Annotation of rpl/lapack/lapack/zlatrd.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZLATRD( UPLO, N, NB, A, LDA, E, TAU, W, LDW )
        !             2: *
        !             3: *  -- LAPACK auxiliary routine (version 3.2) --
        !             4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             6: *     November 2006
        !             7: *
        !             8: *     .. Scalar Arguments ..
        !             9:       CHARACTER          UPLO
        !            10:       INTEGER            LDA, LDW, N, NB
        !            11: *     ..
        !            12: *     .. Array Arguments ..
        !            13:       DOUBLE PRECISION   E( * )
        !            14:       COMPLEX*16         A( LDA, * ), TAU( * ), W( LDW, * )
        !            15: *     ..
        !            16: *
        !            17: *  Purpose
        !            18: *  =======
        !            19: *
        !            20: *  ZLATRD reduces NB rows and columns of a complex Hermitian matrix A to
        !            21: *  Hermitian tridiagonal form by a unitary similarity
        !            22: *  transformation Q' * A * Q, and returns the matrices V and W which are
        !            23: *  needed to apply the transformation to the unreduced part of A.
        !            24: *
        !            25: *  If UPLO = 'U', ZLATRD reduces the last NB rows and columns of a
        !            26: *  matrix, of which the upper triangle is supplied;
        !            27: *  if UPLO = 'L', ZLATRD reduces the first NB rows and columns of a
        !            28: *  matrix, of which the lower triangle is supplied.
        !            29: *
        !            30: *  This is an auxiliary routine called by ZHETRD.
        !            31: *
        !            32: *  Arguments
        !            33: *  =========
        !            34: *
        !            35: *  UPLO    (input) CHARACTER*1
        !            36: *          Specifies whether the upper or lower triangular part of the
        !            37: *          Hermitian matrix A is stored:
        !            38: *          = 'U': Upper triangular
        !            39: *          = 'L': Lower triangular
        !            40: *
        !            41: *  N       (input) INTEGER
        !            42: *          The order of the matrix A.
        !            43: *
        !            44: *  NB      (input) INTEGER
        !            45: *          The number of rows and columns to be reduced.
        !            46: *
        !            47: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
        !            48: *          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
        !            49: *          n-by-n upper triangular part of A contains the upper
        !            50: *          triangular part of the matrix A, and the strictly lower
        !            51: *          triangular part of A is not referenced.  If UPLO = 'L', the
        !            52: *          leading n-by-n lower triangular part of A contains the lower
        !            53: *          triangular part of the matrix A, and the strictly upper
        !            54: *          triangular part of A is not referenced.
        !            55: *          On exit:
        !            56: *          if UPLO = 'U', the last NB columns have been reduced to
        !            57: *            tridiagonal form, with the diagonal elements overwriting
        !            58: *            the diagonal elements of A; the elements above the diagonal
        !            59: *            with the array TAU, represent the unitary matrix Q as a
        !            60: *            product of elementary reflectors;
        !            61: *          if UPLO = 'L', the first NB columns have been reduced to
        !            62: *            tridiagonal form, with the diagonal elements overwriting
        !            63: *            the diagonal elements of A; the elements below the diagonal
        !            64: *            with the array TAU, represent the  unitary matrix Q as a
        !            65: *            product of elementary reflectors.
        !            66: *          See Further Details.
        !            67: *
        !            68: *  LDA     (input) INTEGER
        !            69: *          The leading dimension of the array A.  LDA >= max(1,N).
        !            70: *
        !            71: *  E       (output) DOUBLE PRECISION array, dimension (N-1)
        !            72: *          If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal
        !            73: *          elements of the last NB columns of the reduced matrix;
        !            74: *          if UPLO = 'L', E(1:nb) contains the subdiagonal elements of
        !            75: *          the first NB columns of the reduced matrix.
