Annotation of rpl/lapack/lapack/zlatrd.f, revision 1.19

1.12      bertrand    1: *> \brief \b ZLATRD reduces the first nb rows and columns of a symmetric/Hermitian matrix A to real tridiagonal form by an unitary similarity transformation.
1.9       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.16      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.16      bertrand    9: *> Download ZLATRD + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlatrd.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlatrd.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlatrd.f">
1.9       bertrand   15: *> [TXT]</a>
1.16      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZLATRD( UPLO, N, NB, A, LDA, E, TAU, W, LDW )
1.16      bertrand   22: *
1.9       bertrand   23: *       .. Scalar Arguments ..
                     24: *       CHARACTER          UPLO
                     25: *       INTEGER            LDA, LDW, N, NB
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       DOUBLE PRECISION   E( * )
                     29: *       COMPLEX*16         A( LDA, * ), TAU( * ), W( LDW, * )
                     30: *       ..
1.16      bertrand   31: *
1.9       bertrand   32: *
                     33: *> \par Purpose:
                     34: *  =============
                     35: *>
                     36: *> \verbatim
                     37: *>
                     38: *> ZLATRD reduces NB rows and columns of a complex Hermitian matrix A to
                     39: *> Hermitian tridiagonal form by a unitary similarity
                     40: *> transformation Q**H * A * Q, and returns the matrices V and W which are
                     41: *> needed to apply the transformation to the unreduced part of A.
                     42: *>
                     43: *> If UPLO = 'U', ZLATRD reduces the last NB rows and columns of a
                     44: *> matrix, of which the upper triangle is supplied;
                     45: *> if UPLO = 'L', ZLATRD reduces the first NB rows and columns of a
                     46: *> matrix, of which the lower triangle is supplied.
                     47: *>
                     48: *> This is an auxiliary routine called by ZHETRD.
                     49: *> \endverbatim
                     50: *
                     51: *  Arguments:
                     52: *  ==========
                     53: *
                     54: *> \param[in] UPLO
                     55: *> \verbatim
                     56: *>          UPLO is CHARACTER*1
                     57: *>          Specifies whether the upper or lower triangular part of the
                     58: *>          Hermitian matrix A is stored:
                     59: *>          = 'U': Upper triangular
                     60: *>          = 'L': Lower triangular
                     61: *> \endverbatim
                     62: *>
                     63: *> \param[in] N
                     64: *> \verbatim
                     65: *>          N is INTEGER
                     66: *>          The order of the matrix A.
                     67: *> \endverbatim
                     68: *>
                     69: *> \param[in] NB
                     70: *> \verbatim
                     71: *>          NB is INTEGER
                     72: *>          The number of rows and columns to be reduced.
                     73: *> \endverbatim
                     74: *>
                     75: *> \param[in,out] A
                     76: *> \verbatim
                     77: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     78: *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
                     79: *>          n-by-n upper triangular part of A contains the upper
                     80: *>          triangular part of the matrix A, and the strictly lower
                     81: *>          triangular part of A is not referenced.  If UPLO = 'L', the
                     82: *>          leading n-by-n lower triangular part of A contains the lower
                     83: *>          triangular part of the matrix A, and the strictly upper
                     84: *>          triangular part of A is not referenced.
                     85: *>          On exit:
                     86: *>          if UPLO = 'U', the last NB columns have been reduced to
                     87: *>            tridiagonal form, with the diagonal elements overwriting
                     88: *>            the diagonal elements of A; the elements above the diagonal
                     89: *>            with the array TAU, represent the unitary matrix Q as a
                     90: *>            product of elementary reflectors;
                     91: *>          if UPLO = 'L', the first NB columns have been reduced to
                     92: *>            tridiagonal form, with the diagonal elements overwriting
                     93: *>            the diagonal elements of A; the elements below the diagonal
                     94: *>            with the array TAU, represent the  unitary matrix Q as a
                     95: *>            product of elementary reflectors.
                     96: *>          See Further Details.
                     97: *> \endverbatim
                     98: *>
                     99: *> \param[in] LDA
                    100: *> \verbatim
                    101: *>          LDA is INTEGER
                    102: *>          The leading dimension of the array A.  LDA >= max(1,N).
