File:  [local] / rpl / lapack / lapack / zlatbs.f
Revision 1.4: download - view: text, annotated - select for diffs - revision graph
Fri Aug 6 15:32:47 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Cohérence

    1:       SUBROUTINE ZLATBS( UPLO, TRANS, DIAG, NORMIN, N, KD, AB, LDAB, X,
    2:      $                   SCALE, CNORM, INFO )
    3: *
    4: *  -- LAPACK auxiliary routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     .. Scalar Arguments ..
   10:       CHARACTER          DIAG, NORMIN, TRANS, UPLO
   11:       INTEGER            INFO, KD, LDAB, N
   12:       DOUBLE PRECISION   SCALE
   13: *     ..
   14: *     .. Array Arguments ..
   15:       DOUBLE PRECISION   CNORM( * )
   16:       COMPLEX*16         AB( LDAB, * ), X( * )
   17: *     ..
   18: *
   19: *  Purpose
   20: *  =======
   21: *
   22: *  ZLATBS solves one of the triangular systems
   23: *
   24: *     A * x = s*b,  A**T * x = s*b,  or  A**H * x = s*b,
   25: *
   26: *  with scaling to prevent overflow, where A is an upper or lower
   27: *  triangular band matrix.  Here A' denotes the transpose of A, x and b
   28: *  are n-element vectors, and s is a scaling factor, usually less than
   29: *  or equal to 1, chosen so that the components of x will be less than
   30: *  the overflow threshold.  If the unscaled problem will not cause
   31: *  overflow, the Level 2 BLAS routine ZTBSV is called.  If the matrix A
   32: *  is singular (A(j,j) = 0 for some j), then s is set to 0 and a
   33: *  non-trivial solution to A*x = 0 is returned.
   34: *
   35: *  Arguments
   36: *  =========
   37: *
   38: *  UPLO    (input) CHARACTER*1
   39: *          Specifies whether the matrix A is upper or lower triangular.
   40: *          = 'U':  Upper triangular
   41: *          = 'L':  Lower triangular
   42: *
   43: *  TRANS   (input) CHARACTER*1
   44: *          Specifies the operation applied to A.
   45: *          = 'N':  Solve A * x = s*b     (No transpose)
   46: *          = 'T':  Solve A**T * x = s*b  (Transpose)
   47: *          = 'C':  Solve A**H * x = s*b  (Conjugate transpose)
   48: *
   49: *  DIAG    (input) CHARACTER*1
   50: *          Specifies whether or not the matrix A is unit triangular.
   51: *          = 'N':  Non-unit triangular
   52: *          = 'U':  Unit triangular
   53: *
   54: *  NORMIN  (input) CHARACTER*1
   55: *          Specifies whether CNORM has been set or not.
   56: *          = 'Y':  CNORM contains the column norms on entry
   57: *          = 'N':  CNORM is not set on entry.  On exit, the norms will
   58: *                  be computed and stored in CNORM.
   59: *
   60: *  N       (input) INTEGER
   61: *          The order of the matrix A.  N >= 0.
   62: *
   63: *  KD      (input) INTEGER
   64: *          The number of subdiagonals or superdiagonals in the
   65: *          triangular matrix A.  KD >= 0.
   66: *
   67: *  AB      (input) COMPLEX*16 array, dimension (LDAB,N)
   68: *          The upper or lower triangular band matrix A, stored in the
   69: *          first KD+1 rows of the array. The j-th column of A is stored
   70: *          in the j-th column of the array AB as follows:
   71: *          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
   72: *          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
   73: *
   74: *  LDAB    (input) INTEGER
   75: *          The leading dimension of the array AB.  LDAB >= KD+1.
   76: *
   77: *  X       (input/output) COMPLEX*16 array, dimension (N)
   78: *          On entry, the right hand side b of the triangular system.
   79: *          On exit, X is overwritten by the solution vector x.
   80: *
   81: *  SCALE   (output) DOUBLE PRECISION
   82: *          The scaling factor s for the triangular system
   83: *             A * x = s*b,  A**T * x = s*b,  or  A**H * x = s*b.
   84: *          If SCALE = 0, the matrix A is singular or badly scaled, and
   85: *          the vector x is an exact or approximate solution to A*x = 0.
   86: *
   87: *  CNORM   (input or output) DOUBLE PRECISION array, dimension (N)
   88: *
   89: *          If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
   90: *          contains the norm of the off-diagonal part of the j-th column
   91: *          of A.  If TRANS = 'N', CNORM(j) must be greater than or equal
   92: *          to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
   93: *          must be greater than or equal to the 1-norm.
