File:  [local] / rpl / lapack / lapack / zlatbs.f
Revision 1.15: download - view: text, annotated - select for diffs - revision graph
Mon Jan 27 09:28:40 2014 UTC (10 years, 3 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_24, rpl-4_1_23, rpl-4_1_22, rpl-4_1_21, rpl-4_1_20, rpl-4_1_19, rpl-4_1_18, rpl-4_1_17, HEAD
Cohérence.

    1: *> \brief \b ZLATBS solves a triangular banded system of equations.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZLATBS + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlatbs.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlatbs.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlatbs.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLATBS( UPLO, TRANS, DIAG, NORMIN, N, KD, AB, LDAB, X,
   22: *                          SCALE, CNORM, INFO )
   23:    24: *       .. Scalar Arguments ..
   25: *       CHARACTER          DIAG, NORMIN, TRANS, UPLO
   26: *       INTEGER            INFO, KD, LDAB, N
   27: *       DOUBLE PRECISION   SCALE
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       DOUBLE PRECISION   CNORM( * )
   31: *       COMPLEX*16         AB( LDAB, * ), X( * )
   32: *       ..
   33: *  
   34: *
   35: *> \par Purpose:
   36: *  =============
   37: *>
   38: *> \verbatim
   39: *>
   40: *> ZLATBS solves one of the triangular systems
   41: *>
   42: *>    A * x = s*b,  A**T * x = s*b,  or  A**H * x = s*b,
   43: *>
   44: *> with scaling to prevent overflow, where A is an upper or lower
   45: *> triangular band matrix.  Here A**T denotes the transpose of A, x and b
   46: *> are n-element vectors, and s is a scaling factor, usually less than
   47: *> or equal to 1, chosen so that the components of x will be less than
   48: *> the overflow threshold.  If the unscaled problem will not cause
   49: *> overflow, the Level 2 BLAS routine ZTBSV is called.  If the matrix A
   50: *> is singular (A(j,j) = 0 for some j), then s is set to 0 and a
   51: *> non-trivial solution to A*x = 0 is returned.
   52: *> \endverbatim
   53: *
   54: *  Arguments:
   55: *  ==========
   56: *
   57: *> \param[in] UPLO
   58: *> \verbatim
   59: *>          UPLO is CHARACTER*1
   60: *>          Specifies whether the matrix A is upper or lower triangular.
   61: *>          = 'U':  Upper triangular
   62: *>          = 'L':  Lower triangular
   63: *> \endverbatim
   64: *>
   65: *> \param[in] TRANS
   66: *> \verbatim
   67: *>          TRANS is CHARACTER*1
   68: *>          Specifies the operation applied to A.
   69: *>          = 'N':  Solve A * x = s*b     (No transpose)
   70: *>          = 'T':  Solve A**T * x = s*b  (Transpose)
   71: *>          = 'C':  Solve A**H * x = s*b  (Conjugate transpose)
   72: *> \endverbatim
   73: *>
   74: *> \param[in] DIAG
   75: *> \verbatim
   76: *>          DIAG is CHARACTER*1
   77: *>          Specifies whether or not the matrix A is unit triangular.
   78: *>          = 'N':  Non-unit triangular
   79: *>          = 'U':  Unit triangular
   80: *> \endverbatim
   81: *>
   82: *> \param[in] NORMIN
   83: *> \verbatim
   84: *>          NORMIN is CHARACTER*1
   85: *>          Specifies whether CNORM has been set or not.
   86: *>          = 'Y':  CNORM contains the column norms on entry
   87: *>          = 'N':  CNORM is not set on entry.  On exit, the norms will
   88: *>                  be computed and stored in CNORM.
   89: *> \endverbatim
   90: *>
   91: *> \param[in] N
   92: *> \verbatim
   93: *>          N is INTEGER
   94: *>          The order of the matrix A.  N >= 0.
   95: *> \endverbatim
   96: *>
   97: *> \param[in] KD
   98: *> \verbatim
   99: *>          KD is INTEGER
  100: *>          The number of subdiagonals or superdiagonals in the
  101: *>          triangular matrix A.  KD >= 0.
  102: *> \endverbatim
  103: *>
  104: *> \param[in] AB
  105: *> \verbatim
  106: *>          AB is COMPLEX*16 array, dimension (LDAB,N)
  107: *>          The upper or lower triangular band matrix A, stored in the
  108: *>          first KD+1 rows of the array. The j-th column of A is stored
  109: *>          in the j-th column of the array AB as follows:
  110: *>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
  111: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
  112: *> \endverbatim
  113: *>
  114: *> \param[in] LDAB
  115: *> \verbatim
  116: *>          LDAB is INTEGER
  117: *>          The leading dimension of the array AB.  LDAB >= KD+1.
  118: *> \endverbatim
  119: *>
  120: *> \param[in,out] X
  121: *> \verbatim
  122: *>          X is COMPLEX*16 array, dimension (N)
  123: *>          On entry, the right hand side b of the triangular system.
  124: *>          On exit, X is overwritten by the solution vector x.
