJ = CABS1( X( J ) )
  488:                IF( NOUNIT ) THEN
  489:                   TJJS = A( J, J )*TSCAL
  490:                ELSE
  491:                   TJJS = TSCAL
  492:                   IF( TSCAL.EQ.ONE )
  493:      $               GO TO 110
  494:                END IF
  495:                TJJ = CABS1( TJJS )
  496:                IF( TJJ.GT.SMLNUM ) THEN
  497: *
  498: *                    abs(A(j,j)) > SMLNUM:
  499: *
  500:                   IF( TJJ.LT.ONE ) THEN
  501:                      IF( XJ.GT.TJJ*BIGNUM ) THEN
  502: *
  503: *                          Scale x by 1/b(j).
  504: *
  505:                         REC = ONE / XJ
  506:                         CALL ZDSCAL( N, REC, X, 1 )
  507:                         SCALE = SCALE*REC
  508:                         XMAX = XMAX*REC
  509:                      END IF
  510:                   END IF
  511:                   X( J ) = ZLADIV( X( J ), TJJS )
  512:                   XJ = CABS1( X( J ) )
  513:                ELSE IF( TJJ.GT.ZERO ) THEN
  514: *
  515: *                    0 < abs(A(j,j)) <= SMLNUM:
  516: *
  517:                   IF( XJ.GT.TJJ*BIGNUM ) THEN
  518: *
  519: *                       Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
  520: *                       to avoid overflow when dividing by A(j,j).
  521: *
  522:                      REC = ( TJJ*BIGNUM ) / XJ
  523:                      IF( CNORM( J ).GT.ONE ) THEN
  524: *
  525: *                          Scale by 1/CNORM(j) to avoid overflow when
  526: *                          multiplying x(j) times column j.
  527: *
  528:                         REC = REC / CNORM( J )
  529:                      END IF
  530:                      CALL ZDSCAL( N, REC, X, 1 )
  531:                      SCALE = SCALE*REC
  532:                      XMAX = XMAX*REC
  533:                   END IF
  534:                   X( J ) = ZLADIV( X( J ), TJJS )
  535:                   XJ = CABS1( X( J ) )
  536:                ELSE
  537: *
  538: *                    A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
  539: *                    scale = 0, and compute a solution to A*x = 0.
  540: *
  541:                   DO 100 I = 1, N
  542:                      X( I ) = ZERO
  543:   100             CONTINUE
  544:                   X( J ) = ONE
  545:                   XJ = ONE
  546:                   SCALE = ZERO
  547:                   XMAX = ZERO
  548:                END IF
  549:   110          CONTINUE
  550: *
  551: *              Scale x if necessary to avoid overflow when adding a
  552: *              multiple of column j of A.
  553: *
  554:                IF( XJ.GT.ONE ) THEN
  555:                   REC = ONE / XJ
  556:                   IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
  557: *
  558: *                    Scale x by 1/(2*abs(x(j))).
  559: *
  560:                      REC = REC*HALF
  561:                      CALL ZDSCAL( N, REC, X, 1 )
  562:                      SCALE = SCALE*REC
  563:                   END IF
  564:                ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
  565: *
  566: *                 Scale x by 1/2.
  567: *
  568:                   CALL ZDSCAL( N, HALF, X, 1 )
  569:                   SCALE = SCALE*HALF
  570:                END IF
  571: *
  572:                IF( UPPER ) THEN
  573:                   IF( J.GT.1 ) THEN
  574: *
  575: *                    Compute the update
  576: *                       x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j)
  577: *
  578:                      CALL ZAXPY( J-1, -X( J )*TSCAL, A( 1, J ), 1, X,
  579:      $                           1 )
  580:                      I = IZAMAX( J-1, X, 1 )
  581:                      XMAX = CABS1( X( I ) )
  582:                   END IF
  583:                ELSE
  584:                   IF( J.LT.N ) THEN
  585: *
  586: *                    Compute the update
  587: *                       x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j)
  588: *
  589:                      CALL ZAXPY( N-J, -X( J )*TSCAL, A( J+1, J ), 1,
  590:      $                           X( J+1 ), 1 )
  591:                      I = J + IZAMAX( N-J, X( J+1 ), 1 )
  592:                      XMAX = CABS1( X( I ) )
  593:                   END IF
  594:                END IF
  595:   120       CONTINUE
  596: *
  597:          ELSE IF( LSAME( TRANS, 'T' ) ) THEN
  598: *
  599: *           Solve A**T * x = b
  600: *
  601:             DO 170 J = JFIRST, JLAST, JINC
  602: *
  603: *              Compute x(j) = b(j) - sum A(k,j)*x(k).
