File:  [local] / rpl / lapack / lapack / zlatps.f
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Jan 26 15:22:45 2010 UTC (14 years, 3 months ago) by bertrand
Branches: JKB
CVS tags: start, rpl-4_0_14, rpl-4_0_13, rpl-4_0_12, rpl-4_0_11, rpl-4_0_10


Commit initial.

    1:       SUBROUTINE ZLATPS( UPLO, TRANS, DIAG, NORMIN, N, AP, X, SCALE,
    2:      $                   CNORM, INFO )
    3: *
    4: *  -- LAPACK auxiliary routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     .. Scalar Arguments ..
   10:       CHARACTER          DIAG, NORMIN, TRANS, UPLO
   11:       INTEGER            INFO, N
   12:       DOUBLE PRECISION   SCALE
   13: *     ..
   14: *     .. Array Arguments ..
   15:       DOUBLE PRECISION   CNORM( * )
   16:       COMPLEX*16         AP( * ), X( * )
   17: *     ..
   18: *
   19: *  Purpose
   20: *  =======
   21: *
   22: *  ZLATPS solves one of the triangular systems
   23: *
   24: *     A * x = s*b,  A**T * x = s*b,  or  A**H * x = s*b,
   25: *
   26: *  with scaling to prevent overflow, where A is an upper or lower
   27: *  triangular matrix stored in packed form.  Here A**T denotes the
   28: *  transpose of A, A**H denotes the conjugate transpose of A, x and b
   29: *  are n-element vectors, and s is a scaling factor, usually less than
   30: *  or equal to 1, chosen so that the components of x will be less than
   31: *  the overflow threshold.  If the unscaled problem will not cause
   32: *  overflow, the Level 2 BLAS routine ZTPSV is called. If the matrix A
   33: *  is singular (A(j,j) = 0 for some j), then s is set to 0 and a
   34: *  non-trivial solution to A*x = 0 is returned.
   35: *
   36: *  Arguments
   37: *  =========
   38: *
   39: *  UPLO    (input) CHARACTER*1
   40: *          Specifies whether the matrix A is upper or lower triangular.
   41: *          = 'U':  Upper triangular
   42: *          = 'L':  Lower triangular
   43: *
   44: *  TRANS   (input) CHARACTER*1
   45: *          Specifies the operation applied to A.
   46: *          = 'N':  Solve A * x = s*b     (No transpose)
   47: *          = 'T':  Solve A**T * x = s*b  (Transpose)
   48: *          = 'C':  Solve A**H * x = s*b  (Conjugate transpose)
   49: *
   50: *  DIAG    (input) CHARACTER*1
   51: *          Specifies whether or not the matrix A is unit triangular.
   52: *          = 'N':  Non-unit triangular
   53: *          = 'U':  Unit triangular
   54: *
   55: *  NORMIN  (input) CHARACTER*1
   56: *          Specifies whether CNORM has been set or not.
   57: *          = 'Y':  CNORM contains the column norms on entry
   58: *          = 'N':  CNORM is not set on entry.  On exit, the norms will
   59: *                  be computed and stored in CNORM.
   60: *
   61: *  N       (input) INTEGER
   62: *          The order of the matrix A.  N >= 0.
   63: *
   64: *  AP      (input) COMPLEX*16 array, dimension (N*(N+1)/2)
   65: *          The upper or lower triangular matrix A, packed columnwise in
   66: *          a linear array.  The j-th column of A is stored in the array
   67: *          AP as follows:
   68: *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
   69: *          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
   70: *
   71: *  X       (input/output) COMPLEX*16 array, dimension (N)
   72: *          On entry, the right hand side b of the triangular system.
   73: *          On exit, X is overwritten by the solution vector x.
   74: *
   75: *  SCALE   (output) DOUBLE PRECISION
   76: *          The scaling factor s for the triangular system
   77: *             A * x = s*b,  A**T * x = s*b,  or  A**H * x = s*b.
   78: *          If SCALE = 0, the matrix A is singular or badly scaled, and
   79: *          the vector x is an exact or approximate solution to A*x = 0.
   80: *
   81: *  CNORM   (input or output) DOUBLE PRECISION array, dimension (N)
   82: *
   83: *          If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
   84: *          contains the norm of the off-diagonal part of the j-th column
   85: *          of A.  If TRANS = 'N', CNORM(j) must be greater than or equal
   86: *          to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
   87: *          must be greater than or equal to the 1-norm.
