Annotation of rpl/lapack/lapack/zlatrd.f, revision 1.8

1.1       bertrand    1:       SUBROUTINE ZLATRD( UPLO, N, NB, A, LDA, E, TAU, W, LDW )
                      2: *
1.8     ! bertrand    3: *  -- LAPACK auxiliary routine (version 3.3.1) --
1.1       bertrand    4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8     ! bertrand    6: *  -- April 2011                                                      --
1.1       bertrand    7: *
                      8: *     .. Scalar Arguments ..
                      9:       CHARACTER          UPLO
                     10:       INTEGER            LDA, LDW, N, NB
                     11: *     ..
                     12: *     .. Array Arguments ..
                     13:       DOUBLE PRECISION   E( * )
                     14:       COMPLEX*16         A( LDA, * ), TAU( * ), W( LDW, * )
                     15: *     ..
                     16: *
                     17: *  Purpose
                     18: *  =======
                     19: *
                     20: *  ZLATRD reduces NB rows and columns of a complex Hermitian matrix A to
                     21: *  Hermitian tridiagonal form by a unitary similarity
1.8     ! bertrand   22: *  transformation Q**H * A * Q, and returns the matrices V and W which are
1.1       bertrand   23: *  needed to apply the transformation to the unreduced part of A.
                     24: *
                     25: *  If UPLO = 'U', ZLATRD reduces the last NB rows and columns of a
                     26: *  matrix, of which the upper triangle is supplied;
                     27: *  if UPLO = 'L', ZLATRD reduces the first NB rows and columns of a
                     28: *  matrix, of which the lower triangle is supplied.
                     29: *
                     30: *  This is an auxiliary routine called by ZHETRD.
                     31: *
                     32: *  Arguments
                     33: *  =========
                     34: *
                     35: *  UPLO    (input) CHARACTER*1
                     36: *          Specifies whether the upper or lower triangular part of the
                     37: *          Hermitian matrix A is stored:
                     38: *          = 'U': Upper triangular
                     39: *          = 'L': Lower triangular
                     40: *
                     41: *  N       (input) INTEGER
                     42: *          The order of the matrix A.
                     43: *
                     44: *  NB      (input) INTEGER
                     45: *          The number of rows and columns to be reduced.
                     46: *
                     47: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
                     48: *          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
                     49: *          n-by-n upper triangular part of A contains the upper
                     50: *          triangular part of the matrix A, and the strictly lower
                     51: *          triangular part of A is not referenced.  If UPLO = 'L', the
                     52: *          leading n-by-n lower triangular part of A contains the lower
                     53: *          triangular part of the matrix A, and the strictly upper
                     54: *          triangular part of A is not referenced.
                     55: *          On exit:
                     56: *          if UPLO = 'U', the last NB columns have been reduced to
                     57: *            tridiagonal form, with the diagonal elements overwriting
                     58: *            the diagonal elements of A; the elements above the diagonal
                     59: *            with the array TAU, represent the unitary matrix Q as a
                     60: *            product of elementary reflectors;
                     61: *          if UPLO = 'L', the first NB columns have been reduced to
                     62: *            tridiagonal form, with the diagonal elements overwriting
                     63: *            the diagonal elements of A; the elements below the diagonal
                     64: *            with the array TAU, represent the  unitary matrix Q as a
                     65: *            product of elementary reflectors.
                     66: *          See Further Details.
                     67: *
                     68: *  LDA     (input) INTEGER
                     69: *          The leading dimension of the array A.  LDA >= max(1,N).
                     70: *
                     71: *  E       (output) DOUBLE PRECISION array, dimension (N-1)
                     72: *          If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal
                     73: *          elements of the last NB columns of the reduced matrix;
                     74: *          if UPLO = 'L', E(1:nb) contains the subdiagonal elements of
                     75: *          the first NB columns of the reduced matrix.
                     76: *
                     77: *  TAU     (output) COMPLEX*16 array, dimension (N-1)
                     78: *          The scalar factors of the elementary reflectors, stored in
                     79: *          TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'.
                     80: *          See Further Details.
                     81: *
                     82: *  W       (output) COMPLEX*16 array, dimension (LDW,NB)
                     83: *          The n-by-nb matrix W required to update the unreduced part
                     84: *          of A.
                     85: *
                     86: *  LDW     (input) INTEGER
                     87: *          The leading dimension of the array W. LDW >= max(1,N).
                     88: *
                     89: *  Further Details
                     90: *  ===============
                     91: *
                     92: *  If UPLO = 'U', the matrix Q is represented as a product of elementary
                     93: *  reflectors
                     94: *
                     95: *     Q = H(n) H(n-1) . . . H(n-nb+1).
                     96: *
                     97: *  Each H(i) has the form
                     98: *
1.8     ! bertrand   99: *     H(i) = I - tau * v * v**H
1.1       bertrand  100: *
                    101: *  where tau is a complex scalar, and v is a complex vector with
                    102: *  v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i),
                    103: *  and tau in TAU(i-1).
