File:  [local] / rpl / lapack / lapack / zlasyf_rook.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:32 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZLASYF_ROOK computes a partial factorization of a complex symmetric matrix using the bounded Bunch-Kaufman ("rook") diagonal pivoting method.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZLASYF_ROOK + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlasyf_rook.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlasyf_rook.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlasyf_rook.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLASYF_ROOK( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, KB, LDA, LDW, N, NB
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       COMPLEX*16         A( LDA, * ), W( LDW, * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZLASYF_ROOK computes a partial factorization of a complex symmetric
   39: *> matrix A using the bounded Bunch-Kaufman ("rook") diagonal
   40: *> pivoting method. The partial factorization has the form:
   41: *>
   42: *> A  =  ( I  U12 ) ( A11  0  ) (  I       0    )  if UPLO = 'U', or:
   43: *>       ( 0  U22 ) (  0   D  ) ( U12**T U22**T )
   44: *>
   45: *> A  =  ( L11  0 ) (  D   0  ) ( L11**T L21**T )  if UPLO = 'L'
   46: *>       ( L21  I ) (  0  A22 ) (  0       I    )
   47: *>
   48: *> where the order of D is at most NB. The actual order is returned in
   49: *> the argument KB, and is either NB or NB-1, or N if N <= NB.
   50: *>
   51: *> ZLASYF_ROOK is an auxiliary routine called by ZSYTRF_ROOK. It uses
   52: *> blocked code (calling Level 3 BLAS) to update the submatrix
   53: *> A11 (if UPLO = 'U') or A22 (if UPLO = 'L').
   54: *> \endverbatim
   55: *
   56: *  Arguments:
   57: *  ==========
   58: *
   59: *> \param[in] UPLO
   60: *> \verbatim
   61: *>          UPLO is CHARACTER*1
   62: *>          Specifies whether the upper or lower triangular part of the
   63: *>          symmetric matrix A is stored:
   64: *>          = 'U':  Upper triangular
   65: *>          = 'L':  Lower triangular
   66: *> \endverbatim
   67: *>
   68: *> \param[in] N
   69: *> \verbatim
   70: *>          N is INTEGER
   71: *>          The order of the matrix A.  N >= 0.
   72: *> \endverbatim
   73: *>
   74: *> \param[in] NB
   75: *> \verbatim
   76: *>          NB is INTEGER
   77: *>          The maximum number of columns of the matrix A that should be
   78: *>          factored.  NB should be at least 2 to allow for 2-by-2 pivot
   79: *>          blocks.
   80: *> \endverbatim
   81: *>
   82: *> \param[out] KB
   83: *> \verbatim
   84: *>          KB is INTEGER
   85: *>          The number of columns of A that were actually factored.
   86: *>          KB is either NB-1 or NB, or N if N <= NB.
   87: *> \endverbatim
   88: *>
   89: *> \param[in,out] A
   90: *> \verbatim
   91: *>          A is COMPLEX*16 array, dimension (LDA,N)
   92: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
   93: *>          n-by-n upper triangular part of A contains the upper
   94: *>          triangular part of the matrix A, and the strictly lower
   95: *>          triangular part of A is not referenced.  If UPLO = 'L', the
   96: *>          leading n-by-n lower triangular part of A contains the lower
   97: *>          triangular part of the matrix A, and the strictly upper
   98: *>          triangular part of A is not referenced.
   99: *>          On exit, A contains details of the partial factorization.
  100: *> \endverbatim
  101: *>
  102: *> \param[in] LDA
  103: *> \verbatim
  104: *>          LDA is INTEGER
  105: *>          The leading dimension of the array A.  LDA >= max(1,N).
  106: *> \endverbatim
  107: *>
  108: *> \param[out] IPIV
  109: *> \verbatim
  110: *>          IPIV is INTEGER array, dimension (N)
  111: *>          Details of the interchanges and the block structure of D.
  112: *>
  113: *>          If UPLO = 'U':
  114: *>             Only the last KB elements of IPIV are set.
  115: *>
  116: *>             If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  117: *>             interchanged and D(k,k) is a 1-by-1 diagonal block.
  118: *>
  119: *>             If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
  120: *>             columns k and -IPIV(k) were interchanged and rows and
  121: *>             columns k-1 and -IPIV(k-1) were inerchaged,
  122: *>             D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
  123: *>
  124: *>          If UPLO = 'L':
  125: *>             Only the first KB elements of IPIV are set.