   94: *
   95: *          If NORMIN = 'N', CNORM is an output argument and CNORM(j)
   96: *          returns the 1-norm of the offdiagonal part of the j-th column
   97: *          of A.
   98: *
   99: *  INFO    (output) INTEGER
  100: *          = 0:  successful exit
  101: *          < 0:  if INFO = -k, the k-th argument had an illegal value
  102: *
  103: *  Further Details
  104: *  ======= =======
  105: *
  106: *  A rough bound on x is computed; if that is less than overflow, ZTBSV
  107: *  is called, otherwise, specific code is used which checks for possible
  108: *  overflow or divide-by-zero at every operation.
  109: *
  110: *  A columnwise scheme is used for solving A*x = b.  The basic algorithm
  111: *  if A is lower triangular is
  112: *
  113: *       x[1:n] := b[1:n]
  114: *       for j = 1, ..., n
  115: *            x(j) := x(j) / A(j,j)
  116: *            x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
  117: *       end
  118: *
  119: *  Define bounds on the components of x after j iterations of the loop:
  120: *     M(j) = bound on x[1:j]
  121: *     G(j) = bound on x[j+1:n]
  122: *  Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
  123: *
  124: *  Then for iteration j+1 we have
  125: *     M(j+1) <= G(j) / | A(j+1,j+1) |
  126: *     G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
  127: *            <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
  128: *
  129: *  where CNORM(j+1) is greater than or equal to the infinity-norm of
  130: *  column j+1 of A, not counting the diagonal.  Hence
  131: *
  132: *     G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
  133: *                  1<=i<=j
  134: *  and
  135: *
  136: *     |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
  137: *                                   1<=i< j
  138: *
  139: *  Since |x(j)| <= M(j), we use the Level 2 BLAS routine ZTBSV if the
  140: *  reciprocal of the largest M(j), j=1,..,n, is larger than
  141: *  max(underflow, 1/overflow).
  142: *
  143: *  The bound on x(j) is also used to determine when a step in the
  144: *  columnwise method can be performed without fear of overflow.  If
  145: *  the computed bound is greater than a large constant, x is scaled to
  146: *  prevent overflow, but if the bound overflows, x is set to 0, x(j) to
  147: *  1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
  148: *
  149: *  Similarly, a row-wise scheme is used to solve A**T *x = b  or
  150: *  A**H *x = b.  The basic algorithm for A upper triangular is
  151: *
  152: *       for j = 1, ..., n
  153: *            x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
  154: *       end
  155: *
  156: *  We simultaneously compute two bounds
  157: *       G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
  158: *       M(j) = bound on x(i), 1<=i<=j
  159: *
  160: *  The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
  161: *  add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
  162: *  Then the bound on x(j) is
  163: *
  164: *       M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
  165: *
  166: *            <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
  167: *                      1<=i<=j
  168: *
  169: *  and we can safely call ZTBSV if 1/M(n) and 1/G(n) are both greater
  170: *  than max(underflow, 1/overflow).
  171: *
  172: *  =====================================================================
  173: *
  174: *     .. Parameters ..
  175:       DOUBLE PRECISION   ZERO, HALF, ONE, TWO
  176:       PARAMETER          ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0,
  177:      $                   TWO = 2.0D+0 )
  178: *     ..
  179: *     .. Local Scalars ..
  180:       LOGICAL            NOTRAN, NOUNIT, UPPER
  181:       INTEGER            I, IMAX, J, JFIRST, JINC, JLAST, JLEN, MAIND
  182:       DOUBLE PRECISION   BIGNUM, GROW, REC, SMLNUM, TJJ, TMAX, TSCAL,
  183:      $                   XBND, XJ, XMAX
  184:       COMPLEX*16         CSUMJ, TJJS, USCAL, ZDUM
  185: *     ..
  186: *     .. External Functions ..
  187:       LOGICAL            LSAME
  188:       INTEGER            IDAMAX, IZAMAX
  189:       DOUBLE PRECISION   DLAMCH, DZASUM
  190:       COMPLEX*16         ZDOTC, ZDOTU, ZLADIV
  191:       EXTERNAL           LSAME, IDAMAX, IZAMAX, DLAMCH, DZASUM, ZDOTC,
  192:      $                   ZDOTU, ZLADIV
  193: *     ..
  194: *     .. External Subroutines ..
  195:       EXTERNAL           DSCAL, XERBLA, ZAXPY, ZDSCAL, ZTBSV
  196: *     ..
  197: *     .. Intrinsic Functions ..
  198:       INTRINSIC          ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX, MIN
  199: *     ..
  200: *     .. Statement Functions ..
  201:       DOUBLE PRECISION   CABS1, CABS2
  202: *     ..