                    104: *
                    105: *  If UPLO = 'L', the matrix Q is represented as a product of elementary
                    106: *  reflectors
                    107: *
                    108: *     Q = H(1) H(2) . . . H(nb).
                    109: *
                    110: *  Each H(i) has the form
                    111: *
1.8     ! bertrand  112: *     H(i) = I - tau * v * v**H
1.1       bertrand  113: *
                    114: *  where tau is a complex scalar, and v is a complex vector with
                    115: *  v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
                    116: *  and tau in TAU(i).
                    117: *
                    118: *  The elements of the vectors v together form the n-by-nb matrix V
                    119: *  which is needed, with W, to apply the transformation to the unreduced
                    120: *  part of the matrix, using a Hermitian rank-2k update of the form:
1.8     ! bertrand  121: *  A := A - V*W**H - W*V**H.
1.1       bertrand  122: *
                    123: *  The contents of A on exit are illustrated by the following examples
                    124: *  with n = 5 and nb = 2:
                    125: *
                    126: *  if UPLO = 'U':                       if UPLO = 'L':
                    127: *
                    128: *    (  a   a   a   v4  v5 )              (  d                  )
                    129: *    (      a   a   v4  v5 )              (  1   d              )
                    130: *    (          a   1   v5 )              (  v1  1   a          )
                    131: *    (              d   1  )              (  v1  v2  a   a      )
                    132: *    (                  d  )              (  v1  v2  a   a   a  )
                    133: *
                    134: *  where d denotes a diagonal element of the reduced matrix, a denotes
                    135: *  an element of the original matrix that is unchanged, and vi denotes
                    136: *  an element of the vector defining H(i).
                    137: *
                    138: *  =====================================================================
                    139: *
                    140: *     .. Parameters ..
                    141:       COMPLEX*16         ZERO, ONE, HALF
                    142:       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ),
                    143:      $                   ONE = ( 1.0D+0, 0.0D+0 ),
                    144:      $                   HALF = ( 0.5D+0, 0.0D+0 ) )
                    145: *     ..
                    146: *     .. Local Scalars ..
                    147:       INTEGER            I, IW
                    148:       COMPLEX*16         ALPHA
                    149: *     ..
                    150: *     .. External Subroutines ..
                    151:       EXTERNAL           ZAXPY, ZGEMV, ZHEMV, ZLACGV, ZLARFG, ZSCAL
                    152: *     ..
                    153: *     .. External Functions ..
                    154:       LOGICAL            LSAME
                    155:       COMPLEX*16         ZDOTC
                    156:       EXTERNAL           LSAME, ZDOTC
                    157: *     ..
                    158: *     .. Intrinsic Functions ..
                    159:       INTRINSIC          DBLE, MIN
                    160: *     ..
                    161: *     .. Executable Statements ..
                    162: *
                    163: *     Quick return if possible
                    164: *
                    165:       IF( N.LE.0 )
                    166:      $   RETURN
                    167: *
                    168:       IF( LSAME( UPLO, 'U' ) ) THEN
                    169: *
                    170: *        Reduce last NB columns of upper triangle
                    171: *
                    172:          DO 10 I = N, N - NB + 1, -1
                    173:             IW = I - N + NB
                    174:             IF( I.LT.N ) THEN
                    175: *
                    176: *              Update A(1:i,i)
                    177: *
                    178:                A( I, I ) = DBLE( A( I, I ) )
                    179:                CALL ZLACGV( N-I, W( I, IW+1 ), LDW )
                    180:                CALL ZGEMV( 'No transpose', I, N-I, -ONE, A( 1, I+1 ),
                    181:      $                     LDA, W( I, IW+1 ), LDW, ONE, A( 1, I ), 1 )
                    182:                CALL ZLACGV( N-I, W( I, IW+1 ), LDW )
                    183:                CALL ZLACGV( N-I, A( I, I+1 ), LDA )
                    184:                CALL ZGEMV( 'No transpose', I, N-I, -ONE, W( 1, IW+1 ),
                    185:      $                     LDW, A( I, I+1 ), LDA, ONE, A( 1, I ), 1 )
                    186:                CALL ZLACGV( N-I, A( I, I+1 ), LDA )
                    187:                A( I, I ) = DBLE( A( I, I ) )
                    188:             END IF
                    189:             IF( I.GT.1 ) THEN
                    190: *
                    191: *              Generate elementary reflector H(i) to annihilate
                    192: *              A(1:i-2,i)
                    193: *
                    194:                ALPHA = A( I-1, I )
                    195:                CALL ZLARFG( I-1, ALPHA, A( 1, I ), 1, TAU( I-1 ) )
                    196:                E( I-1 ) = ALPHA
