Annotation of rpl/lapack/lapack/zlatdf.f, revision 1.3

1.1       bertrand    1:       SUBROUTINE ZLATDF( IJOB, N, Z, LDZ, RHS, RDSUM, RDSCAL, IPIV,
                      2:      $                   JPIV )
                      3: *
                      4: *  -- LAPACK auxiliary routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       INTEGER            IJOB, LDZ, N
                     11:       DOUBLE PRECISION   RDSCAL, RDSUM
                     12: *     ..
                     13: *     .. Array Arguments ..
                     14:       INTEGER            IPIV( * ), JPIV( * )
                     15:       COMPLEX*16         RHS( * ), Z( LDZ, * )
                     16: *     ..
                     17: *
                     18: *  Purpose
                     19: *  =======
                     20: *
                     21: *  ZLATDF computes the contribution to the reciprocal Dif-estimate
                     22: *  by solving for x in Z * x = b, where b is chosen such that the norm
                     23: *  of x is as large as possible. It is assumed that LU decomposition
                     24: *  of Z has been computed by ZGETC2. On entry RHS = f holds the
                     25: *  contribution from earlier solved sub-systems, and on return RHS = x.
                     26: *
                     27: *  The factorization of Z returned by ZGETC2 has the form
                     28: *  Z = P * L * U * Q, where P and Q are permutation matrices. L is lower
                     29: *  triangular with unit diagonal elements and U is upper triangular.
                     30: *
                     31: *  Arguments
                     32: *  =========
                     33: *
                     34: *  IJOB    (input) INTEGER
                     35: *          IJOB = 2: First compute an approximative null-vector e
                     36: *              of Z using ZGECON, e is normalized and solve for
                     37: *              Zx = +-e - f with the sign giving the greater value of
                     38: *              2-norm(x).  About 5 times as expensive as Default.
                     39: *          IJOB .ne. 2: Local look ahead strategy where
                     40: *              all entries of the r.h.s. b is choosen as either +1 or
                     41: *              -1.  Default.
                     42: *
                     43: *  N       (input) INTEGER
                     44: *          The number of columns of the matrix Z.
                     45: *
                     46: *  Z       (input) DOUBLE PRECISION array, dimension (LDZ, N)
                     47: *          On entry, the LU part of the factorization of the n-by-n
                     48: *          matrix Z computed by ZGETC2:  Z = P * L * U * Q
                     49: *
                     50: *  LDZ     (input) INTEGER
                     51: *          The leading dimension of the array Z.  LDA >= max(1, N).
                     52: *
                     53: *  RHS     (input/output) DOUBLE PRECISION array, dimension (N).
                     54: *          On entry, RHS contains contributions from other subsystems.
                     55: *          On exit, RHS contains the solution of the subsystem with
                     56: *          entries according to the value of IJOB (see above).
                     57: *
                     58: *  RDSUM   (input/output) DOUBLE PRECISION
                     59: *          On entry, the sum of squares of computed contributions to
                     60: *          the Dif-estimate under computation by ZTGSYL, where the
                     61: *          scaling factor RDSCAL (see below) has been factored out.
                     62: *          On exit, the corresponding sum of squares updated with the
                     63: *          contributions from the current sub-system.
                     64: *          If TRANS = 'T' RDSUM is not touched.
                     65: *          NOTE: RDSUM only makes sense when ZTGSY2 is called by CTGSYL.
                     66: *
                     67: *  RDSCAL  (input/output) DOUBLE PRECISION
                     68: *          On entry, scaling factor used to prevent overflow in RDSUM.
                     69: *          On exit, RDSCAL is updated w.r.t. the current contributions
                     70: *          in RDSUM.
                     71: *          If TRANS = 'T', RDSCAL is not touched.
                     72: *          NOTE: RDSCAL only makes sense when ZTGSY2 is called by
                     73: *          ZTGSYL.
                     74: *
                     75: *  IPIV    (input) INTEGER array, dimension (N).
                     76: *          The pivot indices; for 1 <= i <= N, row i of the
                     77: *          matrix has been interchanged with row IPIV(i).
                     78: *
                     79: *  JPIV    (input) INTEGER array, dimension (N).
                     80: *          The pivot indices; for 1 <= j <= N, column j of the
                     81: *          matrix has been interchanged with column JPIV(j).