  604: *                                    k<>j
  605: *
  606:                XJ = CABS1( X( J ) )
  607:                USCAL = TSCAL
  608:                REC = ONE / MAX( XMAX, ONE )
  609:                IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
  610: *
  611: *                 If x(j) could overflow, scale x by 1/(2*XMAX).
  612: *
  613:                   REC = REC*HALF
  614:                   IF( NOUNIT ) THEN
  615:                      TJJS = A( J, J )*TSCAL
  616:                   ELSE
  617:                      TJJS = TSCAL
  618:                   END IF
  619:                   TJJ = CABS1( TJJS )
  620:                   IF( TJJ.GT.ONE ) THEN
  621: *
  622: *                       Divide by A(j,j) when scaling x if A(j,j) > 1.
  623: *
  624:                      REC = MIN( ONE, REC*TJJ )
  625:                      USCAL = ZLADIV( USCAL, TJJS )
  626:                   END IF
  627:                   IF( REC.LT.ONE ) THEN
  628:                      CALL ZDSCAL( N, REC, X, 1 )
  629:                      SCALE = SCALE*REC
  630:                      XMAX = XMAX*REC
  631:                   END IF
  632:                END IF
  633: *
  634:                CSUMJ = ZERO
  635:                IF( USCAL.EQ.DCMPLX( ONE ) ) THEN
  636: *
  637: *                 If the scaling needed for A in the dot product is 1,
  638: *                 call ZDOTU to perform the dot product.
  639: *
  640:                   IF( UPPER ) THEN
  641:                      CSUMJ = ZDOTU( J-1, A( 1, J ), 1, X, 1 )
  642:                   ELSE IF( J.LT.N ) THEN
  643:                      CSUMJ = ZDOTU( N-J, A( J+1, J ), 1, X( J+1 ), 1 )
  644:                   END IF
  645:                ELSE
  646: *
  647: *                 Otherwise, use in-line code for the dot product.
  648: *
  649:                   IF( UPPER ) THEN
  650:                      DO 130 I = 1, J - 1
  651:                         CSUMJ = CSUMJ + ( A( I, J )*USCAL )*X( I )
  652:   130                CONTINUE
  653:                   ELSE IF( J.LT.N ) THEN
  654:                      DO 140 I = J + 1, N
  655:                         CSUMJ = CSUMJ + ( A( I, J )*USCAL )*X( I )
  656:   140                CONTINUE
  657:                   END IF
  658:                END IF
  659: *
  660:                IF( USCAL.EQ.DCMPLX( TSCAL ) ) THEN
  661: *
  662: *                 Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
  663: *                 was not used to scale the dotproduct.
  664: *
  665:                   X( J ) = X( J ) - CSUMJ
  666:                   XJ = CABS1( X( J ) )
  667:                   IF( NOUNIT ) THEN
  668:                      TJJS = A( J, J )*TSCAL
  669:                   ELSE
  670:                      TJJS = TSCAL
  671:                      IF( TSCAL.EQ.ONE )
  672:      $                  GO TO 160
  673:                   END IF
  674: *
  675: *                    Compute x(j) = x(j) / A(j,j), scaling if necessary.
  676: *
  677:                   TJJ = CABS1( TJJS )
  678:                   IF( TJJ.GT.SMLNUM ) THEN
  679: *
  680: *                       abs(A(j,j)) > SMLNUM:
  681: *
  682:                      IF( TJJ.LT.ONE ) THEN
  683:                         IF( XJ.GT.TJJ*BIGNUM ) THEN
  684: *
  685: *                             Scale X by 1/abs(x(j)).