  126: *>
  127: *>             If IPIV(k) > 0, then rows and columns k and IPIV(k)
  128: *>             were interchanged and D(k,k) is a 1-by-1 diagonal block.
  129: *>
  130: *>             If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
  131: *>             columns k and -IPIV(k) were interchanged and rows and
  132: *>             columns k+1 and -IPIV(k+1) were inerchaged,
  133: *>             D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
  134: *> \endverbatim
  135: *>
  136: *> \param[out] W
  137: *> \verbatim
  138: *>          W is COMPLEX*16 array, dimension (LDW,NB)
  139: *> \endverbatim
  140: *>
  141: *> \param[in] LDW
  142: *> \verbatim
  143: *>          LDW is INTEGER
  144: *>          The leading dimension of the array W.  LDW >= max(1,N).
  145: *> \endverbatim
  146: *>
  147: *> \param[out] INFO
  148: *> \verbatim
  149: *>          INFO is INTEGER
  150: *>          = 0: successful exit
  151: *>          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
  152: *>               has been completed, but the block diagonal matrix D is
  153: *>               exactly singular.
  154: *> \endverbatim
  155: *
  156: *  Authors:
  157: *  ========
  158: *
  159: *> \author Univ. of Tennessee
  160: *> \author Univ. of California Berkeley
  161: *> \author Univ. of Colorado Denver
  162: *> \author NAG Ltd.
  163: *
  164: *> \ingroup complex16SYcomputational
  165: *
  166: *> \par Contributors:
  167: *  ==================
  168: *>
  169: *> \verbatim
  170: *>
  171: *>  November 2013,  Igor Kozachenko,
  172: *>                  Computer Science Division,
  173: *>                  University of California, Berkeley
  174: *>
  175: *>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
  176: *>                  School of Mathematics,
  177: *>                  University of Manchester
  178: *>
  179: *> \endverbatim
  180: *
  181: *  =====================================================================
  182:       SUBROUTINE ZLASYF_ROOK( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW,
  183:      $                        INFO )
  184: *
  185: *  -- LAPACK computational routine --
  186: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  187: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  188: *
  189: *     .. Scalar Arguments ..
  190:       CHARACTER          UPLO
  191:       INTEGER            INFO, KB, LDA, LDW, N, NB
  192: *     ..
  193: *     .. Array Arguments ..
  194:       INTEGER            IPIV( * )
  195:       COMPLEX*16         A( LDA, * ), W( LDW, * )
  196: *     ..
  197: *
  198: *  =====================================================================
  199: *
  200: *     .. Parameters ..
  201:       DOUBLE PRECISION   ZERO, ONE
  202:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  203:       DOUBLE PRECISION   EIGHT, SEVTEN
  204:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  205:       COMPLEX*16         CONE, CZERO
  206:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ),
  207:      $                   CZERO = ( 0.0D+0, 0.0D+0 ) )
  208: *     ..
  209: *     .. Local Scalars ..
  210:       LOGICAL            DONE
  211:       INTEGER            IMAX, ITEMP, J, JB, JJ, JMAX, JP1, JP2, K, KK,
  212:      $                   KW, KKW, KP, KSTEP, P, II
  213:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, ROWMAX, DTEMP, SFMIN
  214:       COMPLEX*16         D11, D12, D21, D22, R1, T, Z
  215: *     ..
  216: *     .. External Functions ..
  217:       LOGICAL            LSAME
  218:       INTEGER            IZAMAX
  219:       DOUBLE PRECISION   DLAMCH
  220:       EXTERNAL           LSAME, IZAMAX, DLAMCH
  221: *     ..
  222: *     .. External Subroutines ..
  223:       EXTERNAL           ZCOPY, ZGEMM, ZGEMV, ZSCAL, ZSWAP
  224: *     ..
  225: *     .. Intrinsic Functions ..
  226:       INTRINSIC          ABS, MAX, MIN, SQRT, DIMAG, DBLE
  227: *     ..
  228: *     .. Statement Functions ..
  229:       DOUBLE PRECISION   CABS1
  230: *     ..
  231: *     .. Statement Function definitions ..
  232:       CABS1( Z ) = ABS( DBLE( Z ) ) + ABS( DIMAG( Z ) )
  233: *     ..
