File:  [local] / rpl / lapack / lapack / zlatps.f
Revision 1.20: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:32 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZLATPS solves a triangular system of equations with the matrix held in packed storage.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZLATPS + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlatps.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlatps.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlatps.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLATPS( UPLO, TRANS, DIAG, NORMIN, N, AP, X, SCALE,
   22: *                          CNORM, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          DIAG, NORMIN, TRANS, UPLO
   26: *       INTEGER            INFO, N
   27: *       DOUBLE PRECISION   SCALE
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       DOUBLE PRECISION   CNORM( * )
   31: *       COMPLEX*16         AP( * ), X( * )
   32: *       ..
   33: *
   34: *
   35: *> \par Purpose:
   36: *  =============
   37: *>
   38: *> \verbatim
   39: *>
   40: *> ZLATPS solves one of the triangular systems
   41: *>
   42: *>    A * x = s*b,  A**T * x = s*b,  or  A**H * x = s*b,
   43: *>
   44: *> with scaling to prevent overflow, where A is an upper or lower
   45: *> triangular matrix stored in packed form.  Here A**T denotes the
   46: *> transpose of A, A**H denotes the conjugate transpose of A, x and b
   47: *> are n-element vectors, and s is a scaling factor, usually less than
   48: *> or equal to 1, chosen so that the components of x will be less than
   49: *> the overflow threshold.  If the unscaled problem will not cause
   50: *> overflow, the Level 2 BLAS routine ZTPSV is called. If the matrix A
   51: *> is singular (A(j,j) = 0 for some j), then s is set to 0 and a
   52: *> non-trivial solution to A*x = 0 is returned.
   53: *> \endverbatim
   54: *
   55: *  Arguments:
   56: *  ==========
   57: *
   58: *> \param[in] UPLO
   59: *> \verbatim
   60: *>          UPLO is CHARACTER*1
   61: *>          Specifies whether the matrix A is upper or lower triangular.
   62: *>          = 'U':  Upper triangular
   63: *>          = 'L':  Lower triangular
   64: *> \endverbatim
   65: *>
   66: *> \param[in] TRANS
   67: *> \verbatim
   68: *>          TRANS is CHARACTER*1
   69: *>          Specifies the operation applied to A.
   70: *>          = 'N':  Solve A * x = s*b     (No transpose)
   71: *>          = 'T':  Solve A**T * x = s*b  (Transpose)
   72: *>          = 'C':  Solve A**H * x = s*b  (Conjugate transpose)
   73: *> \endverbatim
   74: *>
   75: *> \param[in] DIAG
   76: *> \verbatim
   77: *>          DIAG is CHARACTER*1
   78: *>          Specifies whether or not the matrix A is unit triangular.
   79: *>          = 'N':  Non-unit triangular
   80: *>          = 'U':  Unit triangular
   81: *> \endverbatim
   82: *>
   83: *> \param[in] NORMIN
   84: *> \verbatim
   85: *>          NORMIN is CHARACTER*1
   86: *>          Specifies whether CNORM has been set or not.
   87: *>          = 'Y':  CNORM contains the column norms on entry
   88: *>          = 'N':  CNORM is not set on entry.  On exit, the norms will
   89: *>                  be computed and stored in CNORM.
   90: *> \endverbatim
   91: *>
   92: *> \param[in] N
   93: *> \verbatim
   94: *>          N is INTEGER
   95: *>          The order of the matrix A.  N >= 0.
   96: *> \endverbatim
   97: *>
   98: *> \param[in] AP
   99: *> \verbatim
  100: *>          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
  101: *>          The upper or lower triangular matrix A, packed columnwise in
  102: *>          a linear array.  The j-th column of A is stored in the array
  103: *>          AP as follows:
  104: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  105: *>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
  106: *> \endverbatim
  107: *>
  108: *> \param[in,out] X
  109: *> \verbatim
  110: *>          X is COMPLEX*16 array, dimension (N)
  111: *>          On entry, the right hand side b of the triangular system.
  112: *>          On exit, X is overwritten by the solution vector x.
  113: *> \endverbatim
  114: *>
  115: *> \param[out] SCALE
  116: *> \verbatim
  117: *>          SCALE is DOUBLE PRECISION
  118: *>          The scaling factor s for the triangular system
  119: *>             A * x = s*b,  A**T * x = s*b,  or  A**H * x = s*b.
  120: *>          If SCALE = 0, the matrix A is singular or badly scaled, and
  121: *>          the vector x is an exact or approximate solution to A*x = 0.
  122: *> \endverbatim
  123: *>
  124: *> \param[in,out] CNORM
  125: *> \verbatim
  126: *>          CNORM is DOUBLE PRECISION array, dimension (N)
  127: *>
  128: *>          If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
  129: *>          contains the norm of the off-diagonal part of the j-th column
  130: *>          of A.  If TRANS = 'N', CNORM(j) must be greater than or equal
  131: *>          to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
  132: *>          must be greater than or equal to the 1-norm.