        !            76: *
        !            77: *  TAU     (output) COMPLEX*16 array, dimension (N-1)
        !            78: *          The scalar factors of the elementary reflectors, stored in
        !            79: *          TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'.
        !            80: *          See Further Details.
        !            81: *
        !            82: *  W       (output) COMPLEX*16 array, dimension (LDW,NB)
        !            83: *          The n-by-nb matrix W required to update the unreduced part
        !            84: *          of A.
        !            85: *
        !            86: *  LDW     (input) INTEGER
        !            87: *          The leading dimension of the array W. LDW >= max(1,N).
        !            88: *
        !            89: *  Further Details
        !            90: *  ===============
        !            91: *
        !            92: *  If UPLO = 'U', the matrix Q is represented as a product of elementary
        !            93: *  reflectors
        !            94: *
        !            95: *     Q = H(n) H(n-1) . . . H(n-nb+1).
        !            96: *
        !            97: *  Each H(i) has the form
        !            98: *
        !            99: *     H(i) = I - tau * v * v'
        !           100: *
        !           101: *  where tau is a complex scalar, and v is a complex vector with
        !           102: *  v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i),
        !           103: *  and tau in TAU(i-1).
        !           104: *
        !           105: *  If UPLO = 'L', the matrix Q is represented as a product of elementary
        !           106: *  reflectors
        !           107: *
        !           108: *     Q = H(1) H(2) . . . H(nb).
        !           109: *
        !           110: *  Each H(i) has the form
        !           111: *
        !           112: *     H(i) = I - tau * v * v'
        !           113: *
        !           114: *  where tau is a complex scalar, and v is a complex vector with
        !           115: *  v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
        !           116: *  and tau in TAU(i).
        !           117: *
        !           118: *  The elements of the vectors v together form the n-by-nb matrix V
        !           119: *  which is needed, with W, to apply the transformation to the unreduced
        !           120: *  part of the matrix, using a Hermitian rank-2k update of the form:
        !           121: *  A := A - V*W' - W*V'.
        !           122: *
        !           123: *  The contents of A on exit are illustrated by the following examples
        !           124: *  with n = 5 and nb = 2:
        !           125: *
        !           126: *  if UPLO = 'U':                       if UPLO = 'L':
        !           127: *
        !           128: *    (  a   a   a   v4  v5 )              (  d                  )
        !           129: *    (      a   a   v4  v5 )              (  1   d              )
        !           130: *    (          a   1   v5 )              (  v1  1   a          )
        !           131: *    (              d   1  )              (  v1  v2  a   a      )
        !           132: *    (                  d  )              (  v1  v2  a   a   a  )
        !           133: *
        !           134: *  where d denotes a diagonal element of the reduced matrix, a denotes
        !           135: *  an element of the original matrix that is unchanged, and vi denotes
        !           136: *  an element of the vector defining H(i).
        !           137: *
        !           138: *  =====================================================================
        !           139: *
        !           140: *     .. Parameters ..
        !           141:       COMPLEX*16         ZERO, ONE, HALF
        !           142:       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ),
        !           143:      $                   ONE = ( 1.0D+0, 0.0D+0 ),
        !           144:      $                   HALF = ( 0.5D+0, 0.0D+0 ) )
        !           145: *     ..
        !           146: *     .. Local Scalars ..
        !           147:       INTEGER            I, IW
        !           148:       COMPLEX*16         ALPHA
        !           149: *     ..
        !           150: *     .. External Subroutines ..
        !           151:       EXTERNAL           ZAXPY, ZGEMV, ZHEMV, ZLACGV, ZLARFG, ZSCAL
        !           152: *     ..
        !           153: *     .. External Functions ..
        !           154:       LOGICAL            LSAME
        !           155:       COMPLEX*16         ZDOTC
        !           156:       EXTERNAL           LSAME, ZDOTC
        !           157: *     ..
        !           158: *     .. Intrinsic Functions ..