  234: *     .. Executable Statements ..
  235: *
  236:       INFO = 0
  237: *
  238: *     Initialize ALPHA for use in choosing pivot block size.
  239: *
  240:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  241: *
  242: *     Compute machine safe minimum
  243: *
  244:       SFMIN = DLAMCH( 'S' )
  245: *
  246:       IF( LSAME( UPLO, 'U' ) ) THEN
  247: *
  248: *        Factorize the trailing columns of A using the upper triangle
  249: *        of A and working backwards, and compute the matrix W = U12*D
  250: *        for use in updating A11
  251: *
  252: *        K is the main loop index, decreasing from N in steps of 1 or 2
  253: *
  254:          K = N
  255:    10    CONTINUE
  256: *
  257: *        KW is the column of W which corresponds to column K of A
  258: *
  259:          KW = NB + K - N
  260: *
  261: *        Exit from loop
  262: *
  263:          IF( ( K.LE.N-NB+1 .AND. NB.LT.N ) .OR. K.LT.1 )
  264:      $      GO TO 30
  265: *
  266:          KSTEP = 1
  267:          P = K
  268: *
  269: *        Copy column K of A to column KW of W and update it
  270: *
  271:          CALL ZCOPY( K, A( 1, K ), 1, W( 1, KW ), 1 )
  272:          IF( K.LT.N )
  273:      $      CALL ZGEMV( 'No transpose', K, N-K, -CONE, A( 1, K+1 ),
  274:      $                  LDA, W( K, KW+1 ), LDW, CONE, W( 1, KW ), 1 )
  275: *
  276: *        Determine rows and columns to be interchanged and whether
  277: *        a 1-by-1 or 2-by-2 pivot block will be used
  278: *
  279:          ABSAKK = CABS1( W( K, KW ) )
  280: *
  281: *        IMAX is the row-index of the largest off-diagonal element in
  282: *        column K, and COLMAX is its absolute value.
  283: *        Determine both COLMAX and IMAX.
  284: *
  285:          IF( K.GT.1 ) THEN
  286:             IMAX = IZAMAX( K-1, W( 1, KW ), 1 )
  287:             COLMAX = CABS1( W( IMAX, KW ) )
  288:          ELSE
  289:             COLMAX = ZERO
  290:          END IF
  291: *
  292:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  293: *
  294: *           Column K is zero or underflow: set INFO and continue
  295: *
  296:             IF( INFO.EQ.0 )
  297:      $         INFO = K
  298:             KP = K
  299:             CALL ZCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
  300:          ELSE
  301: *
  302: *           ============================================================
  303: *
  304: *           Test for interchange
  305: *
  306: *           Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
  307: *           (used to handle NaN and Inf)
  308: *
  309:             IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
  310: *
  311: *              no interchange, use 1-by-1 pivot block
  312: *
  313:                KP = K
  314: *
  315:             ELSE
  316: *
  317:                DONE = .FALSE.
  318: *
  319: *              Loop until pivot found
  320: *
  321:    12          CONTINUE
  322: *
  323: *                 Begin pivot search loop body
  324: *
  325: *
  326: *                 Copy column IMAX to column KW-1 of W and update it
  327: *
  328:                   CALL ZCOPY( IMAX, A( 1, IMAX ), 1, W( 1, KW-1 ), 1 )
  329:                   CALL ZCOPY( K-IMAX, A( IMAX, IMAX+1 ), LDA,
  330:      $                        W( IMAX+1, KW-1 ), 1 )
  331: *
  332:                   IF( K.LT.N )
  333:      $               CALL ZGEMV( 'No transpose', K, N-K, -CONE,
  334:      $                           A( 1, K+1 ), LDA, W( IMAX, KW+1 ), LDW,
  335:      $                           CONE, W( 1, KW-1 ), 1 )
  336: *
  337: *                 JMAX is the column-index of the largest off-diagonal
  338: *                 element in row IMAX, and ROWMAX is its absolute value.
  339: *                 Determine both ROWMAX and JMAX.