   88: *
   89: *          If NORMIN = 'N', CNORM is an output argument and CNORM(j)
   90: *          returns the 1-norm of the offdiagonal part of the j-th column
   91: *          of A.
   92: *
   93: *  INFO    (output) INTEGER
   94: *          = 0:  successful exit
   95: *          < 0:  if INFO = -k, the k-th argument had an illegal value
   96: *
   97: *  Further Details
   98: *  ======= =======
   99: *
  100: *  A rough bound on x is computed; if that is less than overflow, ZTPSV
  101: *  is called, otherwise, specific code is used which checks for possible
  102: *  overflow or divide-by-zero at every operation.
  103: *
  104: *  A columnwise scheme is used for solving A*x = b.  The basic algorithm
  105: *  if A is lower triangular is
  106: *
  107: *       x[1:n] := b[1:n]
  108: *       for j = 1, ..., n
  109: *            x(j) := x(j) / A(j,j)
  110: *            x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
  111: *       end
  112: *
  113: *  Define bounds on the components of x after j iterations of the loop:
  114: *     M(j) = bound on x[1:j]
  115: *     G(j) = bound on x[j+1:n]
  116: *  Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
  117: *
  118: *  Then for iteration j+1 we have
  119: *     M(j+1) <= G(j) / | A(j+1,j+1) |
  120: *     G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
  121: *            <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
  122: *
  123: *  where CNORM(j+1) is greater than or equal to the infinity-norm of
  124: *  column j+1 of A, not counting the diagonal.  Hence
  125: *
  126: *     G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
  127: *                  1<=i<=j
  128: *  and
  129: *
  130: *     |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
  131: *                                   1<=i< j
  132: *
  133: *  Since |x(j)| <= M(j), we use the Level 2 BLAS routine ZTPSV if the
  134: *  reciprocal of the largest M(j), j=1,..,n, is larger than
  135: *  max(underflow, 1/overflow).
  136: *
  137: *  The bound on x(j) is also used to determine when a step in the
  138: *  columnwise method can be performed without fear of overflow.  If
  139: *  the computed bound is greater than a large constant, x is scaled to
  140: *  prevent overflow, but if the bound overflows, x is set to 0, x(j) to
  141: *  1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
  142: *
  143: *  Similarly, a row-wise scheme is used to solve A**T *x = b  or
  144: *  A**H *x = b.  The basic algorithm for A upper triangular is
  145: *
  146: *       for j = 1, ..., n
  147: *            x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
  148: *       end
  149: *
  150: *  We simultaneously compute two bounds
  151: *       G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
  152: *       M(j) = bound on x(i), 1<=i<=j
  153: *
  154: *  The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
  155: *  add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
  156: *  Then the bound on x(j) is
  157: *
  158: *       M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
  159: *
  160: *            <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
  161: *                      1<=i<=j
  162: *
  163: *  and we can safely call ZTPSV if 1/M(n) and 1/G(n) are both greater
  164: *  than max(underflow, 1/overflow).
  165: *
  166: *  =====================================================================
  167: *
  168: *     .. Parameters ..
  169:       DOUBLE PRECISION   ZERO, HALF, ONE, TWO
  170:       PARAMETER          ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0,
  171:      $                   TWO = 2.0D+0 )
  172: *     ..
  173: *     .. Local Scalars ..
  174:       LOGICAL            NOTRAN, NOUNIT, UPPER
  175:       INTEGER            I, IMAX, IP, J, JFIRST, JINC, JLAST, JLEN
  176:       DOUBLE PRECISION   BIGNUM, GROW, REC, SMLNUM, TJJ, TMAX, TSCAL,
  177:      $                   XBND, XJ, XMAX
  178:       COMPLEX*16         CSUMJ, TJJS, USCAL, ZDUM
  179: *     ..
  180: *     .. External Functions ..
  181:       LOGICAL            LSAME
  182:       INTEGER            IDAMAX, IZAMAX
  183:       DOUBLE PRECISION   DLAMCH, DZASUM
  184:       COMPLEX*16         ZDOTC, ZDOTU, ZLADIV
  185:       EXTERNAL           LSAME, IDAMAX, IZAMAX, DLAMCH, DZASUM, ZDOTC,
  186:      $                   ZDOTU, ZLADIV
  187: *     ..
  188: *     .. External Subroutines ..
  189:       EXTERNAL           DSCAL, XERBLA, ZAXPY, ZDSCAL, ZTPSV
  190: *     ..
  191: *     .. Intrinsic Functions ..
  192:       INTRINSIC          ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX, MIN
  193: *     ..
  194: *     .. Statement Functions ..