        !           159:       INTRINSIC          DBLE, MIN
        !           160: *     ..
        !           161: *     .. Executable Statements ..
        !           162: *
        !           163: *     Quick return if possible
        !           164: *
        !           165:       IF( N.LE.0 )
        !           166:      $   RETURN
        !           167: *
        !           168:       IF( LSAME( UPLO, 'U' ) ) THEN
        !           169: *
        !           170: *        Reduce last NB columns of upper triangle
        !           171: *
        !           172:          DO 10 I = N, N - NB + 1, -1
        !           173:             IW = I - N + NB
        !           174:             IF( I.LT.N ) THEN
        !           175: *
        !           176: *              Update A(1:i,i)
        !           177: *
        !           178:                A( I, I ) = DBLE( A( I, I ) )
        !           179:                CALL ZLACGV( N-I, W( I, IW+1 ), LDW )
        !           180:                CALL ZGEMV( 'No transpose', I, N-I, -ONE, A( 1, I+1 ),
        !           181:      $                     LDA, W( I, IW+1 ), LDW, ONE, A( 1, I ), 1 )
        !           182:                CALL ZLACGV( N-I, W( I, IW+1 ), LDW )
        !           183:                CALL ZLACGV( N-I, A( I, I+1 ), LDA )
        !           184:                CALL ZGEMV( 'No transpose', I, N-I, -ONE, W( 1, IW+1 ),
        !           185:      $                     LDW, A( I, I+1 ), LDA, ONE, A( 1, I ), 1 )
        !           186:                CALL ZLACGV( N-I, A( I, I+1 ), LDA )
        !           187:                A( I, I ) = DBLE( A( I, I ) )
        !           188:             END IF
        !           189:             IF( I.GT.1 ) THEN
        !           190: *
        !           191: *              Generate elementary reflector H(i) to annihilate
        !           192: *              A(1:i-2,i)
        !           193: *
        !           194:                ALPHA = A( I-1, I )
        !           195:                CALL ZLARFG( I-1, ALPHA, A( 1, I ), 1, TAU( I-1 ) )
        !           196:                E( I-1 ) = ALPHA
        !           197:                A( I-1, I ) = ONE
        !           198: *
        !           199: *              Compute W(1:i-1,i)
        !           200: *
        !           201:                CALL ZHEMV( 'Upper', I-1, ONE, A, LDA, A( 1, I ), 1,
        !           202:      $                     ZERO, W( 1, IW ), 1 )
        !           203:                IF( I.LT.N ) THEN
        !           204:                   CALL ZGEMV( 'Conjugate transpose', I-1, N-I, ONE,
        !           205:      $                        W( 1, IW+1 ), LDW, A( 1, I ), 1, ZERO,
        !           206:      $                        W( I+1, IW ), 1 )
        !           207:                   CALL ZGEMV( 'No transpose', I-1, N-I, -ONE,
        !           208:      $                        A( 1, I+1 ), LDA, W( I+1, IW ), 1, ONE,
        !           209:      $                        W( 1, IW ), 1 )
        !           210:                   CALL ZGEMV( 'Conjugate transpose', I-1, N-I, ONE,
        !           211:      $                        A( 1, I+1 ), LDA, A( 1, I ), 1, ZERO,
        !           212:      $                        W( I+1, IW ), 1 )
        !           213:                   CALL ZGEMV( 'No transpose', I-1, N-I, -ONE,
        !           214:      $                        W( 1, IW+1 ), LDW, W( I+1, IW ), 1, ONE,
        !           215:      $                        W( 1, IW ), 1 )
        !           216:                END IF
        !           217:                CALL ZSCAL( I-1, TAU( I-1 ), W( 1, IW ), 1 )
        !           218:                ALPHA = -HALF*TAU( I-1 )*ZDOTC( I-1, W( 1, IW ), 1,