  340: *
  341:                   IF( IMAX.NE.K ) THEN
  342:                      JMAX = IMAX + IZAMAX( K-IMAX, W( IMAX+1, KW-1 ),
  343:      $                                     1 )
  344:                      ROWMAX = CABS1( W( JMAX, KW-1 ) )
  345:                   ELSE
  346:                      ROWMAX = ZERO
  347:                   END IF
  348: *
  349:                   IF( IMAX.GT.1 ) THEN
  350:                      ITEMP = IZAMAX( IMAX-1, W( 1, KW-1 ), 1 )
  351:                      DTEMP = CABS1( W( ITEMP, KW-1 ) )
  352:                      IF( DTEMP.GT.ROWMAX ) THEN
  353:                         ROWMAX = DTEMP
  354:                         JMAX = ITEMP
  355:                      END IF
  356:                   END IF
  357: *
  358: *                 Equivalent to testing for
  359: *                 CABS1( W( IMAX, KW-1 ) ).GE.ALPHA*ROWMAX
  360: *                 (used to handle NaN and Inf)
  361: *
  362:                   IF( .NOT.(CABS1( W( IMAX, KW-1 ) ).LT.ALPHA*ROWMAX ) )
  363:      $            THEN
  364: *
  365: *                    interchange rows and columns K and IMAX,
  366: *                    use 1-by-1 pivot block
  367: *
  368:                      KP = IMAX
  369: *
  370: *                    copy column KW-1 of W to column KW of W
  371: *
  372:                      CALL ZCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
  373: *
  374:                      DONE = .TRUE.
  375: *
  376: *                 Equivalent to testing for ROWMAX.EQ.COLMAX,
  377: *                 (used to handle NaN and Inf)
  378: *
  379:                   ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
  380:      $            THEN
  381: *
  382: *                    interchange rows and columns K-1 and IMAX,
  383: *                    use 2-by-2 pivot block
  384: *
  385:                      KP = IMAX
  386:                      KSTEP = 2
  387:                      DONE = .TRUE.
  388:                   ELSE
  389: *
  390: *                    Pivot not found: set params and repeat
  391: *
  392:                      P = IMAX
  393:                      COLMAX = ROWMAX
  394:                      IMAX = JMAX
  395: *
  396: *                    Copy updated JMAXth (next IMAXth) column to Kth of W
  397: *
  398:                      CALL ZCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
  399: *
  400:                   END IF
  401: *
  402: *                 End pivot search loop body
  403: *
  404:                IF( .NOT. DONE ) GOTO 12
  405: *
  406:             END IF
  407: *
  408: *           ============================================================
  409: *
  410:             KK = K - KSTEP + 1
  411: *
  412: *           KKW is the column of W which corresponds to column KK of A
  413: *
  414:             KKW = NB + KK - N
  415: *
  416:             IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
  417: *
  418: *              Copy non-updated column K to column P
  419: *
  420:                CALL ZCOPY( K-P, A( P+1, K ), 1, A( P, P+1 ), LDA )
  421:                CALL ZCOPY( P, A( 1, K ), 1, A( 1, P ), 1 )
  422: *
  423: *              Interchange rows K and P in last N-K+1 columns of A
  424: *              and last N-K+2 columns of W
  425: *
  426:                CALL ZSWAP( N-K+1, A( K, K ), LDA, A( P, K ), LDA )
  427:                CALL ZSWAP( N-KK+1, W( K, KKW ), LDW, W( P, KKW ), LDW )
  428:             END IF
  429: *
  430: *           Updated column KP is already stored in column KKW of W
  431: *
  432:             IF( KP.NE.KK ) THEN
  433: *
  434: *              Copy non-updated column KK to column KP
  435: *
  436:                A( KP, K ) = A( KK, K )
  437:                CALL ZCOPY( K-1-KP, A( KP+1, KK ), 1, A( KP, KP+1 ),
  438:      $                     LDA )
  439:                CALL ZCOPY( KP, A( 1, KK ), 1, A( 1, KP ), 1 )
  440: *
  441: *              Interchange rows KK and KP in last N-KK+1 columns
  442: *              of A and W
  443: *