                    197:                A( I-1, I ) = ONE
                    198: *
                    199: *              Compute W(1:i-1,i)
                    200: *
                    201:                CALL ZHEMV( 'Upper', I-1, ONE, A, LDA, A( 1, I ), 1,
                    202:      $                     ZERO, W( 1, IW ), 1 )
                    203:                IF( I.LT.N ) THEN
                    204:                   CALL ZGEMV( 'Conjugate transpose', I-1, N-I, ONE,
                    205:      $                        W( 1, IW+1 ), LDW, A( 1, I ), 1, ZERO,
                    206:      $                        W( I+1, IW ), 1 )
                    207:                   CALL ZGEMV( 'No transpose', I-1, N-I, -ONE,
                    208:      $                        A( 1, I+1 ), LDA, W( I+1, IW ), 1, ONE,
                    209:      $                        W( 1, IW ), 1 )
                    210:                   CALL ZGEMV( 'Conjugate transpose', I-1, N-I, ONE,
                    211:      $                        A( 1, I+1 ), LDA, A( 1, I ), 1, ZERO,
                    212:      $                        W( I+1, IW ), 1 )
                    213:                   CALL ZGEMV( 'No transpose', I-1, N-I, -ONE,
                    214:      $                        W( 1, IW+1 ), LDW, W( I+1, IW ), 1, ONE,
                    215:      $                        W( 1, IW ), 1 )
                    216:                END IF
                    217:                CALL ZSCAL( I-1, TAU( I-1 ), W( 1, IW ), 1 )
                    218:                ALPHA = -HALF*TAU( I-1 )*ZDOTC( I-1, W( 1, IW ), 1,
                    219:      $                 A( 1, I ), 1 )
                    220:                CALL ZAXPY( I-1, ALPHA, A( 1, I ), 1, W( 1, IW ), 1 )
                    221:             END IF
                    222: *
                    223:    10    CONTINUE
                    224:       ELSE
                    225: *
                    226: *        Reduce first NB columns of lower triangle
                    227: *
                    228:          DO 20 I = 1, NB
                    229: *
                    230: *           Update A(i:n,i)
                    231: *
                    232:             A( I, I ) = DBLE( A( I, I ) )
                    233:             CALL ZLACGV( I-1, W( I, 1 ), LDW )
                    234:             CALL ZGEMV( 'No transpose', N-I+1, I-1, -ONE, A( I, 1 ),
                    235:      $                  LDA, W( I, 1 ), LDW, ONE, A( I, I ), 1 )
                    236:             CALL ZLACGV( I-1, W( I, 1 ), LDW )
                    237:             CALL ZLACGV( I-1, A( I, 1 ), LDA )
                    238:             CALL ZGEMV( 'No transpose', N-I+1, I-1, -ONE, W( I, 1 ),
                    239:      $                  LDW, A( I, 1 ), LDA, ONE, A( I, I ), 1 )
                    240:             CALL ZLACGV( I-1, A( I, 1 ), LDA )
                    241:             A( I, I ) = DBLE( A( I, I ) )
                    242:             IF( I.LT.N ) THEN
                    243: *
                    244: *              Generate elementary reflector H(i) to annihilate
                    245: *              A(i+2:n,i)
                    246: *
                    247:                ALPHA = A( I+1, I )
                    248:                CALL ZLARFG( N-I, ALPHA, A( MIN( I+2, N ), I ), 1,
                    249:      $                      TAU( I ) )
                    250:                E( I ) = ALPHA
                    251:                A( I+1, I ) = ONE
                    252: *
                    253: *              Compute W(i+1:n,i)
                    254: *
                    255:                CALL ZHEMV( 'Lower', N-I, ONE, A( I+1, I+1 ), LDA,
                    256:      $                     A( I+1, I ), 1, ZERO, W( I+1, I ), 1 )
                    257:                CALL ZGEMV( 'Conjugate transpose', N-I, I-1, ONE,
                    258:      $                     W( I+1, 1 ), LDW, A( I+1, I ), 1, ZERO,
                    259:      $                     W( 1, I ), 1 )
                    260:                CALL ZGEMV( 'No transpose', N-I, I-1, -ONE, A( I+1, 1 ),
                    261:      $                     LDA, W( 1, I ), 1, ONE, W( I+1, I ), 1 )
                    262:                CALL ZGEMV( 'Conjugate transpose', N-I, I-1, ONE,
                    263:      $                     A( I+1, 1 ), LDA, A( I+1, I ), 1, ZERO,
                    264:      $                     W( 1, I ), 1 )
                    265:                CALL ZGEMV( 'No transpose', N-I, I-1, -ONE, W( I+1, 1 ),
                    266:      $                     LDW, W( 1, I ), 1, ONE, W( I+1, I ), 1 )
                    267:                CALL ZSCAL( N-I, TAU( I ), W( I+1, I ), 1 )
                    268:                ALPHA = -HALF*TAU( I )*ZDOTC( N-I, W( I+1, I ), 1,
                    269:      $                 A( I+1, I ), 1 )
                    270:                CALL ZAXPY( N-I, ALPHA, A( I+1, I ), 1, W( I+1, I ), 1 )
                    271:             END IF
                    272: *
                    273:    20    CONTINUE
                    274:       END IF
                    275: *
                    276:       RETURN
                    277: *
                    278: *     End of ZLATRD
                    279: *
                    280:       END

CVSweb interface <joel.bertrand@systella.fr>