File:  [local] / rpl / lapack / lapack / zlatrd.f
Revision 1.7: download - view: text, annotated - select for diffs - revision graph
Tue Dec 21 13:53:52 2010 UTC (13 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_0, rpl-4_0_24, rpl-4_0_22, rpl-4_0_21, rpl-4_0_20, rpl-4_0, HEAD
Mise à jour de lapack vers la version 3.3.0.

    1:       SUBROUTINE ZLATRD( UPLO, N, NB, A, LDA, E, TAU, W, LDW )
    2: *
    3: *  -- LAPACK auxiliary routine (version 3.2) --
    4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    6: *     November 2006
    7: *
    8: *     .. Scalar Arguments ..
    9:       CHARACTER          UPLO
   10:       INTEGER            LDA, LDW, N, NB
   11: *     ..
   12: *     .. Array Arguments ..
   13:       DOUBLE PRECISION   E( * )
   14:       COMPLEX*16         A( LDA, * ), TAU( * ), W( LDW, * )
   15: *     ..
   16: *
   17: *  Purpose
   18: *  =======
   19: *
   20: *  ZLATRD reduces NB rows and columns of a complex Hermitian matrix A to
   21: *  Hermitian tridiagonal form by a unitary similarity
   22: *  transformation Q' * A * Q, and returns the matrices V and W which are
   23: *  needed to apply the transformation to the unreduced part of A.
   24: *
   25: *  If UPLO = 'U', ZLATRD reduces the last NB rows and columns of a
   26: *  matrix, of which the upper triangle is supplied;
   27: *  if UPLO = 'L', ZLATRD reduces the first NB rows and columns of a
   28: *  matrix, of which the lower triangle is supplied.
   29: *
   30: *  This is an auxiliary routine called by ZHETRD.
   31: *
   32: *  Arguments
   33: *  =========
   34: *
   35: *  UPLO    (input) CHARACTER*1
   36: *          Specifies whether the upper or lower triangular part of the
   37: *          Hermitian matrix A is stored:
   38: *          = 'U': Upper triangular
   39: *          = 'L': Lower triangular
   40: *
   41: *  N       (input) INTEGER
   42: *          The order of the matrix A.
   43: *
   44: *  NB      (input) INTEGER
   45: *          The number of rows and columns to be reduced.
   46: *
   47: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
   48: *          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
   49: *          n-by-n upper triangular part of A contains the upper
   50: *          triangular part of the matrix A, and the strictly lower
   51: *          triangular part of A is not referenced.  If UPLO = 'L', the
   52: *          leading n-by-n lower triangular part of A contains the lower
   53: *          triangular part of the matrix A, and the strictly upper
   54: *          triangular part of A is not referenced.
   55: *          On exit:
   56: *          if UPLO = 'U', the last NB columns have been reduced to
   57: *            tridiagonal form, with the diagonal elements overwriting
   58: *            the diagonal elements of A; the elements above the diagonal
   59: *            with the array TAU, represent the unitary matrix Q as a
   60: *            product of elementary reflectors;
   61: *          if UPLO = 'L', the first NB columns have been reduced to
   62: *            tridiagonal form, with the diagonal elements overwriting
   63: *            the diagonal elements of A; the elements below the diagonal
   64: *            with the array TAU, represent the  unitary matrix Q as a
   65: *            product of elementary reflectors.
   66: *          See Further Details.
   67: *
   68: *  LDA     (input) INTEGER
   69: *          The leading dimension of the array A.  LDA >= max(1,N).
   70: *
   71: *  E       (output) DOUBLE PRECISION array, dimension (N-1)
   72: *          If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal
   73: *          elements of the last NB columns of the reduced matrix;
   74: *          if UPLO = 'L', E(1:nb) contains the subdiagonal elements of
   75: *          the first NB columns of the reduced matrix.
   76: *
   77: *  TAU     (output) COMPLEX*16 array, dimension (N-1)
   78: *          The scalar factors of the elementary reflectors, stored in
   79: *          TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'.
   80: *          See Further Details.
   81: *
   82: *  W       (output) COMPLEX*16 array, dimension (LDW,NB)
   83: *          The n-by-nb matrix W required to update the unreduced part
   84: *          of A.
   85: *
   86: *  LDW     (input) INTEGER
   87: *          The leading dimension of the array W. LDW >= max(1,N).
   88: *
   89: *  Further Details
   90: *  ===============
   91: *
   92: *  If UPLO = 'U', the matrix Q is represented as a product of elementary
   93: *  reflectors
   94: *
   95: *     Q = H(n) H(n-1) . . . H(n-nb+1).
   96: *
   97: *  Each H(i) has the form
   98: *
   99: *     H(i) = I - tau * v * v'
  100: *
  101: *  where tau is a complex scalar, and v is a complex vector with
  102: *  v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i),
  103: *  and tau in TAU(i-1).