                    103: *> \endverbatim
                    104: *>
                    105: *> \param[out] E
                    106: *> \verbatim
                    107: *>          E is DOUBLE PRECISION array, dimension (N-1)
                    108: *>          If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal
                    109: *>          elements of the last NB columns of the reduced matrix;
                    110: *>          if UPLO = 'L', E(1:nb) contains the subdiagonal elements of
                    111: *>          the first NB columns of the reduced matrix.
                    112: *> \endverbatim
                    113: *>
                    114: *> \param[out] TAU
                    115: *> \verbatim
                    116: *>          TAU is COMPLEX*16 array, dimension (N-1)
                    117: *>          The scalar factors of the elementary reflectors, stored in
                    118: *>          TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'.
                    119: *>          See Further Details.
                    120: *> \endverbatim
                    121: *>
                    122: *> \param[out] W
                    123: *> \verbatim
                    124: *>          W is COMPLEX*16 array, dimension (LDW,NB)
                    125: *>          The n-by-nb matrix W required to update the unreduced part
                    126: *>          of A.
                    127: *> \endverbatim
                    128: *>
                    129: *> \param[in] LDW
                    130: *> \verbatim
                    131: *>          LDW is INTEGER
                    132: *>          The leading dimension of the array W. LDW >= max(1,N).
                    133: *> \endverbatim
                    134: *
                    135: *  Authors:
                    136: *  ========
                    137: *
1.16      bertrand  138: *> \author Univ. of Tennessee
                    139: *> \author Univ. of California Berkeley
                    140: *> \author Univ. of Colorado Denver
                    141: *> \author NAG Ltd.
1.9       bertrand  142: *
                    143: *> \ingroup complex16OTHERauxiliary
                    144: *
                    145: *> \par Further Details:
                    146: *  =====================
                    147: *>
                    148: *> \verbatim
                    149: *>
                    150: *>  If UPLO = 'U', the matrix Q is represented as a product of elementary
                    151: *>  reflectors
                    152: *>
                    153: *>     Q = H(n) H(n-1) . . . H(n-nb+1).
                    154: *>
                    155: *>  Each H(i) has the form
                    156: *>
                    157: *>     H(i) = I - tau * v * v**H
                    158: *>
                    159: *>  where tau is a complex scalar, and v is a complex vector with
                    160: *>  v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i),
                    161: *>  and tau in TAU(i-1).
                    162: *>
                    163: *>  If UPLO = 'L', the matrix Q is represented as a product of elementary
                    164: *>  reflectors
                    165: *>
                    166: *>     Q = H(1) H(2) . . . H(nb).
                    167: *>
                    168: *>  Each H(i) has the form
                    169: *>
                    170: *>     H(i) = I - tau * v * v**H
                    171: *>
                    172: *>  where tau is a complex scalar, and v is a complex vector with
                    173: *>  v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
                    174: *>  and tau in TAU(i).
                    175: *>
                    176: *>  The elements of the vectors v together form the n-by-nb matrix V
                    177: *>  which is needed, with W, to apply the transformation to the unreduced
                    178: *>  part of the matrix, using a Hermitian rank-2k update of the form:
                    179: *>  A := A - V*W**H - W*V**H.
                    180: *>
                    181: *>  The contents of A on exit are illustrated by the following examples
                    182: *>  with n = 5 and nb = 2:
                    183: *>
                    184: *>  if UPLO = 'U':                       if UPLO = 'L':
                    185: *>
                    186: *>    (  a   a   a   v4  v5 )              (  d                  )
                    187: *>    (      a   a   v4  v5 )              (  1   d              )
                    188: *>    (          a   1   v5 )              (  v1  1   a          )
                    189: *>    (              d   1  )              (  v1  v2  a   a      )
                    190: *>    (                  d  )              (  v1  v2  a   a   a  )
                    191: *>
                    192: *>  where d denotes a diagonal element of the reduced matrix, a denotes
                    193: *>  an element of the original matrix that is unchanged, and vi denotes
                    194: *>  an element of the vector defining H(i).
                    195: *> \endverbatim
                    196: *>
                    197: *  =====================================================================
1.1       bertrand  198:       SUBROUTINE ZLATRD( UPLO, N, NB, A, LDA, E, TAU, W, LDW )
                    199: *
1.19    ! bertrand  200: *  -- LAPACK auxiliary routine --
1.1       bertrand  201: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    202: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    203: *
                    204: *     .. Scalar Arguments ..
                    205:       CHARACTER          UPLO
                    206:       INTEGER            LDA, LDW, N, NB
                    207: *     ..