  133: *>
  134: *>          If NORMIN = 'N', CNORM is an output argument and CNORM(j)
  135: *>          returns the 1-norm of the offdiagonal part of the j-th column
  136: *>          of A.
  137: *> \endverbatim
  138: *>
  139: *> \param[out] INFO
  140: *> \verbatim
  141: *>          INFO is INTEGER
  142: *>          = 0:  successful exit
  143: *>          < 0:  if INFO = -k, the k-th argument had an illegal value
  144: *> \endverbatim
  145: *
  146: *  Authors:
  147: *  ========
  148: *
  149: *> \author Univ. of Tennessee
  150: *> \author Univ. of California Berkeley
  151: *> \author Univ. of Colorado Denver
  152: *> \author NAG Ltd.
  153: *
  154: *> \ingroup complex16OTHERauxiliary
  155: *
  156: *> \par Further Details:
  157: *  =====================
  158: *>
  159: *> \verbatim
  160: *>
  161: *>  A rough bound on x is computed; if that is less than overflow, ZTPSV
  162: *>  is called, otherwise, specific code is used which checks for possible
  163: *>  overflow or divide-by-zero at every operation.
  164: *>
  165: *>  A columnwise scheme is used for solving A*x = b.  The basic algorithm
  166: *>  if A is lower triangular is
  167: *>
  168: *>       x[1:n] := b[1:n]
  169: *>       for j = 1, ..., n
  170: *>            x(j) := x(j) / A(j,j)
  171: *>            x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
  172: *>       end
  173: *>
  174: *>  Define bounds on the components of x after j iterations of the loop:
  175: *>     M(j) = bound on x[1:j]
  176: *>     G(j) = bound on x[j+1:n]
  177: *>  Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
  178: *>
  179: *>  Then for iteration j+1 we have
  180: *>     M(j+1) <= G(j) / | A(j+1,j+1) |
  181: *>     G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
  182: *>            <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
  183: *>
  184: *>  where CNORM(j+1) is greater than or equal to the infinity-norm of
  185: *>  column j+1 of A, not counting the diagonal.  Hence
  186: *>
  187: *>     G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
  188: *>                  1<=i<=j
  189: *>  and
  190: *>
  191: *>     |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
  192: *>                                   1<=i< j
  193: *>
  194: *>  Since |x(j)| <= M(j), we use the Level 2 BLAS routine ZTPSV if the
  195: *>  reciprocal of the largest M(j), j=1,..,n, is larger than
  196: *>  max(underflow, 1/overflow).
  197: *>
  198: *>  The bound on x(j) is also used to determine when a step in the
  199: *>  columnwise method can be performed without fear of overflow.  If
  200: *>  the computed bound is greater than a large constant, x is scaled to
  201: *>  prevent overflow, but if the bound overflows, x is set to 0, x(j) to
  202: *>  1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
  203: *>
  204: *>  Similarly, a row-wise scheme is used to solve A**T *x = b  or
  205: *>  A**H *x = b.  The basic algorithm for A upper triangular is
  206: *>
  207: *>       for j = 1, ..., n
  208: *>            x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
  209: *>       end
  210: *>
  211: *>  We simultaneously compute two bounds
  212: *>       G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
  213: *>       M(j) = bound on x(i), 1<=i<=j
  214: *>
  215: *>  The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
  216: *>  add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
  217: *>  Then the bound on x(j) is
  218: *>
  219: *>       M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
  220: *>
  221: *>            <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
  222: *>                      1<=i<=j
  223: *>
  224: *>  and we can safely call ZTPSV if 1/M(n) and 1/G(n) are both greater
  225: *>  than max(underflow, 1/overflow).
  226: *> \endverbatim
  227: *>
  228: *  =====================================================================
  229:       SUBROUTINE ZLATPS( UPLO, TRANS, DIAG, NORMIN, N, AP, X, SCALE,
  230:      $                   CNORM, INFO )
  231: *
  232: *  -- LAPACK auxiliary routine --
  233: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  234: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  235: *
  236: *     .. Scalar Arguments ..
  237:       CHARACTER          DIAG, NORMIN, TRANS, UPLO
  238:       INTEGER            INFO, N
  239:       DOUBLE PRECISION   SCALE
  240: *     ..
  241: *     .. Array Arguments ..
  242:       DOUBLE PRECISION   CNORM( * )
  243:       COMPLEX*16         AP( * ), X( * )
  244: *     ..
  245: *
  246: *  =====================================================================
  247: *
  248: *     .. Parameters ..