  125: *> \endverbatim
  126: *>
  127: *> \param[out] SCALE
  128: *> \verbatim
  129: *>          SCALE is DOUBLE PRECISION
  130: *>          The scaling factor s for the triangular system
  131: *>             A * x = s*b,  A**T * x = s*b,  or  A**H * x = s*b.
  132: *>          If SCALE = 0, the matrix A is singular or badly scaled, and
  133: *>          the vector x is an exact or approximate solution to A*x = 0.
  134: *> \endverbatim
  135: *>
  136: *> \param[in,out] CNORM
  137: *> \verbatim
  138: *>          CNORM is DOUBLE PRECISION array, dimension (N)
  139: *>
  140: *>          If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
  141: *>          contains the norm of the off-diagonal part of the j-th column
  142: *>          of A.  If TRANS = 'N', CNORM(j) must be greater than or equal
  143: *>          to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
  144: *>          must be greater than or equal to the 1-norm.
  145: *>
  146: *>          If NORMIN = 'N', CNORM is an output argument and CNORM(j)
  147: *>          returns the 1-norm of the offdiagonal part of the j-th column
  148: *>          of A.
  149: *> \endverbatim
  150: *>
  151: *> \param[out] INFO
  152: *> \verbatim
  153: *>          INFO is INTEGER
  154: *>          = 0:  successful exit
  155: *>          < 0:  if INFO = -k, the k-th argument had an illegal value
  156: *> \endverbatim
  157: *
  158: *  Authors:
  159: *  ========
  160: *
  161: *> \author Univ. of Tennessee 
  162: *> \author Univ. of California Berkeley 
  163: *> \author Univ. of Colorado Denver 
  164: *> \author NAG Ltd. 
  165: *
  166: *> \date September 2012
  167: *
  168: *> \ingroup complex16OTHERauxiliary
  169: *
  170: *> \par Further Details:
  171: *  =====================
  172: *>
  173: *> \verbatim
  174: *>
  175: *>  A rough bound on x is computed; if that is less than overflow, ZTBSV
  176: *>  is called, otherwise, specific code is used which checks for possible
  177: *>  overflow or divide-by-zero at every operation.
  178: *>
  179: *>  A columnwise scheme is used for solving A*x = b.  The basic algorithm
  180: *>  if A is lower triangular is
  181: *>
  182: *>       x[1:n] := b[1:n]
  183: *>       for j = 1, ..., n
  184: *>            x(j) := x(j) / A(j,j)
  185: *>            x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
  186: *>       end
  187: *>
  188: *>  Define bounds on the components of x after j iterations of the loop:
  189: *>     M(j) = bound on x[1:j]
  190: *>     G(j) = bound on x[j+1:n]
  191: *>  Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
  192: *>
  193: *>  Then for iteration j+1 we have
  194: *>     M(j+1) <= G(j) / | A(j+1,j+1) |
  195: *>     G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
  196: *>            <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
  197: *>
  198: *>  where CNORM(j+1) is greater than or equal to the infinity-norm of
  199: *>  column j+1 of A, not counting the diagonal.  Hence
  200: *>
  201: *>     G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
  202: *>                  1<=i<=j
  203: *>  and
  204: *>
  205: *>     |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
  206: *>                                   1<=i< j
  207: *>
  208: *>  Since |x(j)| <= M(j), we use the Level 2 BLAS routine ZTBSV if the
  209: *>  reciprocal of the largest M(j), j=1,..,n, is larger than
  210: *>  max(underflow, 1/overflow).
  211: *>
  212: *>  The bound on x(j) is also used to determine when a step in the
  213: *>  columnwise method can be performed without fear of overflow.  If
  214: *>  the computed bound is greater than a large constant, x is scaled to
  215: *>  prevent overflow, but if the bound overflows, x is set to 0, x(j) to
  216: *>  1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
  217: *>
  218: *>  Similarly, a row-wise scheme is used to solve A**T *x = b  or
  219: *>  A**H *x = b.  The basic algorithm for A upper triangular is
  220: *>
  221: *>       for j = 1, ..., n
  222: *>            x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
  223: *>       end
  224: *>
  225: *>  We simultaneously compute two bounds
  226: *>       G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
  227: *>       M(j) = bound on x(i), 1<=i<=j
  228: *>
  229: *>  The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
  230: *>  add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
  231: *>  Then the bound on x(j) is
  232: *>
  233: *>       M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
  234: *>
  235: *>            <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
  236: *>                      1<=i<=j
  237: *>
  238: *>  and we can safely call ZTBSV if 1/M(n) and 1/G(n) are both greater
  239: *>  than max(underflow, 1/overflow).
  240: *> \endverbatim
  241: *>
  242: *  =====================================================================
  243:       SUBROUTINE ZLATBS( UPLO, TRANS, DIAG, NORMIN, N, KD, AB, LDAB, X,
  244:      $                   SCALE, CNORM, INFO )
  245: *
  246: *  -- LAPACK auxiliary routine (version 3.4.2) --
  247: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  248: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  249: *     September 2012
  250: *
  251: *     .. Scalar Arguments ..