                    208: *     .. Array Arguments ..
                    209:       DOUBLE PRECISION   E( * )
                    210:       COMPLEX*16         A( LDA, * ), TAU( * ), W( LDW, * )
                    211: *     ..
                    212: *
                    213: *  =====================================================================
                    214: *
                    215: *     .. Parameters ..
                    216:       COMPLEX*16         ZERO, ONE, HALF
                    217:       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ),
                    218:      $                   ONE = ( 1.0D+0, 0.0D+0 ),
                    219:      $                   HALF = ( 0.5D+0, 0.0D+0 ) )
                    220: *     ..
                    221: *     .. Local Scalars ..
                    222:       INTEGER            I, IW
                    223:       COMPLEX*16         ALPHA
                    224: *     ..
                    225: *     .. External Subroutines ..
                    226:       EXTERNAL           ZAXPY, ZGEMV, ZHEMV, ZLACGV, ZLARFG, ZSCAL
                    227: *     ..
                    228: *     .. External Functions ..
                    229:       LOGICAL            LSAME
                    230:       COMPLEX*16         ZDOTC
                    231:       EXTERNAL           LSAME, ZDOTC
                    232: *     ..
                    233: *     .. Intrinsic Functions ..
                    234:       INTRINSIC          DBLE, MIN
                    235: *     ..
                    236: *     .. Executable Statements ..
                    237: *
                    238: *     Quick return if possible
                    239: *
                    240:       IF( N.LE.0 )
                    241:      $   RETURN
                    242: *
                    243:       IF( LSAME( UPLO, 'U' ) ) THEN
                    244: *
                    245: *        Reduce last NB columns of upper triangle
                    246: *
                    247:          DO 10 I = N, N - NB + 1, -1
                    248:             IW = I - N + NB
                    249:             IF( I.LT.N ) THEN
                    250: *
                    251: *              Update A(1:i,i)
                    252: *
                    253:                A( I, I ) = DBLE( A( I, I ) )
                    254:                CALL ZLACGV( N-I, W( I, IW+1 ), LDW )
                    255:                CALL ZGEMV( 'No transpose', I, N-I, -ONE, A( 1, I+1 ),
                    256:      $                     LDA, W( I, IW+1 ), LDW, ONE, A( 1, I ), 1 )
                    257:                CALL ZLACGV( N-I, W( I, IW+1 ), LDW )
                    258:                CALL ZLACGV( N-I, A( I, I+1 ), LDA )
                    259:                CALL ZGEMV( 'No transpose', I, N-I, -ONE, W( 1, IW+1 ),
                    260:      $                     LDW, A( I, I+1 ), LDA, ONE, A( 1, I ), 1 )
                    261:                CALL ZLACGV( N-I, A( I, I+1 ), LDA )
                    262:                A( I, I ) = DBLE( A( I, I ) )
                    263:             END IF
                    264:             IF( I.GT.1 ) THEN
                    265: *
                    266: *              Generate elementary reflector H(i) to annihilate
                    267: *              A(1:i-2,i)
                    268: *
                    269:                ALPHA = A( I-1, I )
                    270:                CALL ZLARFG( I-1, ALPHA, A( 1, I ), 1, TAU( I-1 ) )
1.19    ! bertrand  271:                E( I-1 ) = DBLE( ALPHA )
1.1       bertrand  272:                A( I-1, I ) = ONE
                    273: *
                    274: *              Compute W(1:i-1,i)
                    275: *
                    276:                CALL ZHEMV( 'Upper', I-1, ONE, A, LDA, A( 1, I ), 1,
                    277:      $                     ZERO, W( 1, IW ), 1 )
                    278:                IF( I.LT.N ) THEN
                    279:                   CALL ZGEMV( 'Conjugate transpose', I-1, N-I, ONE,
                    280:      $                        W( 1, IW+1 ), LDW, A( 1, I ), 1, ZERO,
                    281:      $                        W( I+1, IW ), 1 )
                    282:                   CALL ZGEMV( 'No transpose', I-1, N-I, -ONE,
                    283:      $                        A( 1, I+1 ), LDA, W( I+1, IW ), 1, ONE,
                    284:      $                        W( 1, IW ), 1 )