  249:       DOUBLE PRECISION   ZERO, HALF, ONE, TWO
  250:       PARAMETER          ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0,
  251:      $                   TWO = 2.0D+0 )
  252: *     ..
  253: *     .. Local Scalars ..
  254:       LOGICAL            NOTRAN, NOUNIT, UPPER
  255:       INTEGER            I, IMAX, IP, J, JFIRST, JINC, JLAST, JLEN
  256:       DOUBLE PRECISION   BIGNUM, GROW, REC, SMLNUM, TJJ, TMAX, TSCAL,
  257:      $                   XBND, XJ, XMAX
  258:       COMPLEX*16         CSUMJ, TJJS, USCAL, ZDUM
  259: *     ..
  260: *     .. External Functions ..
  261:       LOGICAL            LSAME
  262:       INTEGER            IDAMAX, IZAMAX
  263:       DOUBLE PRECISION   DLAMCH, DZASUM
  264:       COMPLEX*16         ZDOTC, ZDOTU, ZLADIV
  265:       EXTERNAL           LSAME, IDAMAX, IZAMAX, DLAMCH, DZASUM, ZDOTC,
  266:      $                   ZDOTU, ZLADIV
  267: *     ..
  268: *     .. External Subroutines ..
  269:       EXTERNAL           DSCAL, XERBLA, ZAXPY, ZDSCAL, ZTPSV, DLABAD
  270: *     ..
  271: *     .. Intrinsic Functions ..
  272:       INTRINSIC          ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX, MIN
  273: *     ..
  274: *     .. Statement Functions ..
  275:       DOUBLE PRECISION   CABS1, CABS2
  276: *     ..
  277: *     .. Statement Function definitions ..
  278:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  279:       CABS2( ZDUM ) = ABS( DBLE( ZDUM ) / 2.D0 ) +
  280:      $                ABS( DIMAG( ZDUM ) / 2.D0 )
  281: *     ..
  282: *     .. Executable Statements ..
  283: *
  284:       INFO = 0
  285:       UPPER = LSAME( UPLO, 'U' )
  286:       NOTRAN = LSAME( TRANS, 'N' )
  287:       NOUNIT = LSAME( DIAG, 'N' )
  288: *
  289: *     Test the input parameters.
  290: *
  291:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  292:          INFO = -1
  293:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  294:      $         LSAME( TRANS, 'C' ) ) THEN
  295:          INFO = -2
  296:       ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
  297:          INFO = -3
  298:       ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
  299:      $         LSAME( NORMIN, 'N' ) ) THEN
  300:          INFO = -4
  301:       ELSE IF( N.LT.0 ) THEN
  302:          INFO = -5
  303:       END IF
  304:       IF( INFO.NE.0 ) THEN
  305:          CALL XERBLA( 'ZLATPS', -INFO )
  306:          RETURN
  307:       END IF
  308: *
  309: *     Quick return if possible
  310: *
  311:       IF( N.EQ.0 )
  312:      $   RETURN
  313: *
  314: *     Determine machine dependent parameters to control overflow.
  315: *
  316:       SMLNUM = DLAMCH( 'Safe minimum' )
  317:       BIGNUM = ONE / SMLNUM
  318:       CALL DLABAD( SMLNUM, BIGNUM )
  319:       SMLNUM = SMLNUM / DLAMCH( 'Precision' )
  320:       BIGNUM = ONE / SMLNUM
  321:       SCALE = ONE
  322: *
  323:       IF( LSAME( NORMIN, 'N' ) ) THEN
  324: *
  325: *        Compute the 1-norm of each column, not including the diagonal.
  326: *
  327:          IF( UPPER ) THEN
  328: *
  329: *           A is upper triangular.
  330: *
  331:             IP = 1
  332:             DO 10 J = 1, N
  333:                CNORM( J ) = DZASUM( J-1, AP( IP ), 1 )
  334:                IP = IP + J
  335:    10       CONTINUE
  336:          ELSE
  337: *
  338: *           A is lower triangular.
  339: *
  340:             IP = 1
  341:             DO 20 J = 1, N - 1
  342:                CNORM( J ) = DZASUM( N-J, AP( IP+1 ), 1 )
  343:                IP = IP + N - J + 1
  344:    20       CONTINUE
  345:             CNORM( N ) = ZERO
  346:          END IF
  347:       END IF
  348: *
  349: *     Scale the column norms by TSCAL if the maximum element in CNORM is
  350: *     greater than BIGNUM/2.
  351: *
  352:       IMAX = IDAMAX( N, CNORM, 1 )
  353:       TMAX = CNORM( IMAX )
  354:       IF( TMAX.LE.BIGNUM*HALF ) THEN
  355:          TSCAL = ONE
  356:       ELSE
  357:          TSCAL = HALF / ( SMLNUM*TMAX )
  358:          CALL DSCAL( N, TSCAL, CNORM, 1 )
  359:       END IF
  360: *
  361: *     Compute a bound on the computed solution vector to see if the
  362: *     Level 2 BLAS routine ZTPSV can be used.