  252:       CHARACTER          DIAG, NORMIN, TRANS, UPLO
  253:       INTEGER            INFO, KD, LDAB, N
  254:       DOUBLE PRECISION   SCALE
  255: *     ..
  256: *     .. Array Arguments ..
  257:       DOUBLE PRECISION   CNORM( * )
  258:       COMPLEX*16         AB( LDAB, * ), X( * )
  259: *     ..
  260: *
  261: *  =====================================================================
  262: *
  263: *     .. Parameters ..
  264:       DOUBLE PRECISION   ZERO, HALF, ONE, TWO
  265:       PARAMETER          ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0,
  266:      $                   TWO = 2.0D+0 )
  267: *     ..
  268: *     .. Local Scalars ..
  269:       LOGICAL            NOTRAN, NOUNIT, UPPER
  270:       INTEGER            I, IMAX, J, JFIRST, JINC, JLAST, JLEN, MAIND
  271:       DOUBLE PRECISION   BIGNUM, GROW, REC, SMLNUM, TJJ, TMAX, TSCAL,
  272:      $                   XBND, XJ, XMAX
  273:       COMPLEX*16         CSUMJ, TJJS, USCAL, ZDUM
  274: *     ..
  275: *     .. External Functions ..
  276:       LOGICAL            LSAME
  277:       INTEGER            IDAMAX, IZAMAX
  278:       DOUBLE PRECISION   DLAMCH, DZASUM
  279:       COMPLEX*16         ZDOTC, ZDOTU, ZLADIV
  280:       EXTERNAL           LSAME, IDAMAX, IZAMAX, DLAMCH, DZASUM, ZDOTC,
  281:      $                   ZDOTU, ZLADIV
  282: *     ..
  283: *     .. External Subroutines ..
  284:       EXTERNAL           DSCAL, XERBLA, ZAXPY, ZDSCAL, ZTBSV
  285: *     ..
  286: *     .. Intrinsic Functions ..
  287:       INTRINSIC          ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX, MIN
  288: *     ..
  289: *     .. Statement Functions ..
  290:       DOUBLE PRECISION   CABS1, CABS2
  291: *     ..
  292: *     .. Statement Function definitions ..
  293:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  294:       CABS2( ZDUM ) = ABS( DBLE( ZDUM ) / 2.D0 ) +
  295:      $                ABS( DIMAG( ZDUM ) / 2.D0 )
  296: *     ..
  297: *     .. Executable Statements ..
  298: *
  299:       INFO = 0
  300:       UPPER = LSAME( UPLO, 'U' )
  301:       NOTRAN = LSAME( TRANS, 'N' )
  302:       NOUNIT = LSAME( DIAG, 'N' )
  303: *
  304: *     Test the input parameters.
  305: *
  306:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  307:          INFO = -1
  308:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  309:      $         LSAME( TRANS, 'C' ) ) THEN
  310:          INFO = -2
  311:       ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
  312:          INFO = -3
  313:       ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
  314:      $         LSAME( NORMIN, 'N' ) ) THEN
  315:          INFO = -4
  316:       ELSE IF( N.LT.0 ) THEN
  317:          INFO = -5
  318:       ELSE IF( KD.LT.0 ) THEN
  319:          INFO = -6
  320:       ELSE IF( LDAB.LT.KD+1 ) THEN
  321:          INFO = -8
  322:       END IF
  323:       IF( INFO.NE.0 ) THEN
  324:          CALL XERBLA( 'ZLATBS', -INFO )
  325:          RETURN
  326:       END IF
  327: *
  328: *     Quick return if possible
  329: *
  330:       IF( N.EQ.0 )
  331:      $   RETURN
  332: *
  333: *     Determine machine dependent parameters to control overflow.
  334: *
  335:       SMLNUM = DLAMCH( 'Safe minimum' )
  336:       BIGNUM = ONE / SMLNUM
  337:       CALL DLABAD( SMLNUM, BIGNUM )
  338:       SMLNUM = SMLNUM / DLAMCH( 'Precision' )
  339:       BIGNUM = ONE / SMLNUM
  340:       SCALE = ONE
  341: *
  342:       IF( LSAME( NORMIN, 'N' ) ) THEN
  343: *
  344: *        Compute the 1-norm of each column, not including the diagonal.
  345: *
  346:          IF( UPPER ) THEN
  347: *
  348: *           A is upper triangular.
  349: *
  350:             DO 10 J = 1, N
  351:                JLEN = MIN( KD, J-1 )
  352:                CNORM( J ) = DZASUM( JLEN, AB( KD+1-JLEN, J ), 1 )
  353:    10       CONTINUE
  354:          ELSE
  355: *
  356: *           A is lower triangular.