                    285:                   CALL ZGEMV( 'Conjugate transpose', I-1, N-I, ONE,
                    286:      $                        A( 1, I+1 ), LDA, A( 1, I ), 1, ZERO,
                    287:      $                        W( I+1, IW ), 1 )
                    288:                   CALL ZGEMV( 'No transpose', I-1, N-I, -ONE,
                    289:      $                        W( 1, IW+1 ), LDW, W( I+1, IW ), 1, ONE,
                    290:      $                        W( 1, IW ), 1 )
                    291:                END IF
                    292:                CALL ZSCAL( I-1, TAU( I-1 ), W( 1, IW ), 1 )
                    293:                ALPHA = -HALF*TAU( I-1 )*ZDOTC( I-1, W( 1, IW ), 1,
                    294:      $                 A( 1, I ), 1 )
                    295:                CALL ZAXPY( I-1, ALPHA, A( 1, I ), 1, W( 1, IW ), 1 )
                    296:             END IF
                    297: *
                    298:    10    CONTINUE
                    299:       ELSE
                    300: *
                    301: *        Reduce first NB columns of lower triangle
                    302: *
                    303:          DO 20 I = 1, NB
                    304: *
                    305: *           Update A(i:n,i)
                    306: *
                    307:             A( I, I ) = DBLE( A( I, I ) )
                    308:             CALL ZLACGV( I-1, W( I, 1 ), LDW )
                    309:             CALL ZGEMV( 'No transpose', N-I+1, I-1, -ONE, A( I, 1 ),
                    310:      $                  LDA, W( I, 1 ), LDW, ONE, A( I, I ), 1 )
                    311:             CALL ZLACGV( I-1, W( I, 1 ), LDW )
                    312:             CALL ZLACGV( I-1, A( I, 1 ), LDA )
                    313:             CALL ZGEMV( 'No transpose', N-I+1, I-1, -ONE, W( I, 1 ),
                    314:      $                  LDW, A( I, 1 ), LDA, ONE, A( I, I ), 1 )
                    315:             CALL ZLACGV( I-1, A( I, 1 ), LDA )
                    316:             A( I, I ) = DBLE( A( I, I ) )
                    317:             IF( I.LT.N ) THEN
                    318: *
                    319: *              Generate elementary reflector H(i) to annihilate
                    320: *              A(i+2:n,i)
                    321: *
                    322:                ALPHA = A( I+1, I )
                    323:                CALL ZLARFG( N-I, ALPHA, A( MIN( I+2, N ), I ), 1,
                    324:      $                      TAU( I ) )
1.19    ! bertrand  325:                E( I ) = DBLE( ALPHA )
1.1       bertrand  326:                A( I+1, I ) = ONE
                    327: *
                    328: *              Compute W(i+1:n,i)
                    329: *
                    330:                CALL ZHEMV( 'Lower', N-I, ONE, A( I+1, I+1 ), LDA,
                    331:      $                     A( I+1, I ), 1, ZERO, W( I+1, I ), 1 )
                    332:                CALL ZGEMV( 'Conjugate transpose', N-I, I-1, ONE,
                    333:      $                     W( I+1, 1 ), LDW, A( I+1, I ), 1, ZERO,
                    334:      $                     W( 1, I ), 1 )
                    335:                CALL ZGEMV( 'No transpose', N-I, I-1, -ONE, A( I+1, 1 ),
                    336:      $                     LDA, W( 1, I ), 1, ONE, W( I+1, I ), 1 )
                    337:                CALL ZGEMV( 'Conjugate transpose', N-I, I-1, ONE,
                    338:      $                     A( I+1, 1 ), LDA, A( I+1, I ), 1, ZERO,
                    339:      $                     W( 1, I ), 1 )
                    340:                CALL ZGEMV( 'No transpose', N-I, I-1, -ONE, W( I+1, 1 ),
                    341:      $                     LDW, W( 1, I ), 1, ONE, W( I+1, I ), 1 )
                    342:                CALL ZSCAL( N-I, TAU( I ), W( I+1, I ), 1 )
                    343:                ALPHA = -HALF*TAU( I )*ZDOTC( N-I, W( I+1, I ), 1,
                    344:      $                 A( I+1, I ), 1 )
                    345:                CALL ZAXPY( N-I, ALPHA, A( I+1, I ), 1, W( I+1, I ), 1 )
                    346:             END IF
                    347: *
                    348:    20    CONTINUE
                    349:       END IF
                    350: *
                    351:       RETURN
                    352: *
                    353: *     End of ZLATRD
                    354: *
                    355:       END

CVSweb interface <joel.bertrand@systella.fr>