  203: *     .. Statement Function definitions ..
  204:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  205:       CABS2( ZDUM ) = ABS( DBLE( ZDUM ) / 2.D0 ) +
  206:      $                ABS( DIMAG( ZDUM ) / 2.D0 )
  207: *     ..
  208: *     .. Executable Statements ..
  209: *
  210:       INFO = 0
  211:       UPPER = LSAME( UPLO, 'U' )
  212:       NOTRAN = LSAME( TRANS, 'N' )
  213:       NOUNIT = LSAME( DIAG, 'N' )
  214: *
  215: *     Test the input parameters.
  216: *
  217:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  218:          INFO = -1
  219:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  220:      $         LSAME( TRANS, 'C' ) ) THEN
  221:          INFO = -2
  222:       ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
  223:          INFO = -3
  224:       ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
  225:      $         LSAME( NORMIN, 'N' ) ) THEN
  226:          INFO = -4
  227:       ELSE IF( N.LT.0 ) THEN
  228:          INFO = -5
  229:       ELSE IF( KD.LT.0 ) THEN
  230:          INFO = -6
  231:       ELSE IF( LDAB.LT.KD+1 ) THEN
  232:          INFO = -8
  233:       END IF
  234:       IF( INFO.NE.0 ) THEN
  235:          CALL XERBLA( 'ZLATBS', -INFO )
  236:          RETURN
  237:       END IF
  238: *
  239: *     Quick return if possible
  240: *
  241:       IF( N.EQ.0 )
  242:      $   RETURN
  243: *
  244: *     Determine machine dependent parameters to control overflow.
  245: *
  246:       SMLNUM = DLAMCH( 'Safe minimum' )
  247:       BIGNUM = ONE / SMLNUM
  248:       CALL DLABAD( SMLNUM, BIGNUM )
  249:       SMLNUM = SMLNUM / DLAMCH( 'Precision' )
  250:       BIGNUM = ONE / SMLNUM
  251:       SCALE = ONE
  252: *
  253:       IF( LSAME( NORMIN, 'N' ) ) THEN
  254: *
  255: *        Compute the 1-norm of each column, not including the diagonal.
  256: *
  257:          IF( UPPER ) THEN
  258: *
  259: *           A is upper triangular.
  260: *
  261:             DO 10 J = 1, N
  262:                JLEN = MIN( KD, J-1 )
  263:                CNORM( J ) = DZASUM( JLEN, AB( KD+1-JLEN, J ), 1 )
  264:    10       CONTINUE
  265:          ELSE
  266: *
  267: *           A is lower triangular.
  268: *
  269:             DO 20 J = 1, N
  270:                JLEN = MIN( KD, N-J )
  271:                IF( JLEN.GT.0 ) THEN
  272:                   CNORM( J ) = DZASUM( JLEN, AB( 2, J ), 1 )
  273:                ELSE
  274:                   CNORM( J ) = ZERO
  275:                END IF
  276:    20       CONTINUE
  277:          END IF
  278:       END IF
  279: *
  280: *     Scale the column norms by TSCAL if the maximum element in CNORM is
  281: *     greater than BIGNUM/2.
  282: *
  283:       IMAX = IDAMAX( N, CNORM, 1 )
  284:       TMAX = CNORM( IMAX )
  285:       IF( TMAX.LE.BIGNUM*HALF ) THEN
  286:          TSCAL = ONE
  287:       ELSE
  288:          TSCAL = HALF / ( SMLNUM*TMAX )
  289:          CALL DSCAL( N, TSCAL, CNORM, 1 )
  290:       END IF
  291: *
  292: *     Compute a bound on the computed solution vector to see if the
  293: *     Level 2 BLAS routine ZTBSV can be used.
  294: *
  295:       XMAX = ZERO
  296:       DO 30 J = 1, N
  297:          XMAX = MAX( XMAX, CABS2( X( J ) ) )
  298:    30 CONTINUE
  299:       XBND = XMAX
  300:       IF( NOTRAN ) THEN
  301: *
  302: *        Compute the growth in A * x = b.
  303: *
  304:          IF( UPPER ) THEN
  305:             JFIRST = N
  306:             JLAST = 1
  307:             JINC = -1
  308:             MAIND = KD + 1
  309:          ELSE
  310:             JFIRST = 1
  311:             JLAST = N
  312:             JINC = 1
  313:             MAIND = 1
  314:          END IF
  315: *
  316:          IF( TSCAL.NE.ONE ) THEN
  317:             GROW = ZERO
  318:             GO TO 60
  319:          END IF
  320: *
  321:          IF( NOUNIT ) THEN
  322: *
  323: *           A is non-unit triangular.