  195:       DOUBLE PRECISION   CABS1, CABS2
  196: *     ..
  197: *     .. Statement Function definitions ..
  198:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  199:       CABS2( ZDUM ) = ABS( DBLE( ZDUM ) / 2.D0 ) +
  200:      $                ABS( DIMAG( ZDUM ) / 2.D0 )
  201: *     ..
  202: *     .. Executable Statements ..
  203: *
  204:       INFO = 0
  205:       UPPER = LSAME( UPLO, 'U' )
  206:       NOTRAN = LSAME( TRANS, 'N' )
  207:       NOUNIT = LSAME( DIAG, 'N' )
  208: *
  209: *     Test the input parameters.
  210: *
  211:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  212:          INFO = -1
  213:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  214:      $         LSAME( TRANS, 'C' ) ) THEN
  215:          INFO = -2
  216:       ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
  217:          INFO = -3
  218:       ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
  219:      $         LSAME( NORMIN, 'N' ) ) THEN
  220:          INFO = -4
  221:       ELSE IF( N.LT.0 ) THEN
  222:          INFO = -5
  223:       END IF
  224:       IF( INFO.NE.0 ) THEN
  225:          CALL XERBLA( 'ZLATPS', -INFO )
  226:          RETURN
  227:       END IF
  228: *
  229: *     Quick return if possible
  230: *
  231:       IF( N.EQ.0 )
  232:      $   RETURN
  233: *
  234: *     Determine machine dependent parameters to control overflow.
  235: *
  236:       SMLNUM = DLAMCH( 'Safe minimum' )
  237:       BIGNUM = ONE / SMLNUM
  238:       CALL DLABAD( SMLNUM, BIGNUM )
  239:       SMLNUM = SMLNUM / DLAMCH( 'Precision' )
  240:       BIGNUM = ONE / SMLNUM
  241:       SCALE = ONE
  242: *
  243:       IF( LSAME( NORMIN, 'N' ) ) THEN
  244: *
  245: *        Compute the 1-norm of each column, not including the diagonal.
  246: *
  247:          IF( UPPER ) THEN
  248: *
  249: *           A is upper triangular.
  250: *
  251:             IP = 1
  252:             DO 10 J = 1, N
  253:                CNORM( J ) = DZASUM( J-1, AP( IP ), 1 )
  254:                IP = IP + J
  255:    10       CONTINUE
  256:          ELSE
  257: *
  258: *           A is lower triangular.
  259: *
  260:             IP = 1
  261:             DO 20 J = 1, N - 1
  262:                CNORM( J ) = DZASUM( N-J, AP( IP+1 ), 1 )
  263:                IP = IP + N - J + 1
  264:    20       CONTINUE
  265:             CNORM( N ) = ZERO
  266:          END IF
  267:       END IF
  268: *
  269: *     Scale the column norms by TSCAL if the maximum element in CNORM is
  270: *     greater than BIGNUM/2.
  271: *
  272:       IMAX = IDAMAX( N, CNORM, 1 )
  273:       TMAX = CNORM( IMAX )
  274:       IF( TMAX.LE.BIGNUM*HALF ) THEN
  275:          TSCAL = ONE
  276:       ELSE
  277:          TSCAL = HALF / ( SMLNUM*TMAX )
  278:          CALL DSCAL( N, TSCAL, CNORM, 1 )
  279:       END IF
  280: *
  281: *     Compute a bound on the computed solution vector to see if the
  282: *     Level 2 BLAS routine ZTPSV can be used.
  283: *
  284:       XMAX = ZERO
  285:       DO 30 J = 1, N
  286:          XMAX = MAX( XMAX, CABS2( X( J ) ) )
  287:    30 CONTINUE
  288:       XBND = XMAX
  289:       IF( NOTRAN ) THEN
  290: *
  291: *        Compute the growth in A * x = b.
  292: *
  293:          IF( UPPER ) THEN
  294:             JFIRST = N
  295:             JLAST = 1
  296:             JINC = -1
  297:          ELSE
  298:             JFIRST = 1
  299:             JLAST = N
  300:             JINC = 1
  301:          END IF
  302: *
  303:          IF( TSCAL.NE.ONE ) THEN
  304:             GROW = ZERO
  305:             GO TO 60
  306:          END IF
  307: *
  308:          IF( NOUNIT ) THEN
  309: *
  310: *           A is non-unit triangular.
  311: *
  312: *           Compute GROW = 1/G(j) and XBND = 1/M(j).
  313: *           Initially, G(0) = max{x(i), i=1,...,n}.