  686: *
  687:                            REC = ONE / XJ
  688:                            CALL ZDSCAL( N, REC, X, 1 )
  689:                            SCALE = SCALE*REC
  690:                            XMAX = XMAX*REC
  691:                         END IF
  692:                      END IF
  693:                      X( J ) = ZLADIV( X( J ), TJJS )
  694:                   ELSE IF( TJJ.GT.ZERO ) THEN
  695: *
  696: *                       0 < abs(A(j,j)) <= SMLNUM:
  697: *
  698:                      IF( XJ.GT.TJJ*BIGNUM ) THEN
  699: *
  700: *                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
  701: *
  702:                         REC = ( TJJ*BIGNUM ) / XJ
  703:                         CALL ZDSCAL( N, REC, X, 1 )
  704:                         SCALE = SCALE*REC
  705:                         XMAX = XMAX*REC
  706:                      END IF
  707:                      X( J ) = ZLADIV( X( J ), TJJS )
  708:                   ELSE
  709: *
  710: *                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
  711: *                       scale = 0 and compute a solution to A**T *x = 0.
  712: *
  713:                      DO 150 I = 1, N
  714:                         X( I ) = ZERO
  715:   150                CONTINUE
  716:                      X( J ) = ONE
  717:                      SCALE = ZERO
  718:                      XMAX = ZERO
  719:                   END IF
  720:   160             CONTINUE
  721:                ELSE
  722: *
  723: *                 Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
  724: *                 product has already been divided by 1/A(j,j).
  725: *
  726:                   X( J ) = ZLADIV( X( J ), TJJS ) - CSUMJ
  727:                END IF
  728:                XMAX = MAX( XMAX, CABS1( X( J ) ) )
  729:   170       CONTINUE
  730: *
  731:          ELSE
  732: *
  733: *           Solve A**H * x = b
  734: *
  735:             DO 220 J = JFIRST, JLAST, JINC
  736: *
  737: *              Compute x(j) = b(j) - sum A(k,j)*x(k).
  738: *                                    k<>j
  739: *
  740:                XJ = CABS1( X( J ) )
  741:                USCAL = TSCAL
  742:                REC = ONE / MAX( XMAX, ONE )
  743:                IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
  744: *
  745: *                 If x(j) could overflow, scale x by 1/(2*XMAX).
  746: *
  747:                   REC = REC*HALF
  748:                   IF( NOUNIT ) THEN
  749:                      TJJS = DCONJG( A( J, J ) )*TSCAL
  750:                   ELSE
  751:                      TJJS = TSCAL
  752:                   END IF
  753:                   TJJ = CABS1( TJJS )
  754:                   IF( TJJ.GT.ONE ) THEN
  755: *
  756: *                       Divide by A(j,j) when scaling x if A(j,j) > 1.
  757: *
  758:                      REC = MIN( ONE, REC*TJJ )
  759:                      USCAL = ZLADIV( USCAL, TJJS )
  760:                   END IF
  761:                   IF( REC.LT.ONE ) THEN
  762:                      CALL ZDSCAL( N, REC, X, 1 )
  763:                      SCALE = SCALE*REC
  764:                      XMAX = XMAX*REC
  765:                   END IF
  766:                END IF
  767: *
  768:                CSUMJ = ZERO
  769:                IF( USCAL.EQ.DCMPLX( ONE ) ) THEN
  770: *
  771: *                 If the scaling needed for A in the dot product is 1,
  772: *                 call ZDOTC to perform the dot product.
  773: *
  774:                   IF( UPPER ) THEN
  775:                      CSUMJ = ZDOTC( J-1, A( 1, J ), 1, X, 1 )
  776:                   ELSE IF( J.LT.N ) THEN
  777:                      CSUMJ = ZDOTC( N-J, A( J+1, J ), 1, X( J+1 ), 1 )
  778:                   END IF
  779:                ELSE
  780: *
  781: *                 Otherwise, use in-line code for the dot product.