  324: *
  325: *           Compute GROW = 1/G(j) and XBND = 1/M(j).
  326: *           Initially, G(0) = max{x(i), i=1,...,n}.
  327: *
  328:             GROW = HALF / MAX( XBND, SMLNUM )
  329:             XBND = GROW
  330:             DO 40 J = JFIRST, JLAST, JINC
  331: *
  332: *              Exit the loop if the growth factor is too small.
  333: *
  334:                IF( GROW.LE.SMLNUM )
  335:      $            GO TO 60
  336: *
  337:                TJJS = AB( MAIND, J )
  338:                TJJ = CABS1( TJJS )
  339: *
  340:                IF( TJJ.GE.SMLNUM ) THEN
  341: *
  342: *                 M(j) = G(j-1) / abs(A(j,j))
  343: *
  344:                   XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
  345:                ELSE
  346: *
  347: *                 M(j) could overflow, set XBND to 0.
  348: *
  349:                   XBND = ZERO
  350:                END IF
  351: *
  352:                IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
  353: *
  354: *                 G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
  355: *
  356:                   GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
  357:                ELSE
  358: *
  359: *                 G(j) could overflow, set GROW to 0.
  360: *
  361:                   GROW = ZERO
  362:                END IF
  363:    40       CONTINUE
  364:             GROW = XBND
  365:          ELSE
  366: *
  367: *           A is unit triangular.
  368: *
  369: *           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  370: *
  371:             GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
  372:             DO 50 J = JFIRST, JLAST, JINC
  373: *
  374: *              Exit the loop if the growth factor is too small.
  375: *
  376:                IF( GROW.LE.SMLNUM )
  377:      $            GO TO 60
  378: *
  379: *              G(j) = G(j-1)*( 1 + CNORM(j) )
  380: *
  381:                GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
  382:    50       CONTINUE
  383:          END IF
  384:    60    CONTINUE
  385: *
  386:       ELSE
  387: *
  388: *        Compute the growth in A**T * x = b  or  A**H * x = b.
  389: *
  390:          IF( UPPER ) THEN
  391:             JFIRST = 1
  392:             JLAST = N
  393:             JINC = 1
  394:             MAIND = KD + 1
  395:          ELSE
  396:             JFIRST = N
  397:             JLAST = 1
  398:             JINC = -1
  399:             MAIND = 1
  400:          END IF
  401: *
  402:          IF( TSCAL.NE.ONE ) THEN
  403:             GROW = ZERO
  404:             GO TO 90
  405:          END IF
  406: *
  407:          IF( NOUNIT ) THEN
  408: *
  409: *           A is non-unit triangular.
  410: *
  411: *           Compute GROW = 1/G(j) and XBND = 1/M(j).
  412: *           Initially, M(0) = max{x(i), i=1,...,n}.
  413: *
  414:             GROW = HALF / MAX( XBND, SMLNUM )
  415:             XBND = GROW
  416:             DO 70 J = JFIRST, JLAST, JINC
  417: *
  418: *              Exit the loop if the growth factor is too small.
  419: *
  420:                IF( GROW.LE.SMLNUM )
  421:      $            GO TO 90
  422: *
  423: *              G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
  424: *
  425:                XJ = ONE + CNORM( J )
  426:                GROW = MIN( GROW, XBND / XJ )
  427: *
  428:                TJJS = AB( MAIND, J )
  429:                TJJ = CABS1( TJJS )
  430: *
  431:                IF( TJJ.GE.SMLNUM ) THEN
  432: *
  433: *                 M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
  434: *
  435:                   IF( XJ.GT.TJJ )
  436:      $               XBND = XBND*( TJJ / XJ )
  437:                ELSE
  438: *
  439: *                 M(j) could overflow, set XBND to 0.
  440: *
  441:                   XBND = ZERO
  442:                END IF
  443:    70       CONTINUE
  444:             GROW = MIN( GROW, XBND )
  445:          ELSE
  446: *
  447: *           A is unit triangular.
  448: *
  449: *           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  450: *
  451:             GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
  452:             DO 80 J = JFIRST, JLAST, JINC
  453: *
  454: *              Exit the loop if the growth factor is too small.
  455: *
  456:                IF( GROW.LE.SMLNUM )
  457:      $            GO TO 90
  458: *
  459: *              G(j) = ( 1 + CNORM(j) )*G(j-1)
  460: *
  461:                XJ = ONE + CNORM( J )
  462:                GROW = GROW / XJ
  463:    80       CONTINUE
  464:          END IF
  465:    90    CONTINUE
  466:       END IF
  467: *
  468:       IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
  469: *
  470: *        Use the Level 2 BLAS solve if the reciprocal of the bound on
  471: *        elements of X is not too small.