  314: *
  315:             GROW = HALF / MAX( XBND, SMLNUM )
  316:             XBND = GROW
  317:             IP = JFIRST*( JFIRST+1 ) / 2
  318:             JLEN = N
  319:             DO 40 J = JFIRST, JLAST, JINC
  320: *
  321: *              Exit the loop if the growth factor is too small.
  322: *
  323:                IF( GROW.LE.SMLNUM )
  324:      $            GO TO 60
  325: *
  326:                TJJS = AP( IP )
  327:                TJJ = CABS1( TJJS )
  328: *
  329:                IF( TJJ.GE.SMLNUM ) THEN
  330: *
  331: *                 M(j) = G(j-1) / abs(A(j,j))
  332: *
  333:                   XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
  334:                ELSE
  335: *
  336: *                 M(j) could overflow, set XBND to 0.
  337: *
  338:                   XBND = ZERO
  339:                END IF
  340: *
  341:                IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
  342: *
  343: *                 G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
  344: *
  345:                   GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
  346:                ELSE
  347: *
  348: *                 G(j) could overflow, set GROW to 0.
  349: *
  350:                   GROW = ZERO
  351:                END IF
  352:                IP = IP + JINC*JLEN
  353:                JLEN = JLEN - 1
  354:    40       CONTINUE
  355:             GROW = XBND
  356:          ELSE
  357: *
  358: *           A is unit triangular.
  359: *
  360: *           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  361: *
  362:             GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
  363:             DO 50 J = JFIRST, JLAST, JINC
  364: *
  365: *              Exit the loop if the growth factor is too small.
  366: *
  367:                IF( GROW.LE.SMLNUM )
  368:      $            GO TO 60
  369: *
  370: *              G(j) = G(j-1)*( 1 + CNORM(j) )
  371: *
  372:                GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
  373:    50       CONTINUE
  374:          END IF
  375:    60    CONTINUE
  376: *
  377:       ELSE
  378: *
  379: *        Compute the growth in A**T * x = b  or  A**H * x = b.
  380: *
  381:          IF( UPPER ) THEN
  382:             JFIRST = 1
  383:             JLAST = N
  384:             JINC = 1
  385:          ELSE
  386:             JFIRST = N
  387:             JLAST = 1
  388:             JINC = -1
  389:          END IF
  390: *
  391:          IF( TSCAL.NE.ONE ) THEN
  392:             GROW = ZERO
  393:             GO TO 90
  394:          END IF
  395: *
  396:          IF( NOUNIT ) THEN
  397: *
  398: *           A is non-unit triangular.
  399: *
  400: *           Compute GROW = 1/G(j) and XBND = 1/M(j).
  401: *           Initially, M(0) = max{x(i), i=1,...,n}.
  402: *
  403:             GROW = HALF / MAX( XBND, SMLNUM )
  404:             XBND = GROW
  405:             IP = JFIRST*( JFIRST+1 ) / 2
  406:             JLEN = 1
  407:             DO 70 J = JFIRST, JLAST, JINC
  408: *
  409: *              Exit the loop if the growth factor is too small.
  410: *
  411:                IF( GROW.LE.SMLNUM )
  412:      $            GO TO 90
  413: *
  414: *              G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
  415: *
  416:                XJ = ONE + CNORM( J )
  417:                GROW = MIN( GROW, XBND / XJ )
  418: *
  419:                TJJS = AP( IP )
  420:                TJJ = CABS1( TJJS )
  421: *
  422:                IF( TJJ.GE.SMLNUM ) THEN
  423: *
  424: *                 M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
  425: *
  426:                   IF( XJ.GT.TJJ )
  427:      $               XBND = XBND*( TJJ / XJ )
  428:                ELSE
  429: *
  430: *                 M(j) could overflow, set XBND to 0.
  431: *
  432:                   XBND = ZERO
  433:                END IF
  434:                JLEN = JLEN + 1
  435:                IP = IP + JINC*JLEN
  436:    70       CONTINUE
  437:             GROW = MIN( GROW, XBND )
  438:          ELSE
  439: *
  440: *           A is unit triangular.
  441: *
  442: *           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  443: *
  444:             GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
  445:             DO 80 J = JFIRST, JLAST, JINC
  446: *
  447: *              Exit the loop if the growth factor is too small.