  357: *
  358:             DO 20 J = 1, N
  359:                JLEN = MIN( KD, N-J )
  360:                IF( JLEN.GT.0 ) THEN
  361:                   CNORM( J ) = DZASUM( JLEN, AB( 2, J ), 1 )
  362:                ELSE
  363:                   CNORM( J ) = ZERO
  364:                END IF
  365:    20       CONTINUE
  366:          END IF
  367:       END IF
  368: *
  369: *     Scale the column norms by TSCAL if the maximum element in CNORM is
  370: *     greater than BIGNUM/2.
  371: *
  372:       IMAX = IDAMAX( N, CNORM, 1 )
  373:       TMAX = CNORM( IMAX )
  374:       IF( TMAX.LE.BIGNUM*HALF ) THEN
  375:          TSCAL = ONE
  376:       ELSE
  377:          TSCAL = HALF / ( SMLNUM*TMAX )
  378:          CALL DSCAL( N, TSCAL, CNORM, 1 )
  379:       END IF
  380: *
  381: *     Compute a bound on the computed solution vector to see if the
  382: *     Level 2 BLAS routine ZTBSV can be used.
  383: *
  384:       XMAX = ZERO
  385:       DO 30 J = 1, N
  386:          XMAX = MAX( XMAX, CABS2( X( J ) ) )
  387:    30 CONTINUE
  388:       XBND = XMAX
  389:       IF( NOTRAN ) THEN
  390: *
  391: *        Compute the growth in A * x = b.
  392: *
  393:          IF( UPPER ) THEN
  394:             JFIRST = N
  395:             JLAST = 1
  396:             JINC = -1
  397:             MAIND = KD + 1
  398:          ELSE
  399:             JFIRST = 1
  400:             JLAST = N
  401:             JINC = 1
  402:             MAIND = 1
  403:          END IF
  404: *
  405:          IF( TSCAL.NE.ONE ) THEN
  406:             GROW = ZERO
  407:             GO TO 60
  408:          END IF
  409: *
  410:          IF( NOUNIT ) THEN
  411: *
  412: *           A is non-unit triangular.
  413: *
  414: *           Compute GROW = 1/G(j) and XBND = 1/M(j).
  415: *           Initially, G(0) = max{x(i), i=1,...,n}.
  416: *
  417:             GROW = HALF / MAX( XBND, SMLNUM )
  418:             XBND = GROW
  419:             DO 40 J = JFIRST, JLAST, JINC
  420: *
  421: *              Exit the loop if the growth factor is too small.
  422: *
  423:                IF( GROW.LE.SMLNUM )
  424:      $            GO TO 60
  425: *
  426:                TJJS = AB( MAIND, J )
  427:                TJJ = CABS1( TJJS )
  428: *
  429:                IF( TJJ.GE.SMLNUM ) THEN
  430: *
  431: *                 M(j) = G(j-1) / abs(A(j,j))
  432: *
  433:                   XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
  434:                ELSE
  435: *
  436: *                 M(j) could overflow, set XBND to 0.
  437: *
  438:                   XBND = ZERO
  439:                END IF
  440: *
  441:                IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
  442: *
  443: *                 G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
  444: *
  445:                   GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
  446:                ELSE
  447: *
  448: *                 G(j) could overflow, set GROW to 0.
  449: *
  450:                   GROW = ZERO
  451:                END IF
  452:    40       CONTINUE
  453:             GROW = XBND
  454:          ELSE
  455: *
  456: *           A is unit triangular.
  457: *
  458: *           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  459: *
  460:             GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
  461:             DO 50 J = JFIRST, JLAST, JINC
  462: *
  463: *              Exit the loop if the growth factor is too small.
  464: *
  465:                IF( GROW.LE.SMLNUM )
  466:      $            GO TO 60
  467: *
  468: *              G(j) = G(j-1)*( 1 + CNORM(j) )
  469: *
  470:                GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
  471:    50       CONTINUE
  472:          END IF
  473:    60    CONTINUE
  474: *
  475:       ELSE
  476: *
  477: *        Compute the growth in A**T * x = b  or  A**H * x = b.
  478: *
  479:          IF( UPPER ) THEN
  480:             JFIRST = 1
  481:             JLAST = N
  482:             JINC = 1
  483:             MAIND = KD + 1
  484:          ELSE
  485:             JFIRST = N
  486:             JLAST = 1
  487:             JINC = -1
  488:             MAIND = 1
  489:          END IF
  490: *
  491:          IF( TSCAL.NE.ONE ) THEN
  492:             GROW = ZERO
  493:             GO TO 90
  494:          END IF
  495: *
  496:          IF( NOUNIT ) THEN
  497: *
  498: *           A is non-unit triangular.
  499: *
  500: *           Compute GROW = 1/G(j) and XBND = 1/M(j).
  501: *           Initially, M(0) = max{x(i), i=1,...,n}.
  502: *
  503:             GROW = HALF / MAX( XBND, SMLNUM )
  504:             XBND = GROW
  505:             DO 70 J = JFIRST, JLAST, JINC
  506: *
  507: *              Exit the loop if the growth factor is too small.