  472: *
  473:          CALL ZTBSV( UPLO, TRANS, DIAG, N, KD, AB, LDAB, X, 1 )
  474:       ELSE
  475: *
  476: *        Use a Level 1 BLAS solve, scaling intermediate results.
  477: *
  478:          IF( XMAX.GT.BIGNUM*HALF ) THEN
  479: *
  480: *           Scale X so that its components are less than or equal to
  481: *           BIGNUM in absolute value.
  482: *
  483:             SCALE = ( BIGNUM*HALF ) / XMAX
  484:             CALL ZDSCAL( N, SCALE, X, 1 )
  485:             XMAX = BIGNUM
  486:          ELSE
  487:             XMAX = XMAX*TWO
  488:          END IF
  489: *
  490:          IF( NOTRAN ) THEN
  491: *
  492: *           Solve A * x = b
  493: *
  494:             DO 120 J = JFIRST, JLAST, JINC
  495: *
  496: *              Compute x(j) = b(j) / A(j,j), scaling x if necessary.
  497: *
  498:                XJ = CABS1( X( J ) )
  499:                IF( NOUNIT ) THEN
  500:                   TJJS = AB( MAIND, J )*TSCAL
  501:                ELSE
  502:                   TJJS = TSCAL
  503:                   IF( TSCAL.EQ.ONE )
  504:      $               GO TO 110
  505:                END IF
  506:                TJJ = CABS1( TJJS )
  507:                IF( TJJ.GT.SMLNUM ) THEN
  508: *
  509: *                    abs(A(j,j)) > SMLNUM:
  510: *
  511:                   IF( TJJ.LT.ONE ) THEN
  512:                      IF( XJ.GT.TJJ*BIGNUM ) THEN
  513: *
  514: *                          Scale x by 1/b(j).
  515: *
  516:                         REC = ONE / XJ
  517:                         CALL ZDSCAL( N, REC, X, 1 )
  518:                         SCALE = SCALE*REC
  519:                         XMAX = XMAX*REC
  520:                      END IF
  521:                   END IF
  522:                   X( J ) = ZLADIV( X( J ), TJJS )
  523:                   XJ = CABS1( X( J ) )
  524:                ELSE IF( TJJ.GT.ZERO ) THEN
  525: *
  526: *                    0 < abs(A(j,j)) <= SMLNUM:
  527: *
  528:                   IF( XJ.GT.TJJ*BIGNUM ) THEN
  529: *
  530: *                       Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
  531: *                       to avoid overflow when dividing by A(j,j).
  532: *
  533:                      REC = ( TJJ*BIGNUM ) / XJ
  534:                      IF( CNORM( J ).GT.ONE ) THEN
  535: *
  536: *                          Scale by 1/CNORM(j) to avoid overflow when
  537: *                          multiplying x(j) times column j.
  538: *
  539:                         REC = REC / CNORM( J )
  540:                      END IF
  541:                      CALL ZDSCAL( N, REC, X, 1 )
  542:                      SCALE = SCALE*REC
  543:                      XMAX = XMAX*REC
  544:                   END IF
  545:                   X( J ) = ZLADIV( X( J ), TJJS )
  546:                   XJ = CABS1( X( J ) )
  547:                ELSE
  548: *
  549: *                    A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
  550: *                    scale = 0, and compute a solution to A*x = 0.
  551: *
  552:                   DO 100 I = 1, N
  553:                      X( I ) = ZERO
  554:   100             CONTINUE
  555:                   X( J ) = ONE
  556:                   XJ = ONE
  557:                   SCALE = ZERO
  558:                   XMAX = ZERO
  559:                END IF
  560:   110          CONTINUE
  561: *
  562: *              Scale x if necessary to avoid overflow when adding a
  563: *              multiple of column j of A.
  564: *
  565:                IF( XJ.GT.ONE ) THEN
  566:                   REC = ONE / XJ
  567:                   IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
  568: *
  569: *                    Scale x by 1/(2*abs(x(j))).
  570: *
  571:                      REC = REC*HALF
  572:                      CALL ZDSCAL( N, REC, X, 1 )
  573:                      SCALE = SCALE*REC
  574:                   END IF
  575:                ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
  576: *
  577: *                 Scale x by 1/2.