  448: *
  449:                IF( GROW.LE.SMLNUM )
  450:      $            GO TO 90
  451: *
  452: *              G(j) = ( 1 + CNORM(j) )*G(j-1)
  453: *
  454:                XJ = ONE + CNORM( J )
  455:                GROW = GROW / XJ
  456:    80       CONTINUE
  457:          END IF
  458:    90    CONTINUE
  459:       END IF
  460: *
  461:       IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
  462: *
  463: *        Use the Level 2 BLAS solve if the reciprocal of the bound on
  464: *        elements of X is not too small.
  465: *
  466:          CALL ZTPSV( UPLO, TRANS, DIAG, N, AP, X, 1 )
  467:       ELSE
  468: *
  469: *        Use a Level 1 BLAS solve, scaling intermediate results.
  470: *
  471:          IF( XMAX.GT.BIGNUM*HALF ) THEN
  472: *
  473: *           Scale X so that its components are less than or equal to
  474: *           BIGNUM in absolute value.
  475: *
  476:             SCALE = ( BIGNUM*HALF ) / XMAX
  477:             CALL ZDSCAL( N, SCALE, X, 1 )
  478:             XMAX = BIGNUM
  479:          ELSE
  480:             XMAX = XMAX*TWO
  481:          END IF
  482: *
  483:          IF( NOTRAN ) THEN
  484: *
  485: *           Solve A * x = b
  486: *
  487:             IP = JFIRST*( JFIRST+1 ) / 2
  488:             DO 120 J = JFIRST, JLAST, JINC
  489: *
  490: *              Compute x(j) = b(j) / A(j,j), scaling x if necessary.
  491: *
  492:                XJ = CABS1( X( J ) )
  493:                IF( NOUNIT ) THEN
  494:                   TJJS = AP( IP )*TSCAL
  495:                ELSE
  496:                   TJJS = TSCAL
  497:                   IF( TSCAL.EQ.ONE )
  498:      $               GO TO 110
  499:                END IF
  500:                TJJ = CABS1( TJJS )
  501:                IF( TJJ.GT.SMLNUM ) THEN
  502: *
  503: *                    abs(A(j,j)) > SMLNUM:
  504: *
  505:                   IF( TJJ.LT.ONE ) THEN
  506:                      IF( XJ.GT.TJJ*BIGNUM ) THEN
  507: *
  508: *                          Scale x by 1/b(j).
  509: *
  510:                         REC = ONE / XJ
  511:                         CALL ZDSCAL( N, REC, X, 1 )
  512:                         SCALE = SCALE*REC
  513:                         XMAX = XMAX*REC
  514:                      END IF
  515:                   END IF
  516:                   X( J ) = ZLADIV( X( J ), TJJS )
  517:                   XJ = CABS1( X( J ) )
  518:                ELSE IF( TJJ.GT.ZERO ) THEN
  519: *
  520: *                    0 < abs(A(j,j)) <= SMLNUM:
  521: *
  522:                   IF( XJ.GT.TJJ*BIGNUM ) THEN
  523: *
  524: *                       Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
  525: *                       to avoid overflow when dividing by A(j,j).
  526: *
  527:                      REC = ( TJJ*BIGNUM ) / XJ
  528:                      IF( CNORM( J ).GT.ONE ) THEN
  529: *
  530: *                          Scale by 1/CNORM(j) to avoid overflow when
  531: *                          multiplying x(j) times column j.
  532: *
  533:                         REC = REC / CNORM( J )
  534:                      END IF
  535:                      CALL ZDSCAL( N, REC, X, 1 )
  536:                      SCALE = SCALE*REC
  537:                      XMAX = XMAX*REC
  538:                   END IF
  539:                   X( J ) = ZLADIV( X( J ), TJJS )
  540:                   XJ = CABS1( X( J ) )
  541:                ELSE
  542: *
  543: *                    A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
  544: *                    scale = 0, and compute a solution to A*x = 0.
  545: *
  546:                   DO 100 I = 1, N
  547:                      X( I ) = ZERO
  548:   100             CONTINUE
  549:                   X( J ) = ONE
  550:                   XJ = ONE
  551:                   SCALE = ZERO
  552:                   XMAX = ZERO
  553:                END IF
  554:   110          CONTINUE
  555: *
  556: *              Scale x if necessary to avoid overflow when adding a
  557: *              multiple of column j of A.
  558: *
  559:                IF( XJ.GT.ONE ) THEN
  560:                   REC = ONE / XJ
  561:                   IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
  562: *
  563: *                    Scale x by 1/(2*abs(x(j))).
  564: *
  565:                      REC = REC*HALF
  566:                      CALL ZDSCAL( N, REC, X, 1 )
  567:                      SCALE = SCALE*REC
  568:                   END IF
  569:                ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
  570: *
  571: *                 Scale x by 1/2.