  363: *
  364:       XMAX = ZERO
  365:       DO 30 J = 1, N
  366:          XMAX = MAX( XMAX, CABS2( X( J ) ) )
  367:    30 CONTINUE
  368:       XBND = XMAX
  369:       IF( NOTRAN ) THEN
  370: *
  371: *        Compute the growth in A * x = b.
  372: *
  373:          IF( UPPER ) THEN
  374:             JFIRST = N
  375:             JLAST = 1
  376:             JINC = -1
  377:          ELSE
  378:             JFIRST = 1
  379:             JLAST = N
  380:             JINC = 1
  381:          END IF
  382: *
  383:          IF( TSCAL.NE.ONE ) THEN
  384:             GROW = ZERO
  385:             GO TO 60
  386:          END IF
  387: *
  388:          IF( NOUNIT ) THEN
  389: *
  390: *           A is non-unit triangular.
  391: *
  392: *           Compute GROW = 1/G(j) and XBND = 1/M(j).
  393: *           Initially, G(0) = max{x(i), i=1,...,n}.
  394: *
  395:             GROW = HALF / MAX( XBND, SMLNUM )
  396:             XBND = GROW
  397:             IP = JFIRST*( JFIRST+1 ) / 2
  398:             JLEN = N
  399:             DO 40 J = JFIRST, JLAST, JINC
  400: *
  401: *              Exit the loop if the growth factor is too small.
  402: *
  403:                IF( GROW.LE.SMLNUM )
  404:      $            GO TO 60
  405: *
  406:                TJJS = AP( IP )
  407:                TJJ = CABS1( TJJS )
  408: *
  409:                IF( TJJ.GE.SMLNUM ) THEN
  410: *
  411: *                 M(j) = G(j-1) / abs(A(j,j))
  412: *
  413:                   XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
  414:                ELSE
  415: *
  416: *                 M(j) could overflow, set XBND to 0.
  417: *
  418:                   XBND = ZERO
  419:                END IF
  420: *
  421:                IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
  422: *
  423: *                 G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
  424: *
  425:                   GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
  426:                ELSE
  427: *
  428: *                 G(j) could overflow, set GROW to 0.
  429: *
  430:                   GROW = ZERO
  431:                END IF
  432:                IP = IP + JINC*JLEN
  433:                JLEN = JLEN - 1
  434:    40       CONTINUE
  435:             GROW = XBND
  436:          ELSE
  437: *
  438: *           A is unit triangular.
  439: *
  440: *           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  441: *
  442:             GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
  443:             DO 50 J = JFIRST, JLAST, JINC
  444: *
  445: *              Exit the loop if the growth factor is too small.
  446: *
  447:                IF( GROW.LE.SMLNUM )
  448:      $            GO TO 60
  449: *
  450: *              G(j) = G(j-1)*( 1 + CNORM(j) )
  451: *
  452:                GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
  453:    50       CONTINUE
  454:          END IF
  455:    60    CONTINUE
  456: *
  457:       ELSE
  458: *
  459: *        Compute the growth in A**T * x = b  or  A**H * x = b.
  460: *
  461:          IF( UPPER ) THEN
  462:             JFIRST = 1
  463:             JLAST = N
  464:             JINC = 1
  465:          ELSE
  466:             JFIRST = N
  467:             JLAST = 1
  468:             JINC = -1
  469:          END IF
  470: *
  471:          IF( TSCAL.NE.ONE ) THEN
  472:             GROW = ZERO
  473:             GO TO 90
  474:          END IF
  475: *
  476:          IF( NOUNIT ) THEN
  477: *
  478: *           A is non-unit triangular.
  479: *
  480: *           Compute GROW = 1/G(j) and XBND = 1/M(j).
  481: *           Initially, M(0) = max{x(i), i=1,...,n}.
  482: *
  483:             GROW = HALF / MAX( XBND, SMLNUM )
  484:             XBND = GROW
  485:             IP = JFIRST*( JFIRST+1 ) / 2
  486:             JLEN = 1
  487:             DO 70 J = JFIRST, JLAST, JINC
  488: *
  489: *              Exit the loop if the growth factor is too small.
  490: *
  491:                IF( GROW.LE.SMLNUM )
  492:      $            GO TO 90
  493: *
  494: *              G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
  495: *
  496:                XJ = ONE + CNORM( J )
  497:                GROW = MIN( GROW, XBND / XJ )
  498: *
  499:                TJJS = AP( IP )
  500:                TJJ = CABS1( TJJS )
  501: *
  502:                IF( TJJ.GE.SMLNUM ) THEN
  503: *
  504: *                 M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
  505: *
  506:                   IF( XJ.GT.TJJ )
  507:      $               XBND = XBND*( TJJ / XJ )
  508:                ELSE
  509: *
  510: *                 M(j) could overflow, set XBND to 0.