  104: *
  105: *  If UPLO = 'L', the matrix Q is represented as a product of elementary
  106: *  reflectors
  107: *
  108: *     Q = H(1) H(2) . . . H(nb).
  109: *
  110: *  Each H(i) has the form
  111: *
  112: *     H(i) = I - tau * v * v'
  113: *
  114: *  where tau is a complex scalar, and v is a complex vector with
  115: *  v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
  116: *  and tau in TAU(i).
  117: *
  118: *  The elements of the vectors v together form the n-by-nb matrix V
  119: *  which is needed, with W, to apply the transformation to the unreduced
  120: *  part of the matrix, using a Hermitian rank-2k update of the form:
  121: *  A := A - V*W' - W*V'.
  122: *
  123: *  The contents of A on exit are illustrated by the following examples
  124: *  with n = 5 and nb = 2:
  125: *
  126: *  if UPLO = 'U':                       if UPLO = 'L':
  127: *
  128: *    (  a   a   a   v4  v5 )              (  d                  )
  129: *    (      a   a   v4  v5 )              (  1   d              )
  130: *    (          a   1   v5 )              (  v1  1   a          )
  131: *    (              d   1  )              (  v1  v2  a   a      )
  132: *    (                  d  )              (  v1  v2  a   a   a  )
  133: *
  134: *  where d denotes a diagonal element of the reduced matrix, a denotes
  135: *  an element of the original matrix that is unchanged, and vi denotes
  136: *  an element of the vector defining H(i).
  137: *
  138: *  =====================================================================
  139: *
  140: *     .. Parameters ..
  141:       COMPLEX*16         ZERO, ONE, HALF
  142:       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ),
  143:      $                   ONE = ( 1.0D+0, 0.0D+0 ),
  144:      $                   HALF = ( 0.5D+0, 0.0D+0 ) )
  145: *     ..
  146: *     .. Local Scalars ..
  147:       INTEGER            I, IW
  148:       COMPLEX*16         ALPHA
  149: *     ..
  150: *     .. External Subroutines ..
  151:       EXTERNAL           ZAXPY, ZGEMV, ZHEMV, ZLACGV, ZLARFG, ZSCAL
  152: *     ..
  153: *     .. External Functions ..
  154:       LOGICAL            LSAME
  155:       COMPLEX*16         ZDOTC
  156:       EXTERNAL           LSAME, ZDOTC
  157: *     ..
  158: *     .. Intrinsic Functions ..
  159:       INTRINSIC          DBLE, MIN
  160: *     ..
  161: *     .. Executable Statements ..
  162: *
  163: *     Quick return if possible
  164: *
  165:       IF( N.LE.0 )
  166:      $   RETURN
  167: *
  168:       IF( LSAME( UPLO, 'U' ) ) THEN
  169: *
  170: *        Reduce last NB columns of upper triangle
  171: *
  172:          DO 10 I = N, N - NB + 1, -1
  173:             IW = I - N + NB
  174:             IF( I.LT.N ) THEN
  175: *
  176: *              Update A(1:i,i)
  177: *
  178:                A( I, I ) = DBLE( A( I, I ) )
  179:                CALL ZLACGV( N-I, W( I, IW+1 ), LDW )
  180:                CALL ZGEMV( 'No transpose', I, N-I, -ONE, A( 1, I+1 ),
  181:      $                     LDA, W( I, IW+1 ), LDW, ONE, A( 1, I ), 1 )
  182:                CALL ZLACGV( N-I, W( I, IW+1 ), LDW )
  183:                CALL ZLACGV( N-I, A( I, I+1 ), LDA )
  184:                CALL ZGEMV( 'No transpose', I, N-I, -ONE, W( 1, IW+1 ),
  185:      $                     LDW, A( I, I+1 ), LDA, ONE, A( 1, I ), 1 )
  186:                CALL ZLACGV( N-I, A( I, I+1 ), LDA )
  187:                A( I, I ) = DBLE( A( I, I ) )
  188:             END IF
  189:             IF( I.GT.1 ) THEN
  190: *
  191: *              Generate elementary reflector H(i) to annihilate
  192: *              A(1:i-2,i)
  193: *
  194:                ALPHA = A( I-1, I )
  195:                CALL ZLARFG( I-1, ALPHA, A( 1, I ), 1, TAU( I-1 ) )
  196:                E( I-1 ) = ALPHA
  197:                A( I-1, I ) = ONE
  198: *
  199: *              Compute W(1:i-1,i)