  572: *
  573:                   CALL ZDSCAL( N, HALF, X, 1 )
  574:                   SCALE = SCALE*HALF
  575:                END IF
  576: *
  577:                IF( UPPER ) THEN
  578:                   IF( J.GT.1 ) THEN
  579: *
  580: *                    Compute the update
  581: *                       x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j)
  582: *
  583:                      CALL ZAXPY( J-1, -X( J )*TSCAL, AP( IP-J+1 ), 1, X,
  584:      $                           1 )
  585:                      I = IZAMAX( J-1, X, 1 )
  586:                      XMAX = CABS1( X( I ) )
  587:                   END IF
  588:                   IP = IP - J
  589:                ELSE
  590:                   IF( J.LT.N ) THEN
  591: *
  592: *                    Compute the update
  593: *                       x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j)
  594: *
  595:                      CALL ZAXPY( N-J, -X( J )*TSCAL, AP( IP+1 ), 1,
  596:      $                           X( J+1 ), 1 )
  597:                      I = J + IZAMAX( N-J, X( J+1 ), 1 )
  598:                      XMAX = CABS1( X( I ) )
  599:                   END IF
  600:                   IP = IP + N - J + 1
  601:                END IF
  602:   120       CONTINUE
  603: *
  604:          ELSE IF( LSAME( TRANS, 'T' ) ) THEN
  605: *
  606: *           Solve A**T * x = b
  607: *
  608:             IP = JFIRST*( JFIRST+1 ) / 2
  609:             JLEN = 1
  610:             DO 170 J = JFIRST, JLAST, JINC
  611: *
  612: *              Compute x(j) = b(j) - sum A(k,j)*x(k).
  613: *                                    k<>j
  614: *
  615:                XJ = CABS1( X( J ) )
  616:                USCAL = TSCAL
  617:                REC = ONE / MAX( XMAX, ONE )
  618:                IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
  619: *
  620: *                 If x(j) could overflow, scale x by 1/(2*XMAX).
  621: *
  622:                   REC = REC*HALF
  623:                   IF( NOUNIT ) THEN
  624:                      TJJS = AP( IP )*TSCAL
  625:                   ELSE
  626:                      TJJS = TSCAL
  627:                   END IF
  628:                   TJJ = CABS1( TJJS )
  629:                   IF( TJJ.GT.ONE ) THEN
  630: *
  631: *                       Divide by A(j,j) when scaling x if A(j,j) > 1.
  632: *
  633:                      REC = MIN( ONE, REC*TJJ )
  634:                      USCAL = ZLADIV( USCAL, TJJS )
  635:                   END IF
  636:                   IF( REC.LT.ONE ) THEN
  637:                      CALL ZDSCAL( N, REC, X, 1 )
  638:                      SCALE = SCALE*REC
  639:                      XMAX = XMAX*REC
  640:                   END IF
  641:                END IF
  642: *
  643:                CSUMJ = ZERO
  644:                IF( USCAL.EQ.DCMPLX( ONE ) ) THEN
  645: *
  646: *                 If the scaling needed for A in the dot product is 1,
  647: *                 call ZDOTU to perform the dot product.
  648: *
  649:                   IF( UPPER ) THEN
  650:                      CSUMJ = ZDOTU( J-1, AP( IP-J+1 ), 1, X, 1 )
  651:                   ELSE IF( J.LT.N ) THEN
  652:                      CSUMJ = ZDOTU( N-J, AP( IP+1 ), 1, X( J+1 ), 1 )
  653:                   END IF
  654:                ELSE
  655: *
  656: *                 Otherwise, use in-line code for the dot product.
  657: *
  658:                   IF( UPPER ) THEN
  659:                      DO 130 I = 1, J - 1
  660:                         CSUMJ = CSUMJ + ( AP( IP-J+I )*USCAL )*X( I )
  661:   130                CONTINUE
  662:                   ELSE IF( J.LT.N ) THEN
  663:                      DO 140 I = 1, N - J
  664:                         CSUMJ = CSUMJ + ( AP( IP+I )*USCAL )*X( J+I )
  665:   140                CONTINUE
  666:                   END IF
  667:                END IF
  668: *
  669:                IF( USCAL.EQ.DCMPLX( TSCAL ) ) THEN
  670: *
  671: *                 Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
  672: *                 was not used to scale the dotproduct.
  673: *
  674:                   X( J ) = X( J ) - CSUMJ
  675:                   XJ = CABS1( X( J ) )
  676:                   IF( NOUNIT ) THEN
  677: *
  678: *                    Compute x(j) = x(j) / A(j,j), scaling if necessary.