  444:                CALL ZSWAP( N-KK+1, A( KK, KK ), LDA, A( KP, KK ), LDA )
  445:                CALL ZSWAP( N-KK+1, W( KK, KKW ), LDW, W( KP, KKW ),
  446:      $                     LDW )
  447:             END IF
  448: *
  449:             IF( KSTEP.EQ.1 ) THEN
  450: *
  451: *              1-by-1 pivot block D(k): column KW of W now holds
  452: *
  453: *              W(k) = U(k)*D(k)
  454: *
  455: *              where U(k) is the k-th column of U
  456: *
  457: *              Store U(k) in column k of A
  458: *
  459:                CALL ZCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
  460:                IF( K.GT.1 ) THEN
  461:                   IF( CABS1( A( K, K ) ).GE.SFMIN ) THEN
  462:                      R1 = CONE / A( K, K )
  463:                      CALL ZSCAL( K-1, R1, A( 1, K ), 1 )
  464:                   ELSE IF( A( K, K ).NE.CZERO ) THEN
  465:                      DO 14 II = 1, K - 1
  466:                         A( II, K ) = A( II, K ) / A( K, K )
  467:    14                CONTINUE
  468:                   END IF
  469:                END IF
  470: *
  471:             ELSE
  472: *
  473: *              2-by-2 pivot block D(k): columns KW and KW-1 of W now
  474: *              hold
  475: *
  476: *              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
  477: *
  478: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
  479: *              of U
  480: *
  481:                IF( K.GT.2 ) THEN
  482: *
  483: *                 Store U(k) and U(k-1) in columns k and k-1 of A
  484: *
  485:                   D12 = W( K-1, KW )
  486:                   D11 = W( K, KW ) / D12
  487:                   D22 = W( K-1, KW-1 ) / D12
  488:                   T = CONE / ( D11*D22-CONE )
  489:                   DO 20 J = 1, K - 2
  490:                      A( J, K-1 ) = T*( (D11*W( J, KW-1 )-W( J, KW ) ) /
  491:      $                             D12 )
  492:                      A( J, K ) = T*( ( D22*W( J, KW )-W( J, KW-1 ) ) /
  493:      $                           D12 )
  494:    20             CONTINUE
  495:                END IF
  496: *
  497: *              Copy D(k) to A
  498: *
  499:                A( K-1, K-1 ) = W( K-1, KW-1 )
  500:                A( K-1, K ) = W( K-1, KW )
  501:                A( K, K ) = W( K, KW )
  502:             END IF
  503:          END IF
  504: *
  505: *        Store details of the interchanges in IPIV
  506: *
  507:          IF( KSTEP.EQ.1 ) THEN
  508:             IPIV( K ) = KP
  509:          ELSE
  510:             IPIV( K ) = -P
  511:             IPIV( K-1 ) = -KP
  512:          END IF
  513: *
  514: *        Decrease K and return to the start of the main loop
  515: *
  516:          K = K - KSTEP
  517:          GO TO 10
  518: *
  519:    30    CONTINUE
  520: *
  521: *        Update the upper triangle of A11 (= A(1:k,1:k)) as
  522: *
  523: *        A11 := A11 - U12*D*U12**T = A11 - U12*W**T
  524: *
  525: *        computing blocks of NB columns at a time
  526: *
  527:          DO 50 J = ( ( K-1 ) / NB )*NB + 1, 1, -NB
  528:             JB = MIN( NB, K-J+1 )
  529: *
  530: *           Update the upper triangle of the diagonal block
  531: *
  532:             DO 40 JJ = J, J + JB - 1
  533:                CALL ZGEMV( 'No transpose', JJ-J+1, N-K, -CONE,
  534:      $                     A( J, K+1 ), LDA, W( JJ, KW+1 ), LDW, CONE,
  535:      $                     A( J, JJ ), 1 )
  536:    40       CONTINUE
  537: *
  538: *           Update the rectangular superdiagonal block
  539: *
  540:             IF( J.GE.2 )
  541:      $         CALL ZGEMM( 'No transpose', 'Transpose', J-1, JB,
  542:      $                  N-K, -CONE, A( 1, K+1 ), LDA, W( J, KW+1 ), LDW,
  543:      $                  CONE, A( 1, J ), LDA )
  544:    50    CONTINUE
  545: *
  546: *        Put U12 in standard form by partially undoing the interchanges
  547: *        in columns k+1:n
  548: *
  549:          J = K + 1
  550:    60    CONTINUE
  551: *
  552:             KSTEP = 1
  553:             JP1 = 1
  554:             JJ = J