        !           219:      $                 A( 1, I ), 1 )
        !           220:                CALL ZAXPY( I-1, ALPHA, A( 1, I ), 1, W( 1, IW ), 1 )
        !           221:             END IF
        !           222: *
        !           223:    10    CONTINUE
        !           224:       ELSE
        !           225: *
        !           226: *        Reduce first NB columns of lower triangle
        !           227: *
        !           228:          DO 20 I = 1, NB
        !           229: *
        !           230: *           Update A(i:n,i)
        !           231: *
        !           232:             A( I, I ) = DBLE( A( I, I ) )
        !           233:             CALL ZLACGV( I-1, W( I, 1 ), LDW )
        !           234:             CALL ZGEMV( 'No transpose', N-I+1, I-1, -ONE, A( I, 1 ),
        !           235:      $                  LDA, W( I, 1 ), LDW, ONE, A( I, I ), 1 )
        !           236:             CALL ZLACGV( I-1, W( I, 1 ), LDW )
        !           237:             CALL ZLACGV( I-1, A( I, 1 ), LDA )
        !           238:             CALL ZGEMV( 'No transpose', N-I+1, I-1, -ONE, W( I, 1 ),
        !           239:      $                  LDW, A( I, 1 ), LDA, ONE, A( I, I ), 1 )
        !           240:             CALL ZLACGV( I-1, A( I, 1 ), LDA )
        !           241:             A( I, I ) = DBLE( A( I, I ) )
        !           242:             IF( I.LT.N ) THEN
        !           243: *
        !           244: *              Generate elementary reflector H(i) to annihilate
        !           245: *              A(i+2:n,i)
        !           246: *
        !           247:                ALPHA = A( I+1, I )
        !           248:                CALL ZLARFG( N-I, ALPHA, A( MIN( I+2, N ), I ), 1,
        !           249:      $                      TAU( I ) )
        !           250:                E( I ) = ALPHA
        !           251:                A( I+1, I ) = ONE
        !           252: *
        !           253: *              Compute W(i+1:n,i)
        !           254: *
        !           255:                CALL ZHEMV( 'Lower', N-I, ONE, A( I+1, I+1 ), LDA,
        !           256:      $                     A( I+1, I ), 1, ZERO, W( I+1, I ), 1 )
        !           257:                CALL ZGEMV( 'Conjugate transpose', N-I, I-1, ONE,
        !           258:      $                     W( I+1, 1 ), LDW, A( I+1, I ), 1, ZERO,
        !           259:      $                     W( 1, I ), 1 )
        !           260:                CALL ZGEMV( 'No transpose', N-I, I-1, -ONE, A( I+1, 1 ),
        !           261:      $                     LDA, W( 1, I ), 1, ONE, W( I+1, I ), 1 )
        !           262:                CALL ZGEMV( 'Conjugate transpose', N-I, I-1, ONE,
        !           263:      $                     A( I+1, 1 ), LDA, A( I+1, I ), 1, ZERO,
        !           264:      $                     W( 1, I ), 1 )
        !           265:                CALL ZGEMV( 'No transpose', N-I, I-1, -ONE, W( I+1, 1 ),
        !           266:      $                     LDW, W( 1, I ), 1, ONE, W( I+1, I ), 1 )
        !           267:                CALL ZSCAL( N-I, TAU( I ), W( I+1, I ), 1 )
        !           268:                ALPHA = -HALF*TAU( I )*ZDOTC( N-I, W( I+1, I ), 1,
        !           269:      $                 A( I+1, I ), 1 )
        !           270:                CALL ZAXPY( N-I, ALPHA, A( I+1, I ), 1, W( I+1, I ), 1 )
        !           271:             END IF
        !           272: *
        !           273:    20    CONTINUE
        !           274:       END IF
        !           275: *
        !           276:       RETURN
        !           277: *
        !           278: *     End of ZLATRD
        !           279: *
        !           280:       END

CVSweb interface <joel.bertrand@systella.fr>