  200: *
  201:                CALL ZHEMV( 'Upper', I-1, ONE, A, LDA, A( 1, I ), 1,
  202:      $                     ZERO, W( 1, IW ), 1 )
  203:                IF( I.LT.N ) THEN
  204:                   CALL ZGEMV( 'Conjugate transpose', I-1, N-I, ONE,
  205:      $                        W( 1, IW+1 ), LDW, A( 1, I ), 1, ZERO,
  206:      $                        W( I+1, IW ), 1 )
  207:                   CALL ZGEMV( 'No transpose', I-1, N-I, -ONE,
  208:      $                        A( 1, I+1 ), LDA, W( I+1, IW ), 1, ONE,
  209:      $                        W( 1, IW ), 1 )
  210:                   CALL ZGEMV( 'Conjugate transpose', I-1, N-I, ONE,
  211:      $                        A( 1, I+1 ), LDA, A( 1, I ), 1, ZERO,
  212:      $                        W( I+1, IW ), 1 )
  213:                   CALL ZGEMV( 'No transpose', I-1, N-I, -ONE,
  214:      $                        W( 1, IW+1 ), LDW, W( I+1, IW ), 1, ONE,
  215:      $                        W( 1, IW ), 1 )
  216:                END IF
  217:                CALL ZSCAL( I-1, TAU( I-1 ), W( 1, IW ), 1 )
  218:                ALPHA = -HALF*TAU( I-1 )*ZDOTC( I-1, W( 1, IW ), 1,
  219:      $                 A( 1, I ), 1 )
  220:                CALL ZAXPY( I-1, ALPHA, A( 1, I ), 1, W( 1, IW ), 1 )
  221:             END IF
  222: *
  223:    10    CONTINUE
  224:       ELSE
  225: *
  226: *        Reduce first NB columns of lower triangle
  227: *
  228:          DO 20 I = 1, NB
  229: *
  230: *           Update A(i:n,i)
  231: *
  232:             A( I, I ) = DBLE( A( I, I ) )
  233:             CALL ZLACGV( I-1, W( I, 1 ), LDW )
  234:             CALL ZGEMV( 'No transpose', N-I+1, I-1, -ONE, A( I, 1 ),
  235:      $                  LDA, W( I, 1 ), LDW, ONE, A( I, I ), 1 )
  236:             CALL ZLACGV( I-1, W( I, 1 ), LDW )
  237:             CALL ZLACGV( I-1, A( I, 1 ), LDA )
  238:             CALL ZGEMV( 'No transpose', N-I+1, I-1, -ONE, W( I, 1 ),
  239:      $                  LDW, A( I, 1 ), LDA, ONE, A( I, I ), 1 )
  240:             CALL ZLACGV( I-1, A( I, 1 ), LDA )
  241:             A( I, I ) = DBLE( A( I, I ) )
  242:             IF( I.LT.N ) THEN
  243: *
  244: *              Generate elementary reflector H(i) to annihilate
  245: *              A(i+2:n,i)
  246: *
  247:                ALPHA = A( I+1, I )
  248:                CALL ZLARFG( N-I, ALPHA, A( MIN( I+2, N ), I ), 1,
  249:      $                      TAU( I ) )
  250:                E( I ) = ALPHA
  251:                A( I+1, I ) = ONE
  252: *
  253: *              Compute W(i+1:n,i)
  254: *
  255:                CALL ZHEMV( 'Lower', N-I, ONE, A( I+1, I+1 ), LDA,
  256:      $                     A( I+1, I ), 1, ZERO, W( I+1, I ), 1 )
  257:                CALL ZGEMV( 'Conjugate transpose', N-I, I-1, ONE,
  258:      $                     W( I+1, 1 ), LDW, A( I+1, I ), 1, ZERO,
  259:      $                     W( 1, I ), 1 )
  260:                CALL ZGEMV( 'No transpose', N-I, I-1, -ONE, A( I+1, 1 ),
  261:      $                     LDA, W( 1, I ), 1, ONE, W( I+1, I ), 1 )
  262:                CALL ZGEMV( 'Conjugate transpose', N-I, I-1, ONE,
  263:      $                     A( I+1, 1 ), LDA, A( I+1, I ), 1, ZERO,
  264:      $                     W( 1, I ), 1 )
  265:                CALL ZGEMV( 'No transpose', N-I, I-1, -ONE, W( I+1, 1 ),
  266:      $                     LDW, W( 1, I ), 1, ONE, W( I+1, I ), 1 )
  267:                CALL ZSCAL( N-I, TAU( I ), W( I+1, I ), 1 )
  268:                ALPHA = -HALF*TAU( I )*ZDOTC( N-I, W( I+1, I ), 1,
  269:      $                 A( I+1, I ), 1 )
  270:                CALL ZAXPY( N-I, ALPHA, A( I+1, I ), 1, W( I+1, I ), 1 )
  271:             END IF
  272: *
  273:    20    CONTINUE
  274:       END IF
  275: *
  276:       RETURN
  277: *
  278: *     End of ZLATRD
  279: *
  280:       END

CVSweb interface <joel.bertrand@systella.fr>