  578: *
  579:                   CALL ZDSCAL( N, HALF, X, 1 )
  580:                   SCALE = SCALE*HALF
  581:                END IF
  582: *
  583:                IF( UPPER ) THEN
  584:                   IF( J.GT.1 ) THEN
  585: *
  586: *                    Compute the update
  587: *                       x(max(1,j-kd):j-1) := x(max(1,j-kd):j-1) -
  588: *                                             x(j)* A(max(1,j-kd):j-1,j)
  589: *
  590:                      JLEN = MIN( KD, J-1 )
  591:                      CALL ZAXPY( JLEN, -X( J )*TSCAL,
  592:      $                           AB( KD+1-JLEN, J ), 1, X( J-JLEN ), 1 )
  593:                      I = IZAMAX( J-1, X, 1 )
  594:                      XMAX = CABS1( X( I ) )
  595:                   END IF
  596:                ELSE IF( J.LT.N ) THEN
  597: *
  598: *                 Compute the update
  599: *                    x(j+1:min(j+kd,n)) := x(j+1:min(j+kd,n)) -
  600: *                                          x(j) * A(j+1:min(j+kd,n),j)
  601: *
  602:                   JLEN = MIN( KD, N-J )
  603:                   IF( JLEN.GT.0 )
  604:      $               CALL ZAXPY( JLEN, -X( J )*TSCAL, AB( 2, J ), 1,
  605:      $                           X( J+1 ), 1 )
  606:                   I = J + IZAMAX( N-J, X( J+1 ), 1 )
  607:                   XMAX = CABS1( X( I ) )
  608:                END IF
  609:   120       CONTINUE
  610: *
  611:          ELSE IF( LSAME( TRANS, 'T' ) ) THEN
  612: *
  613: *           Solve A**T * x = b
  614: *
  615:             DO 170 J = JFIRST, JLAST, JINC
  616: *
  617: *              Compute x(j) = b(j) - sum A(k,j)*x(k).
  618: *                                    k<>j
  619: *
  620:                XJ = CABS1( X( J ) )
  621:                USCAL = TSCAL
  622:                REC = ONE / MAX( XMAX, ONE )
  623:                IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
  624: *
  625: *                 If x(j) could overflow, scale x by 1/(2*XMAX).
  626: *
  627:                   REC = REC*HALF
  628:                   IF( NOUNIT ) THEN
  629:                      TJJS = AB( MAIND, J )*TSCAL
  630:                   ELSE
  631:                      TJJS = TSCAL
  632:                   END IF
  633:                   TJJ = CABS1( TJJS )
  634:                   IF( TJJ.GT.ONE ) THEN
  635: *
  636: *                       Divide by A(j,j) when scaling x if A(j,j) > 1.
  637: *
  638:                      REC = MIN( ONE, REC*TJJ )
  639:                      USCAL = ZLADIV( USCAL, TJJS )
  640:                   END IF
  641:                   IF( REC.LT.ONE ) THEN
  642:                      CALL ZDSCAL( N, REC, X, 1 )
  643:                      SCALE = SCALE*REC
  644:                      XMAX = XMAX*REC
  645:                   END IF
  646:                END IF
  647: *
  648:                CSUMJ = ZERO
  649:                IF( USCAL.EQ.DCMPLX( ONE ) ) THEN
  650: *
  651: *                 If the scaling needed for A in the dot product is 1,
  652: *                 call ZDOTU to perform the dot product.
  653: *
  654:                   IF( UPPER ) THEN
  655:                      JLEN = MIN( KD, J-1 )
  656:                      CSUMJ = ZDOTU( JLEN, AB( KD+1-JLEN, J ), 1,
  657:      $                       X( J-JLEN ), 1 )
  658:                   ELSE
  659:                      JLEN = MIN( KD, N-J )
  660:                      IF( JLEN.GT.1 )
  661:      $                  CSUMJ = ZDOTU( JLEN, AB( 2, J ), 1, X( J+1 ),
  662:      $                          1 )
  663:                   END IF
  664:                ELSE
  665: *
  666: *                 Otherwise, use in-line code for the dot product.
  667: *
  668:                   IF( UPPER ) THEN
  669:                      JLEN = MIN( KD, J-1 )
  670:                      DO 130 I = 1, JLEN
  671:                         CSUMJ = CSUMJ + ( AB( KD+I-JLEN, J )*USCAL )*
  672:      $                          X( J-JLEN-1+I )
  673:   130                CONTINUE
  674:                   ELSE
  675:                      JLEN = MIN( KD, N-J )
  676:                      DO 140 I = 1, JLEN
  677:                         CSUMJ = CSUMJ + ( AB( I+1, J )*USCAL )*X( J+I )
  678:   140                CONTINUE
  679:                   END IF
  680:                END IF
  681: *
  682:                IF( USCAL.EQ.DCMPLX( TSCAL ) ) THEN
  683: *
  684: *                 Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
  685: *                 was not used to scale the dotproduct.