  511: *
  512:                   XBND = ZERO
  513:                END IF
  514:                JLEN = JLEN + 1
  515:                IP = IP + JINC*JLEN
  516:    70       CONTINUE
  517:             GROW = MIN( GROW, XBND )
  518:          ELSE
  519: *
  520: *           A is unit triangular.
  521: *
  522: *           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  523: *
  524:             GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
  525:             DO 80 J = JFIRST, JLAST, JINC
  526: *
  527: *              Exit the loop if the growth factor is too small.
  528: *
  529:                IF( GROW.LE.SMLNUM )
  530:      $            GO TO 90
  531: *
  532: *              G(j) = ( 1 + CNORM(j) )*G(j-1)
  533: *
  534:                XJ = ONE + CNORM( J )
  535:                GROW = GROW / XJ
  536:    80       CONTINUE
  537:          END IF
  538:    90    CONTINUE
  539:       END IF
  540: *
  541:       IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
  542: *
  543: *        Use the Level 2 BLAS solve if the reciprocal of the bound on
  544: *        elements of X is not too small.
  545: *
  546:          CALL ZTPSV( UPLO, TRANS, DIAG, N, AP, X, 1 )
  547:       ELSE
  548: *
  549: *        Use a Level 1 BLAS solve, scaling intermediate results.
  550: *
  551:          IF( XMAX.GT.BIGNUM*HALF ) THEN
  552: *
  553: *           Scale X so that its components are less than or equal to
  554: *           BIGNUM in absolute value.
  555: *
  556:             SCALE = ( BIGNUM*HALF ) / XMAX
  557:             CALL ZDSCAL( N, SCALE, X, 1 )
  558:             XMAX = BIGNUM
  559:          ELSE
  560:             XMAX = XMAX*TWO
  561:          END IF
  562: *
  563:          IF( NOTRAN ) THEN
  564: *
  565: *           Solve A * x = b
  566: *
  567:             IP = JFIRST*( JFIRST+1 ) / 2
  568:             DO 120 J = JFIRST, JLAST, JINC
  569: *
  570: *              Compute x(j) = b(j) / A(j,j), scaling x if necessary.
  571: *
  572:                XJ = CABS1( X( J ) )
  573:                IF( NOUNIT ) THEN
  574:                   TJJS = AP( IP )*TSCAL
  575:                ELSE
  576:                   TJJS = TSCAL
  577:                   IF( TSCAL.EQ.ONE )
  578:      $               GO TO 110
  579:                END IF
  580:                TJJ = CABS1( TJJS )
  581:                IF( TJJ.GT.SMLNUM ) THEN
  582: *
  583: *                    abs(A(j,j)) > SMLNUM:
  584: *
  585:                   IF( TJJ.LT.ONE ) THEN
  586:                      IF( XJ.GT.TJJ*BIGNUM ) THEN
  587: *
  588: *                          Scale x by 1/b(j).
  589: *
  590:                         REC = ONE / XJ
  591:                         CALL ZDSCAL( N, REC, X, 1 )
  592:                         SCALE = SCALE*REC
  593:                         XMAX = XMAX*REC
  594:                      END IF
  595:                   END IF
  596:                   X( J ) = ZLADIV( X( J ), TJJS )
  597:                   XJ = CABS1( X( J ) )
  598:                ELSE IF( TJJ.GT.ZERO ) THEN
  599: *
  600: *                    0 < abs(A(j,j)) <= SMLNUM:
  601: *
  602:                   IF( XJ.GT.TJJ*BIGNUM ) THEN
  603: *
  604: *                       Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
  605: *                       to avoid overflow when dividing by A(j,j).
  606: *
  607:                      REC = ( TJJ*BIGNUM ) / XJ
  608:                      IF( CNORM( J ).GT.ONE ) THEN
  609: *
  610: *                          Scale by 1/CNORM(j) to avoid overflow when
  611: *                          multiplying x(j) times column j.
  612: *
  613:                         REC = REC / CNORM( J )
  614:                      END IF
  615:                      CALL ZDSCAL( N, REC, X, 1 )
  616:                      SCALE = SCALE*REC
  617:                      XMAX = XMAX*REC
  618:                   END IF
  619:                   X( J ) = ZLADIV( X( J ), TJJS )
  620:                   XJ = CABS1( X( J ) )
  621:                ELSE
  622: *
  623: *                    A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
  624: *                    scale = 0, and compute a solution to A*x = 0.