  508: *
  509:                IF( GROW.LE.SMLNUM )
  510:      $            GO TO 90
  511: *
  512: *              G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
  513: *
  514:                XJ = ONE + CNORM( J )
  515:                GROW = MIN( GROW, XBND / XJ )
  516: *
  517:                TJJS = AB( MAIND, J )
  518:                TJJ = CABS1( TJJS )
  519: *
  520:                IF( TJJ.GE.SMLNUM ) THEN
  521: *
  522: *                 M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
  523: *
  524:                   IF( XJ.GT.TJJ )
  525:      $               XBND = XBND*( TJJ / XJ )
  526:                ELSE
  527: *
  528: *                 M(j) could overflow, set XBND to 0.
  529: *
  530:                   XBND = ZERO
  531:                END IF
  532:    70       CONTINUE
  533:             GROW = MIN( GROW, XBND )
  534:          ELSE
  535: *
  536: *           A is unit triangular.
  537: *
  538: *           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  539: *
  540:             GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
  541:             DO 80 J = JFIRST, JLAST, JINC
  542: *
  543: *              Exit the loop if the growth factor is too small.
  544: *
  545:                IF( GROW.LE.SMLNUM )
  546:      $            GO TO 90
  547: *
  548: *              G(j) = ( 1 + CNORM(j) )*G(j-1)
  549: *
  550:                XJ = ONE + CNORM( J )
  551:                GROW = GROW / XJ
  552:    80       CONTINUE
  553:          END IF
  554:    90    CONTINUE
  555:       END IF
  556: *
  557:       IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
  558: *
  559: *        Use the Level 2 BLAS solve if the reciprocal of the bound on
  560: *        elements of X is not too small.
  561: *
  562:          CALL ZTBSV( UPLO, TRANS, DIAG, N, KD, AB, LDAB, X, 1 )
  563:       ELSE
  564: *
  565: *        Use a Level 1 BLAS solve, scaling intermediate results.
  566: *
  567:          IF( XMAX.GT.BIGNUM*HALF ) THEN
  568: *
  569: *           Scale X so that its components are less than or equal to
  570: *           BIGNUM in absolute value.
  571: *
  572:             SCALE = ( BIGNUM*HALF ) / XMAX
  573:             CALL ZDSCAL( N, SCALE, X, 1 )
  574:             XMAX = BIGNUM
  575:          ELSE
  576:             XMAX = XMAX*TWO
  577:          END IF
  578: *
  579:          IF( NOTRAN ) THEN
  580: *
  581: *           Solve A * x = b
  582: *
  583:             DO 120 J = JFIRST, JLAST, JINC
  584: *
  585: *              Compute x(j) = b(j) / A(j,j), scaling x if necessary.
  586: *
  587:                XJ = CABS1( X( J ) )
  588:                IF( NOUNIT ) THEN
  589:                   TJJS = AB( MAIND, J )*TSCAL
  590:                ELSE
  591:                   TJJS = TSCAL
  592:                   IF( TSCAL.EQ.ONE )
  593:      $               GO TO 110
  594:                END IF
  595:                TJJ = CABS1( TJJS )
  596:                IF( TJJ.GT.SMLNUM ) THEN
  597: *
  598: *                    abs(A(j,j)) > SMLNUM:
  599: *
  600:                   IF( TJJ.LT.ONE ) THEN
  601:                      IF( XJ.GT.TJJ*BIGNUM ) THEN
  602: *
  603: *                          Scale x by 1/b(j).
  604: *
  605:                         REC = ONE / XJ
  606:                         CALL ZDSCAL( N, REC, X, 1 )
  607:                         SCALE = SCALE*REC
  608:                         XMAX = XMAX*REC
  609:                      END IF
  610:                   END IF
  611:                   X( J ) = ZLADIV( X( J ), TJJS )
  612:                   XJ = CABS1( X( J ) )
  613:                ELSE IF( TJJ.GT.ZERO ) THEN
  614: *
  615: *                    0 < abs(A(j,j)) <= SMLNUM:
  616: *
  617:                   IF( XJ.GT.TJJ*BIGNUM ) THEN
  618: *
  619: *                       Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
  620: *                       to avoid overflow when dividing by A(j,j).
  621: *
  622:                      REC = ( TJJ*BIGNUM ) / XJ
  623:                      IF( CNORM( J ).GT.ONE ) THEN
  624: *
  625: *                          Scale by 1/CNORM(j) to avoid overflow when
  626: *                          multiplying x(j) times column j.
  627: *
  628:                         REC = REC / CNORM( J )
  629:                      END IF
  630:                      CALL ZDSCAL( N, REC, X, 1 )
  631:                      SCALE = SCALE*REC
  632:                      XMAX = XMAX*REC
  633:                   END IF
  634:                   X( J ) = ZLADIV( X( J ), TJJS )
  635:                   XJ = CABS1( X( J ) )
  636:                ELSE
  637: *
  638: *                    A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
  639: *                    scale = 0, and compute a solution to A*x = 0.