  686: *
  687:                   X( J ) = X( J ) - CSUMJ
  688:                   XJ = CABS1( X( J ) )
  689:                   IF( NOUNIT ) THEN
  690: *
  691: *                    Compute x(j) = x(j) / A(j,j), scaling if necessary.
  692: *
  693:                      TJJS = AB( MAIND, J )*TSCAL
  694:                   ELSE
  695:                      TJJS = TSCAL
  696:                      IF( TSCAL.EQ.ONE )
  697:      $                  GO TO 160
  698:                   END IF
  699:                   TJJ = CABS1( TJJS )
  700:                   IF( TJJ.GT.SMLNUM ) THEN
  701: *
  702: *                       abs(A(j,j)) > SMLNUM:
  703: *
  704:                      IF( TJJ.LT.ONE ) THEN
  705:                         IF( XJ.GT.TJJ*BIGNUM ) THEN
  706: *
  707: *                             Scale X by 1/abs(x(j)).
  708: *
  709:                            REC = ONE / XJ
  710:                            CALL ZDSCAL( N, REC, X, 1 )
  711:                            SCALE = SCALE*REC
  712:                            XMAX = XMAX*REC
  713:                         END IF
  714:                      END IF
  715:                      X( J ) = ZLADIV( X( J ), TJJS )
  716:                   ELSE IF( TJJ.GT.ZERO ) THEN
  717: *
  718: *                       0 < abs(A(j,j)) <= SMLNUM:
  719: *
  720:                      IF( XJ.GT.TJJ*BIGNUM ) THEN
  721: *
  722: *                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
  723: *
  724:                         REC = ( TJJ*BIGNUM ) / XJ
  725:                         CALL ZDSCAL( N, REC, X, 1 )
  726:                         SCALE = SCALE*REC
  727:                         XMAX = XMAX*REC
  728:                      END IF
  729:                      X( J ) = ZLADIV( X( J ), TJJS )
  730:                   ELSE
  731: *
  732: *                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
  733: *                       scale = 0 and compute a solution to A**T *x = 0.
  734: *
  735:                      DO 150 I = 1, N
  736:                         X( I ) = ZERO
  737:   150                CONTINUE
  738:                      X( J ) = ONE
  739:                      SCALE = ZERO
  740:                      XMAX = ZERO
  741:                   END IF
  742:   160             CONTINUE
  743:                ELSE
  744: *
  745: *                 Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
  746: *                 product has already been divided by 1/A(j,j).
  747: *
  748:                   X( J ) = ZLADIV( X( J ), TJJS ) - CSUMJ
  749:                END IF
  750:                XMAX = MAX( XMAX, CABS1( X( J ) ) )
  751:   170       CONTINUE
  752: *
  753:          ELSE
  754: *
  755: *           Solve A**H * x = b
  756: *
  757:             DO 220 J = JFIRST, JLAST, JINC
  758: *
  759: *              Compute x(j) = b(j) - sum A(k,j)*x(k).
  760: *                                    k<>j
  761: *
  762:                XJ = CABS1( X( J ) )
  763:                USCAL = TSCAL
  764:                REC = ONE / MAX( XMAX, ONE )
  765:                IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
  766: *
  767: *                 If x(j) could overflow, scale x by 1/(2*XMAX).
  768: *
  769:                   REC = REC*HALF
  770:                   IF( NOUNIT ) THEN
  771:                      TJJS = DCONJG( AB( MAIND, J ) )*TSCAL
  772:                   ELSE
  773:                      TJJS = TSCAL
  774:                   END IF
  775:                   TJJ = CABS1( TJJS )
  776:                   IF( TJJ.GT.ONE ) THEN
  777: *
  778: *                       Divide by A(j,j) when scaling x if A(j,j) > 1.
  779: *
  780:                      REC = MIN( ONE, REC*TJJ )
  781:                      USCAL = ZLADIV( USCAL, TJJS )
  782:                   END IF
  783:                   IF( REC.LT.ONE ) THEN
  784:                      CALL ZDSCAL( N, REC, X, 1 )
  785:                      SCALE = SCALE*REC
  786:                      XMAX = XMAX*REC
  787:                   END IF
  788:                END IF
  789: *
  790:                CSUMJ = ZERO
  791:                IF( USCAL.EQ.DCMPLX( ONE ) ) THEN
  792: *
  793: *                 If the scaling needed for A in the dot product is 1,
  794: *                 call ZDOTC to perform the dot product.