  555:             JP2 = IPIV( J )
  556:             IF( JP2.LT.0 ) THEN
  557:                JP2 = -JP2
  558:                J = J + 1
  559:                JP1 = -IPIV( J )
  560:                KSTEP = 2
  561:             END IF
  562: *
  563:             J = J + 1
  564:             IF( JP2.NE.JJ .AND. J.LE.N )
  565:      $         CALL ZSWAP( N-J+1, A( JP2, J ), LDA, A( JJ, J ), LDA )
  566:             JJ = J - 1
  567:             IF( JP1.NE.JJ .AND. KSTEP.EQ.2 )
  568:      $         CALL ZSWAP( N-J+1, A( JP1, J ), LDA, A( JJ, J ), LDA )
  569:          IF( J.LE.N )
  570:      $      GO TO 60
  571: *
  572: *        Set KB to the number of columns factorized
  573: *
  574:          KB = N - K
  575: *
  576:       ELSE
  577: *
  578: *        Factorize the leading columns of A using the lower triangle
  579: *        of A and working forwards, and compute the matrix W = L21*D
  580: *        for use in updating A22
  581: *
  582: *        K is the main loop index, increasing from 1 in steps of 1 or 2
  583: *
  584:          K = 1
  585:    70   CONTINUE
  586: *
  587: *        Exit from loop
  588: *
  589:          IF( ( K.GE.NB .AND. NB.LT.N ) .OR. K.GT.N )
  590:      $      GO TO 90
  591: *
  592:          KSTEP = 1
  593:          P = K
  594: *
  595: *        Copy column K of A to column K of W and update it
  596: *
  597:          CALL ZCOPY( N-K+1, A( K, K ), 1, W( K, K ), 1 )
  598:          IF( K.GT.1 )
  599:      $      CALL ZGEMV( 'No transpose', N-K+1, K-1, -CONE, A( K, 1 ),
  600:      $                  LDA, W( K, 1 ), LDW, CONE, W( K, K ), 1 )
  601: *
  602: *        Determine rows and columns to be interchanged and whether
  603: *        a 1-by-1 or 2-by-2 pivot block will be used
  604: *
  605:          ABSAKK = CABS1( W( K, K ) )
  606: *
  607: *        IMAX is the row-index of the largest off-diagonal element in
  608: *        column K, and COLMAX is its absolute value.
  609: *        Determine both COLMAX and IMAX.
  610: *
  611:          IF( K.LT.N ) THEN
  612:             IMAX = K + IZAMAX( N-K, W( K+1, K ), 1 )
  613:             COLMAX = CABS1( W( IMAX, K ) )
  614:          ELSE
  615:             COLMAX = ZERO
  616:          END IF
  617: *
  618:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  619: *
  620: *           Column K is zero or underflow: set INFO and continue
  621: *
  622:             IF( INFO.EQ.0 )
  623:      $         INFO = K
  624:             KP = K
  625:             CALL ZCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
  626:          ELSE
  627: *
  628: *           ============================================================
  629: *
  630: *           Test for interchange
  631: *
  632: *           Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
  633: *           (used to handle NaN and Inf)
  634: *
  635:             IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
  636: *
  637: *              no interchange, use 1-by-1 pivot block
  638: *
  639:                KP = K
  640: *
  641:             ELSE
  642: *
  643:                DONE = .FALSE.
  644: *
  645: *              Loop until pivot found
  646: *
  647:    72          CONTINUE
  648: *
  649: *                 Begin pivot search loop body
  650: *
  651: *
  652: *                 Copy column IMAX to column K+1 of W and update it
  653: *
  654:                   CALL ZCOPY( IMAX-K, A( IMAX, K ), LDA, W( K, K+1 ), 1)
  655:                   CALL ZCOPY( N-IMAX+1, A( IMAX, IMAX ), 1,
  656:      $                        W( IMAX, K+1 ), 1 )
  657:                   IF( K.GT.1 )
  658:      $               CALL ZGEMV( 'No transpose', N-K+1, K-1, -CONE,
  659:      $                           A( K, 1 ), LDA, W( IMAX, 1 ), LDW,
  660:      $                           CONE, W( K, K+1 ), 1 )
  661: *
  662: *                 JMAX is the column-index of the largest off-diagonal
  663: *                 element in row IMAX, and ROWMAX is its absolute value.
  664: *                 Determine both ROWMAX and JMAX.