  640: *
  641:                   DO 100 I = 1, N
  642:                      X( I ) = ZERO
  643:   100             CONTINUE
  644:                   X( J ) = ONE
  645:                   XJ = ONE
  646:                   SCALE = ZERO
  647:                   XMAX = ZERO
  648:                END IF
  649:   110          CONTINUE
  650: *
  651: *              Scale x if necessary to avoid overflow when adding a
  652: *              multiple of column j of A.
  653: *
  654:                IF( XJ.GT.ONE ) THEN
  655:                   REC = ONE / XJ
  656:                   IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
  657: *
  658: *                    Scale x by 1/(2*abs(x(j))).
  659: *
  660:                      REC = REC*HALF
  661:                      CALL ZDSCAL( N, REC, X, 1 )
  662:                      SCALE = SCALE*REC
  663:                   END IF
  664:                ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
  665: *
  666: *                 Scale x by 1/2.
  667: *
  668:                   CALL ZDSCAL( N, HALF, X, 1 )
  669:                   SCALE = SCALE*HALF
  670:                END IF
  671: *
  672:                IF( UPPER ) THEN
  673:                   IF( J.GT.1 ) THEN
  674: *
  675: *                    Compute the update
  676: *                       x(max(1,j-kd):j-1) := x(max(1,j-kd):j-1) -
  677: *                                             x(j)* A(max(1,j-kd):j-1,j)
  678: *
  679:                      JLEN = MIN( KD, J-1 )
  680:                      CALL ZAXPY( JLEN, -X( J )*TSCAL,
  681:      $                           AB( KD+1-JLEN, J ), 1, X( J-JLEN ), 1 )
  682:                      I = IZAMAX( J-1, X, 1 )
  683:                      XMAX = CABS1( X( I ) )
  684:                   END IF
  685:                ELSE IF( J.LT.N ) THEN
  686: *
  687: *                 Compute the update
  688: *                    x(j+1:min(j+kd,n)) := x(j+1:min(j+kd,n)) -
  689: *                                          x(j) * A(j+1:min(j+kd,n),j)
  690: *
  691:                   JLEN = MIN( KD, N-J )
  692:                   IF( JLEN.GT.0 )
  693:      $               CALL ZAXPY( JLEN, -X( J )*TSCAL, AB( 2, J ), 1,
  694:      $                           X( J+1 ), 1 )
  695:                   I = J + IZAMAX( N-J, X( J+1 ), 1 )
  696:                   XMAX = CABS1( X( I ) )
  697:                END IF
  698:   120       CONTINUE
  699: *
  700:          ELSE IF( LSAME( TRANS, 'T' ) ) THEN
  701: *
  702: *           Solve A**T * x = b
  703: *
  704:             DO 170 J = JFIRST, JLAST, JINC
  705: *
  706: *              Compute x(j) = b(j) - sum A(k,j)*x(k).
  707: *                                    k<>j
  708: *
  709:                XJ = CABS1( X( J ) )
  710:                USCAL = TSCAL
  711:                REC = ONE / MAX( XMAX, ONE )
  712:                IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
  713: *
  714: *                 If x(j) could overflow, scale x by 1/(2*XMAX).
  715: *
  716:                   REC = REC*HALF
  717:                   IF( NOUNIT ) THEN
  718:                      TJJS = AB( MAIND, J )*TSCAL
  719:                   ELSE
  720:                      TJJS = TSCAL
  721:                   END IF
  722:                   TJJ = CABS1( TJJS )
  723:                   IF( TJJ.GT.ONE ) THEN
  724: *
  725: *                       Divide by A(j,j) when scaling x if A(j,j) > 1.
  726: *
  727:                      REC = MIN( ONE, REC*TJJ )
  728:                      USCAL = ZLADIV( USCAL, TJJS )
  729:                   END IF
  730:                   IF( REC.LT.ONE ) THEN
  731:                      CALL ZDSCAL( N, REC, X, 1 )
  732:                      SCALE = SCALE*REC
  733:                      XMAX = XMAX*REC
  734:                   END IF
  735:                END IF
  736: *
  737:                CSUMJ = ZERO
  738:                IF( USCAL.EQ.DCMPLX( ONE ) ) THEN
  739: *
  740: *                 If the scaling needed for A in the dot product is 1,
  741: *                 call ZDOTU to perform the dot product.
  742: *
  743:                   IF( UPPER ) THEN
  744:                      JLEN = MIN( KD, J-1 )
  745:                      CSUMJ = ZDOTU( JLEN, AB( KD+1-JLEN, J ), 1,
  746:      $                       X( J-JLEN ), 1 )
  747:                   ELSE
  748:                      JLEN = MIN( KD, N-J )
  749:                      IF( JLEN.GT.1 )
  750:      $                  CSUMJ = ZDOTU( JLEN, AB( 2, J ), 1, X( J+1 ),
  751:      $                          1 )
  752:                   END IF
  753:                ELSE
  754: *
  755: *                 Otherwise, use in-line code for the dot product.