                     82: *
                     83: *  Further Details
                     84: *  ===============
                     85: *
                     86: *  Based on contributions by
                     87: *     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
                     88: *     Umea University, S-901 87 Umea, Sweden.
                     89: *
                     90: *  This routine is a further developed implementation of algorithm
                     91: *  BSOLVE in [1] using complete pivoting in the LU factorization.
                     92: *
                     93: *   [1]   Bo Kagstrom and Lars Westin,
                     94: *         Generalized Schur Methods with Condition Estimators for
                     95: *         Solving the Generalized Sylvester Equation, IEEE Transactions
                     96: *         on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751.
                     97: *
                     98: *   [2]   Peter Poromaa,
                     99: *         On Efficient and Robust Estimators for the Separation
                    100: *         between two Regular Matrix Pairs with Applications in
                    101: *         Condition Estimation. Report UMINF-95.05, Department of
                    102: *         Computing Science, Umea University, S-901 87 Umea, Sweden,
                    103: *         1995.
                    104: *
                    105: *  =====================================================================
                    106: *
                    107: *     .. Parameters ..
                    108:       INTEGER            MAXDIM
                    109:       PARAMETER          ( MAXDIM = 2 )
                    110:       DOUBLE PRECISION   ZERO, ONE
                    111:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    112:       COMPLEX*16         CONE
                    113:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
                    114: *     ..
                    115: *     .. Local Scalars ..
                    116:       INTEGER            I, INFO, J, K
                    117:       DOUBLE PRECISION   RTEMP, SCALE, SMINU, SPLUS
                    118:       COMPLEX*16         BM, BP, PMONE, TEMP
                    119: *     ..
                    120: *     .. Local Arrays ..
                    121:       DOUBLE PRECISION   RWORK( MAXDIM )
                    122:       COMPLEX*16         WORK( 4*MAXDIM ), XM( MAXDIM ), XP( MAXDIM )
                    123: *     ..
                    124: *     .. External Subroutines ..
                    125:       EXTERNAL           ZAXPY, ZCOPY, ZGECON, ZGESC2, ZLASSQ, ZLASWP,
                    126:      $                   ZSCAL
                    127: *     ..
                    128: *     .. External Functions ..
                    129:       DOUBLE PRECISION   DZASUM
                    130:       COMPLEX*16         ZDOTC
                    131:       EXTERNAL           DZASUM, ZDOTC
                    132: *     ..
                    133: *     .. Intrinsic Functions ..
                    134:       INTRINSIC          ABS, DBLE, SQRT
                    135: *     ..
                    136: *     .. Executable Statements ..
                    137: *
                    138:       IF( IJOB.NE.2 ) THEN
                    139: *
                    140: *        Apply permutations IPIV to RHS
                    141: *
                    142:          CALL ZLASWP( 1, RHS, LDZ, 1, N-1, IPIV, 1 )
                    143: *
                    144: *        Solve for L-part choosing RHS either to +1 or -1.
                    145: *
                    146:          PMONE = -CONE
                    147:          DO 10 J = 1, N - 1
                    148:             BP = RHS( J ) + CONE
                    149:             BM = RHS( J ) - CONE
                    150:             SPLUS = ONE
                    151: *
                    152: *           Lockahead for L- part RHS(1:N-1) = +-1
                    153: *           SPLUS and SMIN computed more efficiently than in BSOLVE[1].
                    154: *
                    155:             SPLUS = SPLUS + DBLE( ZDOTC( N-J, Z( J+1, J ), 1, Z( J+1,
                    156:      $              J ), 1 ) )
                    157:             SMINU = DBLE( ZDOTC( N-J, Z( J+1, J ), 1, RHS( J+1 ), 1 ) )
                    158:             SPLUS = SPLUS*DBLE( RHS( J ) )
                    159:             IF( SPLUS.GT.SMINU ) THEN
                    160:                RHS( J ) = BP
                    161:             ELSE IF( SMINU.GT.SPLUS ) THEN
                    162:                RHS( J ) = BM
                    163:             ELSE
                    164: *
                    165: *              In this case the updating sums are equal and we can
                    166: *              choose RHS(J) +1 or -1. The first time this happens we
                    167: *              choose -1, thereafter +1. This is a simple way to get
                    168: *              good estimates of matrices like Byers well-known example
                    169: *              (see [1]). (Not done in BSOLVE.)