  625: *
  626:                   DO 100 I = 1, N
  627:                      X( I ) = ZERO
  628:   100             CONTINUE
  629:                   X( J ) = ONE
  630:                   XJ = ONE
  631:                   SCALE = ZERO
  632:                   XMAX = ZERO
  633:                END IF
  634:   110          CONTINUE
  635: *
  636: *              Scale x if necessary to avoid overflow when adding a
  637: *              multiple of column j of A.
  638: *
  639:                IF( XJ.GT.ONE ) THEN
  640:                   REC = ONE / XJ
  641:                   IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
  642: *
  643: *                    Scale x by 1/(2*abs(x(j))).
  644: *
  645:                      REC = REC*HALF
  646:                      CALL ZDSCAL( N, REC, X, 1 )
  647:                      SCALE = SCALE*REC
  648:                   END IF
  649:                ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
  650: *
  651: *                 Scale x by 1/2.
  652: *
  653:                   CALL ZDSCAL( N, HALF, X, 1 )
  654:                   SCALE = SCALE*HALF
  655:                END IF
  656: *
  657:                IF( UPPER ) THEN
  658:                   IF( J.GT.1 ) THEN
  659: *
  660: *                    Compute the update
  661: *                       x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j)
  662: *
  663:                      CALL ZAXPY( J-1, -X( J )*TSCAL, AP( IP-J+1 ), 1, X,
  664:      $                           1 )
  665:                      I = IZAMAX( J-1, X, 1 )
  666:                      XMAX = CABS1( X( I ) )
  667:                   END IF
  668:                   IP = IP - J
  669:                ELSE
  670:                   IF( J.LT.N ) THEN
  671: *
  672: *                    Compute the update
  673: *                       x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j)
  674: *
  675:                      CALL ZAXPY( N-J, -X( J )*TSCAL, AP( IP+1 ), 1,
  676:      $                           X( J+1 ), 1 )
  677:                      I = J + IZAMAX( N-J, X( J+1 ), 1 )
  678:                      XMAX = CABS1( X( I ) )
  679:                   END IF
  680:                   IP = IP + N - J + 1
  681:                END IF
  682:   120       CONTINUE
  683: *
  684:          ELSE IF( LSAME( TRANS, 'T' ) ) THEN
  685: *
  686: *           Solve A**T * x = b
  687: *
  688:             IP = JFIRST*( JFIRST+1 ) / 2
  689:             JLEN = 1
  690:             DO 170 J = JFIRST, JLAST, JINC
  691: *
  692: *              Compute x(j) = b(j) - sum A(k,j)*x(k).
  693: *                                    k<>j
  694: *
  695:                XJ = CABS1( X( J ) )
  696:                USCAL = TSCAL
  697:                REC = ONE / MAX( XMAX, ONE )
  698:                IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
  699: *
  700: *                 If x(j) could overflow, scale x by 1/(2*XMAX).
  701: *
  702:                   REC = REC*HALF
  703:                   IF( NOUNIT ) THEN
  704:                      TJJS = AP( IP )*TSCAL
  705:                   ELSE
  706:                      TJJS = TSCAL
  707:                   END IF
  708:                   TJJ = CABS1( TJJS )
  709:                   IF( TJJ.GT.ONE ) THEN
  710: *
  711: *                       Divide by A(j,j) when scaling x if A(j,j) > 1.
  712: *
  713:                      REC = MIN( ONE, REC*TJJ )
  714:                      USCAL = ZLADIV( USCAL, TJJS )
  715:                   END IF
  716:                   IF( REC.LT.ONE ) THEN
  717:                      CALL ZDSCAL( N, REC, X, 1 )
  718:                      SCALE = SCALE*REC
  719:                      XMAX = XMAX*REC
  720:                   END IF
  721:                END IF
  722: *
  723:                CSUMJ = ZERO
  724:                IF( USCAL.EQ.DCMPLX( ONE ) ) THEN
  725: *
  726: *                 If the scaling needed for A in the dot product is 1,
  727: *                 call ZDOTU to perform the dot product.
  728: *
  729:                   IF( UPPER ) THEN
  730:                      CSUMJ = ZDOTU( J-1, AP( IP-J+1 ), 1, X, 1 )
  731:                   ELSE IF( J.LT.N ) THEN
  732:                      CSUMJ = ZDOTU( N-J, AP( IP+1 ), 1, X( J+1 ), 1 )
  733:                   END IF
  734:                ELSE
  735: *
  736: *                 Otherwise, use in-line code for the dot product.
  737: *
  738:                   IF( UPPER ) THEN
  739:                      DO 130 I = 1, J - 1
  740:                         CSUMJ = CSUMJ + ( AP( IP-J+I )*USCAL )*X( I )
  741:   130                CONTINUE
  742:                   ELSE IF( J.LT.N ) THEN
  743:                      DO 140 I = 1, N - J
  744:                         CSUMJ = CSUMJ + ( AP( IP+I )*USCAL )*X( J+I )
  745:   140                CONTINUE
  746:                   END IF
  747:                END IF
  748: *
  749:                IF( USCAL.EQ.DCMPLX( TSCAL ) ) THEN
  750: *
  751: *                 Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
  752: *                 was not used to scale the dotproduct.