  756: *
  757:                   IF( UPPER ) THEN
  758:                      JLEN = MIN( KD, J-1 )
  759:                      DO 130 I = 1, JLEN
  760:                         CSUMJ = CSUMJ + ( AB( KD+I-JLEN, J )*USCAL )*
  761:      $                          X( J-JLEN-1+I )
  762:   130                CONTINUE
  763:                   ELSE
  764:                      JLEN = MIN( KD, N-J )
  765:                      DO 140 I = 1, JLEN
  766:                         CSUMJ = CSUMJ + ( AB( I+1, J )*USCAL )*X( J+I )
  767:   140                CONTINUE
  768:                   END IF
  769:                END IF
  770: *
  771:                IF( USCAL.EQ.DCMPLX( TSCAL ) ) THEN
  772: *
  773: *                 Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
  774: *                 was not used to scale the dotproduct.
  775: *
  776:                   X( J ) = X( J ) - CSUMJ
  777:                   XJ = CABS1( X( J ) )
  778:                   IF( NOUNIT ) THEN
  779: *
  780: *                    Compute x(j) = x(j) / A(j,j), scaling if necessary.
  781: *
  782:                      TJJS = AB( MAIND, J )*TSCAL
  783:                   ELSE
  784:                      TJJS = TSCAL
  785:                      IF( TSCAL.EQ.ONE )
  786:      $                  GO TO 160
  787:                   END IF
  788:                   TJJ = CABS1( TJJS )
  789:                   IF( TJJ.GT.SMLNUM ) THEN
  790: *
  791: *                       abs(A(j,j)) > SMLNUM:
  792: *
  793:                      IF( TJJ.LT.ONE ) THEN
  794:                         IF( XJ.GT.TJJ*BIGNUM ) THEN
  795: *
  796: *                             Scale X by 1/abs(x(j)).
  797: *
  798:                            REC = ONE / XJ
  799:                            CALL ZDSCAL( N, REC, X, 1 )
  800:                            SCALE = SCALE*REC
  801:                            XMAX = XMAX*REC
  802:                         END IF
  803:                      END IF
  804:                      X( J ) = ZLADIV( X( J ), TJJS )
  805:                   ELSE IF( TJJ.GT.ZERO ) THEN
  806: *
  807: *                       0 < abs(A(j,j)) <= SMLNUM:
  808: *
  809:                      IF( XJ.GT.TJJ*BIGNUM ) THEN
  810: *
  811: *                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
  812: *
  813:                         REC = ( TJJ*BIGNUM ) / XJ
  814:                         CALL ZDSCAL( N, REC, X, 1 )
  815:                         SCALE = SCALE*REC
  816:                         XMAX = XMAX*REC
  817:                      END IF
  818:                      X( J ) = ZLADIV( X( J ), TJJS )
  819:                   ELSE
  820: *
  821: *                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
  822: *                       scale = 0 and compute a solution to A**T *x = 0.
  823: *
  824:                      DO 150 I = 1, N
  825:                         X( I ) = ZERO
  826:   150                CONTINUE
  827:                      X( J ) = ONE
  828:                      SCALE = ZERO
  829:                      XMAX = ZERO
  830:                   END IF
  831:   160             CONTINUE
  832:                ELSE
  833: *
  834: *                 Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
  835: *                 product has already been divided by 1/A(j,j).
  836: *
  837:                   X( J ) = ZLADIV( X( J ), TJJS ) - CSUMJ
  838:                END IF
  839:                XMAX = MAX( XMAX, CABS1( X( J ) ) )
  840:   170       CONTINUE
  841: *
  842:          ELSE
  843: *
  844: *           Solve A**H * x = b
  845: *
  846:             DO 220 J = JFIRST, JLAST, JINC
  847: *
  848: *              Compute x(j) = b(j) - sum A(k,j)*x(k).
  849: *                                    k<>j
  850: *
  851:                XJ = CABS1( X( J ) )
  852:                USCAL = TSCAL
  853:                REC = ONE / MAX( XMAX, ONE )
  854:                IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
  855: *
  856: *                 If x(j) could overflow, scale x by 1/(2*XMAX).
  857: *
  858:                   REC = REC*HALF
  859:                   IF( NOUNIT ) THEN
  860:                      TJJS = DCONJG( AB( MAIND, J ) )*TSCAL
  861:                   ELSE
  862:                      TJJS = TSCAL
  863:                   END IF
  864:                   TJJ = CABS1( TJJS )
  865:                   IF( TJJ.GT.ONE ) THEN
  866: *
  867: *                       Divide by A(j,j) when scaling x if A(j,j) > 1.
  868: *
  869:                      REC = MIN( ONE, REC*TJJ )
  870:                      USCAL = ZLADIV( USCAL, TJJS )
  871:                   END IF
  872:                   IF( REC.LT.ONE ) THEN
  873:                      CALL ZDSCAL( N, REC, X, 1 )
  874:                      SCALE = SCALE*REC
  875:                      XMAX = XMAX*REC
  876:                   END IF
  877:                END IF
  878: *
  879:                CSUMJ = ZERO
  880:                IF( USCAL.EQ.DCMPLX( ONE ) ) THEN
  881: *
  882: *                 If the scaling needed for A in the dot product is 1,
  883: *                 call ZDOTC to perform the dot product.