                    170: *
                    171:                RHS( J ) = RHS( J ) + PMONE
                    172:                PMONE = CONE
                    173:             END IF
                    174: *
                    175: *           Compute the remaining r.h.s.
                    176: *
                    177:             TEMP = -RHS( J )
                    178:             CALL ZAXPY( N-J, TEMP, Z( J+1, J ), 1, RHS( J+1 ), 1 )
                    179:    10    CONTINUE
                    180: *
                    181: *        Solve for U- part, lockahead for RHS(N) = +-1. This is not done
                    182: *        In BSOLVE and will hopefully give us a better estimate because
                    183: *        any ill-conditioning of the original matrix is transfered to U
                    184: *        and not to L. U(N, N) is an approximation to sigma_min(LU).
                    185: *
                    186:          CALL ZCOPY( N-1, RHS, 1, WORK, 1 )
                    187:          WORK( N ) = RHS( N ) + CONE
                    188:          RHS( N ) = RHS( N ) - CONE
                    189:          SPLUS = ZERO
                    190:          SMINU = ZERO
                    191:          DO 30 I = N, 1, -1
                    192:             TEMP = CONE / Z( I, I )
                    193:             WORK( I ) = WORK( I )*TEMP
                    194:             RHS( I ) = RHS( I )*TEMP
                    195:             DO 20 K = I + 1, N
                    196:                WORK( I ) = WORK( I ) - WORK( K )*( Z( I, K )*TEMP )
                    197:                RHS( I ) = RHS( I ) - RHS( K )*( Z( I, K )*TEMP )
                    198:    20       CONTINUE
                    199:             SPLUS = SPLUS + ABS( WORK( I ) )
                    200:             SMINU = SMINU + ABS( RHS( I ) )
                    201:    30    CONTINUE
                    202:          IF( SPLUS.GT.SMINU )
                    203:      $      CALL ZCOPY( N, WORK, 1, RHS, 1 )
                    204: *
                    205: *        Apply the permutations JPIV to the computed solution (RHS)
                    206: *
                    207:          CALL ZLASWP( 1, RHS, LDZ, 1, N-1, JPIV, -1 )
                    208: *
                    209: *        Compute the sum of squares
                    210: *
                    211:          CALL ZLASSQ( N, RHS, 1, RDSCAL, RDSUM )
                    212:          RETURN
                    213:       END IF
                    214: *
                    215: *     ENTRY IJOB = 2
                    216: *
                    217: *     Compute approximate nullvector XM of Z
                    218: *
                    219:       CALL ZGECON( 'I', N, Z, LDZ, ONE, RTEMP, WORK, RWORK, INFO )
                    220:       CALL ZCOPY( N, WORK( N+1 ), 1, XM, 1 )
                    221: *
                    222: *     Compute RHS
                    223: *
                    224:       CALL ZLASWP( 1, XM, LDZ, 1, N-1, IPIV, -1 )
                    225:       TEMP = CONE / SQRT( ZDOTC( N, XM, 1, XM, 1 ) )
                    226:       CALL ZSCAL( N, TEMP, XM, 1 )
                    227:       CALL ZCOPY( N, XM, 1, XP, 1 )
                    228:       CALL ZAXPY( N, CONE, RHS, 1, XP, 1 )
                    229:       CALL ZAXPY( N, -CONE, XM, 1, RHS, 1 )
                    230:       CALL ZGESC2( N, Z, LDZ, RHS, IPIV, JPIV, SCALE )
                    231:       CALL ZGESC2( N, Z, LDZ, XP, IPIV, JPIV, SCALE )
                    232:       IF( DZASUM( N, XP, 1 ).GT.DZASUM( N, RHS, 1 ) )
                    233:      $   CALL ZCOPY( N, XP, 1, RHS, 1 )
                    234: *
                    235: *     Compute the sum of squares
                    236: *
                    237:       CALL ZLASSQ( N, RHS, 1, RDSCAL, RDSUM )
                    238:       RETURN
                    239: *
                    240: *     End of ZLATDF
                    241: *
                    242:       END

CVSweb interface <joel.bertrand@systella.fr>