  753: *
  754:                   X( J ) = X( J ) - CSUMJ
  755:                   XJ = CABS1( X( J ) )
  756:                   IF( NOUNIT ) THEN
  757: *
  758: *                    Compute x(j) = x(j) / A(j,j), scaling if necessary.
  759: *
  760:                      TJJS = AP( IP )*TSCAL
  761:                   ELSE
  762:                      TJJS = TSCAL
  763:                      IF( TSCAL.EQ.ONE )
  764:      $                  GO TO 160
  765:                   END IF
  766:                   TJJ = CABS1( TJJS )
  767:                   IF( TJJ.GT.SMLNUM ) THEN
  768: *
  769: *                       abs(A(j,j)) > SMLNUM:
  770: *
  771:                      IF( TJJ.LT.ONE ) THEN
  772:                         IF( XJ.GT.TJJ*BIGNUM ) THEN
  773: *
  774: *                             Scale X by 1/abs(x(j)).
  775: *
  776:                            REC = ONE / XJ
  777:                            CALL ZDSCAL( N, REC, X, 1 )
  778:                            SCALE = SCALE*REC
  779:                            XMAX = XMAX*REC
  780:                         END IF
  781:                      END IF
  782:                      X( J ) = ZLADIV( X( J ), TJJS )
  783:                   ELSE IF( TJJ.GT.ZERO ) THEN
  784: *
  785: *                       0 < abs(A(j,j)) <= SMLNUM:
  786: *
  787:                      IF( XJ.GT.TJJ*BIGNUM ) THEN
  788: *
  789: *                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
  790: *
  791:                         REC = ( TJJ*BIGNUM ) / XJ
  792:                         CALL ZDSCAL( N, REC, X, 1 )
  793:                         SCALE = SCALE*REC
  794:                         XMAX = XMAX*REC
  795:                      END IF
  796:                      X( J ) = ZLADIV( X( J ), TJJS )
  797:                   ELSE
  798: *
  799: *                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
  800: *                       scale = 0 and compute a solution to A**T *x = 0.
  801: *
  802:                      DO 150 I = 1, N
  803:                         X( I ) = ZERO
  804:   150                CONTINUE
  805:                      X( J ) = ONE
  806:                      SCALE = ZERO
  807:                      XMAX = ZERO
  808:                   END IF
  809:   160             CONTINUE
  810:                ELSE
  811: *
  812: *                 Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
  813: *                 product has already been divided by 1/A(j,j).
  814: *
  815:                   X( J ) = ZLADIV( X( J ), TJJS ) - CSUMJ
  816:                END IF
  817:                XMAX = MAX( XMAX, CABS1( X( J ) ) )
  818:                JLEN = JLEN + 1
  819:                IP = IP + JINC*JLEN
  820:   170       CONTINUE
  821: *
  822:          ELSE
  823: *
  824: *           Solve A**H * x = b
  825: *
  826:             IP = JFIRST*( JFIRST+1 ) / 2
  827:             JLEN = 1
  828:             DO 220 J = JFIRST, JLAST, JINC
  829: *
  830: *              Compute x(j) = b(j) - sum A(k,j)*x(k).
  831: *                                    k<>j
  832: *
  833:                XJ = CABS1( X( J ) )
  834:                USCAL = TSCAL
  835:                REC = ONE / MAX( XMAX, ONE )
  836:                IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
  837: *
  838: *                 If x(j) could overflow, scale x by 1/(2*XMAX).
  839: *
  840:                   REC = REC*HALF
  841:                   IF( NOUNIT ) THEN
  842:                      TJJS = DCONJG( AP( IP ) )*TSCAL
  843:                   ELSE
  844:                      TJJS = TSCAL
  845:                   END IF
  846:                   TJJ = CABS1( TJJS )
  847:                   IF( TJJ.GT.ONE ) THEN
  848: *
  849: *                       Divide by A(j,j) when scaling x if A(j,j) > 1.
  850: *
  851:                      REC = MIN( ONE, REC*TJJ )
  852:                      USCAL = ZLADIV( USCAL, TJJS )
  853:                   END IF
  854:                   IF( REC.LT.ONE ) THEN
  855:                      CALL ZDSCAL( N, REC, X, 1 )
  856:                      SCALE = SCALE*REC
  857:                      XMAX = XMAX*REC
  858:                   END IF
  859:                END IF
  860: *
  861:                CSUMJ = ZERO
  862:                IF( USCAL.EQ.DCMPLX( ONE ) ) THEN
  863: *
  864: *                 If the scaling needed for A in the dot product is 1,
  865: *                 call ZDOTC to perform the dot product.