  884: *
  885:                   IF( UPPER ) THEN
  886:                      JLEN = MIN( KD, J-1 )
  887:                      CSUMJ = ZDOTC( JLEN, AB( KD+1-JLEN, J ), 1,
  888:      $                       X( J-JLEN ), 1 )
  889:                   ELSE
  890:                      JLEN = MIN( KD, N-J )
  891:                      IF( JLEN.GT.1 )
  892:      $                  CSUMJ = ZDOTC( JLEN, AB( 2, J ), 1, X( J+1 ),
  893:      $                          1 )
  894:                   END IF
  895:                ELSE
  896: *
  897: *                 Otherwise, use in-line code for the dot product.
  898: *
  899:                   IF( UPPER ) THEN
  900:                      JLEN = MIN( KD, J-1 )
  901:                      DO 180 I = 1, JLEN
  902:                         CSUMJ = CSUMJ + ( DCONJG( AB( KD+I-JLEN, J ) )*
  903:      $                          USCAL )*X( J-JLEN-1+I )
  904:   180                CONTINUE
  905:                   ELSE
  906:                      JLEN = MIN( KD, N-J )
  907:                      DO 190 I = 1, JLEN
  908:                         CSUMJ = CSUMJ + ( DCONJG( AB( I+1, J ) )*USCAL )
  909:      $                          *X( J+I )
  910:   190                CONTINUE
  911:                   END IF
  912:                END IF
  913: *
  914:                IF( USCAL.EQ.DCMPLX( TSCAL ) ) THEN
  915: *
  916: *                 Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
  917: *                 was not used to scale the dotproduct.
  918: *
  919:                   X( J ) = X( J ) - CSUMJ
  920:                   XJ = CABS1( X( J ) )
  921:                   IF( NOUNIT ) THEN
  922: *
  923: *                    Compute x(j) = x(j) / A(j,j), scaling if necessary.
  924: *
  925:                      TJJS = DCONJG( AB( MAIND, J ) )*TSCAL
  926:                   ELSE
  927:                      TJJS = TSCAL
  928:                      IF( TSCAL.EQ.ONE )
  929:      $                  GO TO 210
  930:                   END IF
  931:                   TJJ = CABS1( TJJS )
  932:                   IF( TJJ.GT.SMLNUM ) THEN
  933: *
  934: *                       abs(A(j,j)) > SMLNUM:
  935: *
  936:                      IF( TJJ.LT.ONE ) THEN
  937:                         IF( XJ.GT.TJJ*BIGNUM ) THEN
  938: *
  939: *                             Scale X by 1/abs(x(j)).
  940: *
  941:                            REC = ONE / XJ
  942:                            CALL ZDSCAL( N, REC, X, 1 )
  943:                            SCALE = SCALE*REC
  944:                            XMAX = XMAX*REC
  945:                         END IF
  946:                      END IF
  947:                      X( J ) = ZLADIV( X( J ), TJJS )
  948:                   ELSE IF( TJJ.GT.ZERO ) THEN
  949: *
  950: *                       0 < abs(A(j,j)) <= SMLNUM:
  951: *
  952:                      IF( XJ.GT.TJJ*BIGNUM ) THEN
  953: *
  954: *                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
  955: *
  956:                         REC = ( TJJ*BIGNUM ) / XJ
  957:                         CALL ZDSCAL( N, REC, X, 1 )
  958:                         SCALE = SCALE*REC
  959:                         XMAX = XMAX*REC
  960:                      END IF
  961:                      X( J ) = ZLADIV( X( J ), TJJS )
  962:                   ELSE
  963: *
  964: *                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
  965: *                       scale = 0 and compute a solution to A**H *x = 0.
  966: *
  967:                      DO 200 I = 1, N
  968:                         X( I ) = ZERO
  969:   200                CONTINUE
  970:                      X( J ) = ONE
  971:                      SCALE = ZERO
  972:                      XMAX = ZERO
  973:                   END IF
  974:   210             CONTINUE
  975:                ELSE
  976: *
  977: *                 Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
  978: *                 product has already been divided by 1/A(j,j).
  979: *
  980:                   X( J ) = ZLADIV( X( J ), TJJS ) - CSUMJ
  981:                END IF
  982:                XMAX = MAX( XMAX, CABS1( X( J ) ) )
  983:   220       CONTINUE
  984:          END IF
  985:          SCALE = SCALE / TSCAL
  986:       END IF
  987: *
  988: *     Scale the column norms by 1/TSCAL for return.
  989: *
  990:       IF( TSCAL.NE.ONE ) THEN
  991:          CALL DSCAL( N, ONE / TSCAL, CNORM, 1 )
  992:       END IF
  993: *
  994:       RETURN
  995: *
  996: *     End of ZLATBS
  997: *
  998:       END

CVSweb interface <joel.bertrand@systella.fr>