  679: *
  680:                      TJJS = AP( IP )*TSCAL
  681:                   ELSE
  682:                      TJJS = TSCAL
  683:                      IF( TSCAL.EQ.ONE )
  684:      $                  GO TO 160
  685:                   END IF
  686:                   TJJ = CABS1( TJJS )
  687:                   IF( TJJ.GT.SMLNUM ) THEN
  688: *
  689: *                       abs(A(j,j)) > SMLNUM:
  690: *
  691:                      IF( TJJ.LT.ONE ) THEN
  692:                         IF( XJ.GT.TJJ*BIGNUM ) THEN
  693: *
  694: *                             Scale X by 1/abs(x(j)).
  695: *
  696:                            REC = ONE / XJ
  697:                            CALL ZDSCAL( N, REC, X, 1 )
  698:                            SCALE = SCALE*REC
  699:                            XMAX = XMAX*REC
  700:                         END IF
  701:                      END IF
  702:                      X( J ) = ZLADIV( X( J ), TJJS )
  703:                   ELSE IF( TJJ.GT.ZERO ) THEN
  704: *
  705: *                       0 < abs(A(j,j)) <= SMLNUM:
  706: *
  707:                      IF( XJ.GT.TJJ*BIGNUM ) THEN
  708: *
  709: *                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
  710: *
  711:                         REC = ( TJJ*BIGNUM ) / XJ
  712:                         CALL ZDSCAL( N, REC, X, 1 )
  713:                         SCALE = SCALE*REC
  714:                         XMAX = XMAX*REC
  715:                      END IF
  716:                      X( J ) = ZLADIV( X( J ), TJJS )
  717:                   ELSE
  718: *
  719: *                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
  720: *                       scale = 0 and compute a solution to A**T *x = 0.
  721: *
  722:                      DO 150 I = 1, N
  723:                         X( I ) = ZERO
  724:   150                CONTINUE
  725:                      X( J ) = ONE
  726:                      SCALE = ZERO
  727:                      XMAX = ZERO
  728:                   END IF
  729:   160             CONTINUE
  730:                ELSE
  731: *
  732: *                 Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
  733: *                 product has already been divided by 1/A(j,j).
  734: *
  735:                   X( J ) = ZLADIV( X( J ), TJJS ) - CSUMJ
  736:                END IF
  737:                XMAX = MAX( XMAX, CABS1( X( J ) ) )
  738:                JLEN = JLEN + 1
  739:                IP = IP + JINC*JLEN
  740:   170       CONTINUE
  741: *
  742:          ELSE
  743: *
  744: *           Solve A**H * x = b
  745: *
  746:             IP = JFIRST*( JFIRST+1 ) / 2
  747:             JLEN = 1
  748:             DO 220 J = JFIRST, JLAST, JINC
  749: *
  750: *              Compute x(j) = b(j) - sum A(k,j)*x(k).
  751: *                                    k<>j
  752: *
  753:                XJ = CABS1( X( J ) )
  754:                USCAL = TSCAL
  755:                REC = ONE / MAX( XMAX, ONE )
  756:                IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
  757: *
  758: *                 If x(j) could overflow, scale x by 1/(2*XMAX).
  759: *
  760:                   REC = REC*HALF
  761:                   IF( NOUNIT ) THEN
  762:                      TJJS = DCONJG( AP( IP ) )*TSCAL
  763:                   ELSE
  764:                      TJJS = TSCAL
  765:                   END IF
  766:                   TJJ = CABS1( TJJS )
  767:                   IF( TJJ.GT.ONE ) THEN
  768: *
  769: *                       Divide by A(j,j) when scaling x if A(j,j) > 1.
  770: *
  771:                      REC = MIN( ONE, REC*TJJ )
  772:                      USCAL = ZLADIV( USCAL, TJJS )
  773:                   END IF
  774:                   IF( REC.LT.ONE ) THEN
  775:                      CALL ZDSCAL( N, REC, X, 1 )
  776:                      SCALE = SCALE*REC
  777:                      XMAX = XMAX*REC
  778:                   END IF
  779:                END IF
  780: *
  781:                CSUMJ = ZERO
  782:                IF( USCAL.EQ.DCMPLX( ONE ) ) THEN
  783: *
  784: *                 If the scaling needed for A in the dot product is 1,
  785: *                 call ZDOTC to perform the dot product.