  782: *
  783:                   IF( UPPER ) THEN
  784:                      DO 180 I = 1, J - 1
  785:                         CSUMJ = CSUMJ + ( DCONJG( A( I, J ) )*USCAL )*
  786:      $                          X( I )
  787:   180                CONTINUE
  788:                   ELSE IF( J.LT.N ) THEN
  789:                      DO 190 I = J + 1, N
  790:                         CSUMJ = CSUMJ + ( DCONJG( A( I, J ) )*USCAL )*
  791:      $                          X( I )
  792:   190                CONTINUE
  793:                   END IF
  794:                END IF
  795: *
  796:                IF( USCAL.EQ.DCMPLX( TSCAL ) ) THEN
  797: *
  798: *                 Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
  799: *                 was not used to scale the dotproduct.
  800: *
  801:                   X( J ) = X( J ) - CSUMJ
  802:                   XJ = CABS1( X( J ) )
  803:                   IF( NOUNIT ) THEN
  804:                      TJJS = DCONJG( A( J, J ) )*TSCAL
  805:                   ELSE
  806:                      TJJS = TSCAL
  807:                      IF( TSCAL.EQ.ONE )
  808:      $                  GO TO 210
  809:                   END IF
  810: *
  811: *                    Compute x(j) = x(j) / A(j,j), scaling if necessary.
  812: *
  813:                   TJJ = CABS1( TJJS )
  814:                   IF( TJJ.GT.SMLNUM ) THEN
  815: *
  816: *                       abs(A(j,j)) > SMLNUM:
  817: *
  818:                      IF( TJJ.LT.ONE ) THEN
  819:                         IF( XJ.GT.TJJ*BIGNUM ) THEN
  820: *
  821: *                             Scale X by 1/abs(x(j)).
  822: *
  823:                            REC = ONE / XJ
  824:                            CALL ZDSCAL( N, REC, X, 1 )
  825:                            SCALE = SCALE*REC
  826:                            XMAX = XMAX*REC
  827:                         END IF
  828:                      END IF
  829:                      X( J ) = ZLADIV( X( J ), TJJS )
  830:                   ELSE IF( TJJ.GT.ZERO ) THEN
  831: *
  832: *                       0 < abs(A(j,j)) <= SMLNUM:
  833: *
  834:                      IF( XJ.GT.TJJ*BIGNUM ) THEN
  835: *
  836: *                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
  837: *
  838:                         REC = ( TJJ*BIGNUM ) / XJ
  839:                         CALL ZDSCAL( N, REC, X, 1 )
  840:                         SCALE = SCALE*REC
  841:                         XMAX = XMAX*REC
  842:                      END IF
  843:                      X( J ) = ZLADIV( X( J ), TJJS )
  844:                   ELSE
  845: *
  846: *                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
  847: *                       scale = 0 and compute a solution to A**H *x = 0.
  848: *
  849:                      DO 200 I = 1, N
  850:                         X( I ) = ZERO
  851:   200                CONTINUE
  852:                      X( J ) = ONE
  853:                      SCALE = ZERO
  854:                      XMAX = ZERO
  855:                   END IF
  856:   210             CONTINUE
  857:                ELSE
  858: *
  859: *                 Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
  860: *                 product has already been divided by 1/A(j,j).
  861: *
  862:                   X( J ) = ZLADIV( X( J ), TJJS ) - CSUMJ
  863:                END IF
  864:                XMAX = MAX( XMAX, CABS1( X( J ) ) )
  865:   220       CONTINUE
  866:          END IF
  867:          SCALE = SCALE / TSCAL
  868:       END IF
  869: *
  870: *     Scale the column norms by 1/TSCAL for return.
  871: *
  872:       IF( TSCAL.NE.ONE ) THEN
  873:          CALL DSCAL( N, ONE / TSCAL, CNORM, 1 )
  874:       END IF
  875: *
  876:       RETURN
  877: *
  878: *     End of ZLATRS
  879: *
  880:       END

CVSweb interface <joel.bertrand@systella.fr>