  866: *
  867:                   IF( UPPER ) THEN
  868:                      CSUMJ = ZDOTC( J-1, AP( IP-J+1 ), 1, X, 1 )
  869:                   ELSE IF( J.LT.N ) THEN
  870:                      CSUMJ = ZDOTC( N-J, AP( IP+1 ), 1, X( J+1 ), 1 )
  871:                   END IF
  872:                ELSE
  873: *
  874: *                 Otherwise, use in-line code for the dot product.
  875: *
  876:                   IF( UPPER ) THEN
  877:                      DO 180 I = 1, J - 1
  878:                         CSUMJ = CSUMJ + ( DCONJG( AP( IP-J+I ) )*USCAL )
  879:      $                          *X( I )
  880:   180                CONTINUE
  881:                   ELSE IF( J.LT.N ) THEN
  882:                      DO 190 I = 1, N - J
  883:                         CSUMJ = CSUMJ + ( DCONJG( AP( IP+I ) )*USCAL )*
  884:      $                          X( J+I )
  885:   190                CONTINUE
  886:                   END IF
  887:                END IF
  888: *
  889:                IF( USCAL.EQ.DCMPLX( TSCAL ) ) THEN
  890: *
  891: *                 Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
  892: *                 was not used to scale the dotproduct.
  893: *
  894:                   X( J ) = X( J ) - CSUMJ
  895:                   XJ = CABS1( X( J ) )
  896:                   IF( NOUNIT ) THEN
  897: *
  898: *                    Compute x(j) = x(j) / A(j,j), scaling if necessary.
  899: *
  900:                      TJJS = DCONJG( AP( IP ) )*TSCAL
  901:                   ELSE
  902:                      TJJS = TSCAL
  903:                      IF( TSCAL.EQ.ONE )
  904:      $                  GO TO 210
  905:                   END IF
  906:                   TJJ = CABS1( TJJS )
  907:                   IF( TJJ.GT.SMLNUM ) THEN
  908: *
  909: *                       abs(A(j,j)) > SMLNUM:
  910: *
  911:                      IF( TJJ.LT.ONE ) THEN
  912:                         IF( XJ.GT.TJJ*BIGNUM ) THEN
  913: *
  914: *                             Scale X by 1/abs(x(j)).
  915: *
  916:                            REC = ONE / XJ
  917:                            CALL ZDSCAL( N, REC, X, 1 )
  918:                            SCALE = SCALE*REC
  919:                            XMAX = XMAX*REC
  920:                         END IF
  921:                      END IF
  922:                      X( J ) = ZLADIV( X( J ), TJJS )
  923:                   ELSE IF( TJJ.GT.ZERO ) THEN
  924: *
  925: *                       0 < abs(A(j,j)) <= SMLNUM:
  926: *
  927:                      IF( XJ.GT.TJJ*BIGNUM ) THEN
  928: *
  929: *                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
  930: *
  931:                         REC = ( TJJ*BIGNUM ) / XJ
  932:                         CALL ZDSCAL( N, REC, X, 1 )
  933:                         SCALE = SCALE*REC
  934:                         XMAX = XMAX*REC
  935:                      END IF
  936:                      X( J ) = ZLADIV( X( J ), TJJS )
  937:                   ELSE
  938: *
  939: *                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
  940: *                       scale = 0 and compute a solution to A**H *x = 0.
  941: *
  942:                      DO 200 I = 1, N
  943:                         X( I ) = ZERO
  944:   200                CONTINUE
  945:                      X( J ) = ONE
  946:                      SCALE = ZERO
  947:                      XMAX = ZERO
  948:                   END IF
  949:   210             CONTINUE
  950:                ELSE
  951: *
  952: *                 Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
  953: *                 product has already been divided by 1/A(j,j).
  954: *
  955:                   X( J ) = ZLADIV( X( J ), TJJS ) - CSUMJ
  956:                END IF
  957:                XMAX = MAX( XMAX, CABS1( X( J ) ) )
  958:                JLEN = JLEN + 1
  959:                IP = IP + JINC*JLEN
  960:   220       CONTINUE
  961:          END IF
  962:          SCALE = SCALE / TSCAL
  963:       END IF
  964: *
  965: *     Scale the column norms by 1/TSCAL for return.
  966: *
  967:       IF( TSCAL.NE.ONE ) THEN
  968:          CALL DSCAL( N, ONE / TSCAL, CNORM, 1 )
  969:       END IF
  970: *
  971:       RETURN
  972: *
  973: *     End of ZLATPS
  974: *
  975:       END

CVSweb interface <joel.bertrand@systella.fr>