  665: *
  666:                   IF( IMAX.NE.K ) THEN
  667:                      JMAX = K - 1 + IZAMAX( IMAX-K, W( K, K+1 ), 1 )
  668:                      ROWMAX = CABS1( W( JMAX, K+1 ) )
  669:                   ELSE
  670:                      ROWMAX = ZERO
  671:                   END IF
  672: *
  673:                   IF( IMAX.LT.N ) THEN
  674:                      ITEMP = IMAX + IZAMAX( N-IMAX, W( IMAX+1, K+1 ), 1)
  675:                      DTEMP = CABS1( W( ITEMP, K+1 ) )
  676:                      IF( DTEMP.GT.ROWMAX ) THEN
  677:                         ROWMAX = DTEMP
  678:                         JMAX = ITEMP
  679:                      END IF
  680:                   END IF
  681: *
  682: *                 Equivalent to testing for
  683: *                 CABS1( W( IMAX, K+1 ) ).GE.ALPHA*ROWMAX
  684: *                 (used to handle NaN and Inf)
  685: *
  686:                   IF( .NOT.( CABS1( W( IMAX, K+1 ) ).LT.ALPHA*ROWMAX ) )
  687:      $            THEN
  688: *
  689: *                    interchange rows and columns K and IMAX,
  690: *                    use 1-by-1 pivot block
  691: *
  692:                      KP = IMAX
  693: *
  694: *                    copy column K+1 of W to column K of W
  695: *
  696:                      CALL ZCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
  697: *
  698:                      DONE = .TRUE.
  699: *
  700: *                 Equivalent to testing for ROWMAX.EQ.COLMAX,
  701: *                 (used to handle NaN and Inf)
  702: *
  703:                   ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
  704:      $            THEN
  705: *
  706: *                    interchange rows and columns K+1 and IMAX,
  707: *                    use 2-by-2 pivot block
  708: *
  709:                      KP = IMAX
  710:                      KSTEP = 2
  711:                      DONE = .TRUE.
  712:                   ELSE
  713: *
  714: *                    Pivot not found: set params and repeat
  715: *
  716:                      P = IMAX
  717:                      COLMAX = ROWMAX
  718:                      IMAX = JMAX
  719: *
  720: *                    Copy updated JMAXth (next IMAXth) column to Kth of W
  721: *
  722:                      CALL ZCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
  723: *
  724:                   END IF
  725: *
  726: *                 End pivot search loop body
  727: *
  728:                IF( .NOT. DONE ) GOTO 72
  729: *
  730:             END IF
  731: *
  732: *           ============================================================
  733: *
  734:             KK = K + KSTEP - 1
  735: *
  736:             IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
  737: *
  738: *              Copy non-updated column K to column P
  739: *
  740:                CALL ZCOPY( P-K, A( K, K ), 1, A( P, K ), LDA )
  741:                CALL ZCOPY( N-P+1, A( P, K ), 1, A( P, P ), 1 )
  742: *
  743: *              Interchange rows K and P in first K columns of A
  744: *              and first K+1 columns of W
  745: *
  746:                CALL ZSWAP( K, A( K, 1 ), LDA, A( P, 1 ), LDA )
  747:                CALL ZSWAP( KK, W( K, 1 ), LDW, W( P, 1 ), LDW )
  748:             END IF
  749: *
  750: *           Updated column KP is already stored in column KK of W
  751: *
  752:             IF( KP.NE.KK ) THEN
  753: *
  754: *              Copy non-updated column KK to column KP
  755: *
  756:                A( KP, K ) = A( KK, K )
  757:                CALL ZCOPY( KP-K-1, A( K+1, KK ), 1, A( KP, K+1 ), LDA )
  758:                CALL ZCOPY( N-KP+1, A( KP, KK ), 1, A( KP, KP ), 1 )
  759: *
  760: *              Interchange rows KK and KP in first KK columns of A and W
  761: *
  762:                CALL ZSWAP( KK, A( KK, 1 ), LDA, A( KP, 1 ), LDA )
  763:                CALL ZSWAP( KK, W( KK, 1 ), LDW, W( KP, 1 ), LDW )
  764:             END IF
  765: *
  766:             IF( KSTEP.EQ.1 ) THEN
  767: *
  768: *              1-by-1 pivot block D(k): column k of W now holds
  769: *
  770: *              W(k) = L(k)*D(k)
  771: *