  795: *
  796:                   IF( UPPER ) THEN
  797:                      JLEN = MIN( KD, J-1 )
  798:                      CSUMJ = ZDOTC( JLEN, AB( KD+1-JLEN, J ), 1,
  799:      $                       X( J-JLEN ), 1 )
  800:                   ELSE
  801:                      JLEN = MIN( KD, N-J )
  802:                      IF( JLEN.GT.1 )
  803:      $                  CSUMJ = ZDOTC( JLEN, AB( 2, J ), 1, X( J+1 ),
  804:      $                          1 )
  805:                   END IF
  806:                ELSE
  807: *
  808: *                 Otherwise, use in-line code for the dot product.
  809: *
  810:                   IF( UPPER ) THEN
  811:                      JLEN = MIN( KD, J-1 )
  812:                      DO 180 I = 1, JLEN
  813:                         CSUMJ = CSUMJ + ( DCONJG( AB( KD+I-JLEN, J ) )*
  814:      $                          USCAL )*X( J-JLEN-1+I )
  815:   180                CONTINUE
  816:                   ELSE
  817:                      JLEN = MIN( KD, N-J )
  818:                      DO 190 I = 1, JLEN
  819:                         CSUMJ = CSUMJ + ( DCONJG( AB( I+1, J ) )*USCAL )
  820:      $                          *X( J+I )
  821:   190                CONTINUE
  822:                   END IF
  823:                END IF
  824: *
  825:                IF( USCAL.EQ.DCMPLX( TSCAL ) ) THEN
  826: *
  827: *                 Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
  828: *                 was not used to scale the dotproduct.
  829: *
  830:                   X( J ) = X( J ) - CSUMJ
  831:                   XJ = CABS1( X( J ) )
  832:                   IF( NOUNIT ) THEN
  833: *
  834: *                    Compute x(j) = x(j) / A(j,j), scaling if necessary.
  835: *
  836:                      TJJS = DCONJG( AB( MAIND, J ) )*TSCAL
  837:                   ELSE
  838:                      TJJS = TSCAL
  839:                      IF( TSCAL.EQ.ONE )
  840:      $                  GO TO 210
  841:                   END IF
  842:                   TJJ = CABS1( TJJS )
  843:                   IF( TJJ.GT.SMLNUM ) THEN
  844: *
  845: *                       abs(A(j,j)) > SMLNUM:
  846: *
  847:                      IF( TJJ.LT.ONE ) THEN
  848:                         IF( XJ.GT.TJJ*BIGNUM ) THEN
  849: *
  850: *                             Scale X by 1/abs(x(j)).
  851: *
  852:                            REC = ONE / XJ
  853:                            CALL ZDSCAL( N, REC, X, 1 )
  854:                            SCALE = SCALE*REC
  855:                            XMAX = XMAX*REC
  856:                         END IF
  857:                      END IF
  858:                      X( J ) = ZLADIV( X( J ), TJJS )
  859:                   ELSE IF( TJJ.GT.ZERO ) THEN
  860: *
  861: *                       0 < abs(A(j,j)) <= SMLNUM:
  862: *
  863:                      IF( XJ.GT.TJJ*BIGNUM ) THEN
  864: *
  865: *                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
  866: *
  867:                         REC = ( TJJ*BIGNUM ) / XJ
  868:                         CALL ZDSCAL( N, REC, X, 1 )
  869:                         SCALE = SCALE*REC
  870:                         XMAX = XMAX*REC
  871:                      END IF
  872:                      X( J ) = ZLADIV( X( J ), TJJS )
  873:                   ELSE
  874: *
  875: *                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
  876: *                       scale = 0 and compute a solution to A**H *x = 0.
  877: *
  878:                      DO 200 I = 1, N
  879:                         X( I ) = ZERO
  880:   200                CONTINUE
  881:                      X( J ) = ONE
  882:                      SCALE = ZERO
  883:                      XMAX = ZERO
  884:                   END IF
  885:   210             CONTINUE
  886:                ELSE
  887: *
  888: *                 Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
  889: *                 product has already been divided by 1/A(j,j).
  890: *
  891:                   X( J ) = ZLADIV( X( J ), TJJS ) - CSUMJ
  892:                END IF
  893:                XMAX = MAX( XMAX, CABS1( X( J ) ) )
  894:   220       CONTINUE
  895:          END IF
  896:          SCALE = SCALE / TSCAL
  897:       END IF
  898: *
  899: *     Scale the column norms by 1/TSCAL for return.
  900: *
  901:       IF( TSCAL.NE.ONE ) THEN
  902:          CALL DSCAL( N, ONE / TSCAL, CNORM, 1 )
  903:       END IF
  904: *
  905:       RETURN
  906: *
  907: *     End of ZLATBS
  908: *
  909:       END

CVSweb interface <joel.bertrand@systella.fr>