  786: *
  787:                   IF( UPPER ) THEN
  788:                      CSUMJ = ZDOTC( J-1, AP( IP-J+1 ), 1, X, 1 )
  789:                   ELSE IF( J.LT.N ) THEN
  790:                      CSUMJ = ZDOTC( N-J, AP( IP+1 ), 1, X( J+1 ), 1 )
  791:                   END IF
  792:                ELSE
  793: *
  794: *                 Otherwise, use in-line code for the dot product.
  795: *
  796:                   IF( UPPER ) THEN
  797:                      DO 180 I = 1, J - 1
  798:                         CSUMJ = CSUMJ + ( DCONJG( AP( IP-J+I ) )*USCAL )
  799:      $                          *X( I )
  800:   180                CONTINUE
  801:                   ELSE IF( J.LT.N ) THEN
  802:                      DO 190 I = 1, N - J
  803:                         CSUMJ = CSUMJ + ( DCONJG( AP( IP+I ) )*USCAL )*
  804:      $                          X( J+I )
  805:   190                CONTINUE
  806:                   END IF
  807:                END IF
  808: *
  809:                IF( USCAL.EQ.DCMPLX( TSCAL ) ) THEN
  810: *
  811: *                 Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
  812: *                 was not used to scale the dotproduct.
  813: *
  814:                   X( J ) = X( J ) - CSUMJ
  815:                   XJ = CABS1( X( J ) )
  816:                   IF( NOUNIT ) THEN
  817: *
  818: *                    Compute x(j) = x(j) / A(j,j), scaling if necessary.
  819: *
  820:                      TJJS = DCONJG( AP( IP ) )*TSCAL
  821:                   ELSE
  822:                      TJJS = TSCAL
  823:                      IF( TSCAL.EQ.ONE )
  824:      $                  GO TO 210
  825:                   END IF
  826:                   TJJ = CABS1( TJJS )
  827:                   IF( TJJ.GT.SMLNUM ) THEN
  828: *
  829: *                       abs(A(j,j)) > SMLNUM:
  830: *
  831:                      IF( TJJ.LT.ONE ) THEN
  832:                         IF( XJ.GT.TJJ*BIGNUM ) THEN
  833: *
  834: *                             Scale X by 1/abs(x(j)).
  835: *
  836:                            REC = ONE / XJ
  837:                            CALL ZDSCAL( N, REC, X, 1 )
  838:                            SCALE = SCALE*REC
  839:                            XMAX = XMAX*REC
  840:                         END IF
  841:                      END IF
  842:                      X( J ) = ZLADIV( X( J ), TJJS )
  843:                   ELSE IF( TJJ.GT.ZERO ) THEN
  844: *
  845: *                       0 < abs(A(j,j)) <= SMLNUM:
  846: *
  847:                      IF( XJ.GT.TJJ*BIGNUM ) THEN
  848: *
  849: *                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
  850: *
  851:                         REC = ( TJJ*BIGNUM ) / XJ
  852:                         CALL ZDSCAL( N, REC, X, 1 )
  853:                         SCALE = SCALE*REC
  854:                         XMAX = XMAX*REC
  855:                      END IF
  856:                      X( J ) = ZLADIV( X( J ), TJJS )
  857:                   ELSE
  858: *
  859: *                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
  860: *                       scale = 0 and compute a solution to A**H *x = 0.
  861: *
  862:                      DO 200 I = 1, N
  863:                         X( I ) = ZERO
  864:   200                CONTINUE
  865:                      X( J ) = ONE
  866:                      SCALE = ZERO
  867:                      XMAX = ZERO
  868:                   END IF
  869:   210             CONTINUE
  870:                ELSE
  871: *
  872: *                 Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
  873: *                 product has already been divided by 1/A(j,j).
  874: *
  875:                   X( J ) = ZLADIV( X( J ), TJJS ) - CSUMJ
  876:                END IF
  877:                XMAX = MAX( XMAX, CABS1( X( J ) ) )
  878:                JLEN = JLEN + 1
  879:                IP = IP + JINC*JLEN
  880:   220       CONTINUE
  881:          END IF
  882:          SCALE = SCALE / TSCAL
  883:       END IF
  884: *
  885: *     Scale the column norms by 1/TSCAL for return.
  886: *
  887:       IF( TSCAL.NE.ONE ) THEN
  888:          CALL DSCAL( N, ONE / TSCAL, CNORM, 1 )
  889:       END IF
  890: *
  891:       RETURN
  892: *
  893: *     End of ZLATPS
  894: *
  895:       END

CVSweb interface <joel.bertrand@systella.fr>