  772: *              where L(k) is the k-th column of L
  773: *
  774: *              Store L(k) in column k of A
  775: *
  776:                CALL ZCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
  777:                IF( K.LT.N ) THEN
  778:                   IF( CABS1( A( K, K ) ).GE.SFMIN ) THEN
  779:                      R1 = CONE / A( K, K )
  780:                      CALL ZSCAL( N-K, R1, A( K+1, K ), 1 )
  781:                   ELSE IF( A( K, K ).NE.CZERO ) THEN
  782:                      DO 74 II = K + 1, N
  783:                         A( II, K ) = A( II, K ) / A( K, K )
  784:    74                CONTINUE
  785:                   END IF
  786:                END IF
  787: *
  788:             ELSE
  789: *
  790: *              2-by-2 pivot block D(k): columns k and k+1 of W now hold
  791: *
  792: *              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
  793: *
  794: *              where L(k) and L(k+1) are the k-th and (k+1)-th columns
  795: *              of L
  796: *
  797:                IF( K.LT.N-1 ) THEN
  798: *
  799: *                 Store L(k) and L(k+1) in columns k and k+1 of A
  800: *
  801:                   D21 = W( K+1, K )
  802:                   D11 = W( K+1, K+1 ) / D21
  803:                   D22 = W( K, K ) / D21
  804:                   T = CONE / ( D11*D22-CONE )
  805:                   DO 80 J = K + 2, N
  806:                      A( J, K ) = T*( ( D11*W( J, K )-W( J, K+1 ) ) /
  807:      $                           D21 )
  808:                      A( J, K+1 ) = T*( ( D22*W( J, K+1 )-W( J, K ) ) /
  809:      $                             D21 )
  810:    80             CONTINUE
  811:                END IF
  812: *
  813: *              Copy D(k) to A
  814: *
  815:                A( K, K ) = W( K, K )
  816:                A( K+1, K ) = W( K+1, K )
  817:                A( K+1, K+1 ) = W( K+1, K+1 )
  818:             END IF
  819:          END IF
  820: *
  821: *        Store details of the interchanges in IPIV
  822: *
  823:          IF( KSTEP.EQ.1 ) THEN
  824:             IPIV( K ) = KP
  825:          ELSE
  826:             IPIV( K ) = -P
  827:             IPIV( K+1 ) = -KP
  828:          END IF
  829: *
  830: *        Increase K and return to the start of the main loop
  831: *
  832:          K = K + KSTEP
  833:          GO TO 70
  834: *
  835:    90    CONTINUE
  836: *
  837: *        Update the lower triangle of A22 (= A(k:n,k:n)) as
  838: *
  839: *        A22 := A22 - L21*D*L21**T = A22 - L21*W**T
  840: *
  841: *        computing blocks of NB columns at a time
  842: *
  843:          DO 110 J = K, N, NB
  844:             JB = MIN( NB, N-J+1 )
  845: *
  846: *           Update the lower triangle of the diagonal block
  847: *
  848:             DO 100 JJ = J, J + JB - 1
  849:                CALL ZGEMV( 'No transpose', J+JB-JJ, K-1, -CONE,
  850:      $                     A( JJ, 1 ), LDA, W( JJ, 1 ), LDW, CONE,
  851:      $                     A( JJ, JJ ), 1 )
  852:   100       CONTINUE
  853: *
  854: *           Update the rectangular subdiagonal block
  855: *
  856:             IF( J+JB.LE.N )
  857:      $         CALL ZGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
  858:      $                    K-1, -CONE, A( J+JB, 1 ), LDA, W( J, 1 ), LDW,
  859:      $                    CONE, A( J+JB, J ), LDA )
  860:   110    CONTINUE
  861: *
  862: *        Put L21 in standard form by partially undoing the interchanges
  863: *        in columns 1:k-1
  864: *
  865:          J = K - 1
  866:   120    CONTINUE
  867: *
  868:             KSTEP = 1
  869:             JP1 = 1
  870:             JJ = J
  871:             JP2 = IPIV( J )
  872:             IF( JP2.LT.0 ) THEN
  873:                JP2 = -JP2
  874:                J = J - 1
  875:                JP1 = -IPIV( J )
  876:                KSTEP = 2
  877:             END IF
  878: *
  879:             J = J - 1
  880:             IF( JP2.NE.JJ .AND. J.GE.1 )
  881:      $         CALL ZSWAP( J, A( JP2, 1 ), LDA, A( JJ, 1 ), LDA )
  882:             JJ = J + 1
  883:             IF( JP1.NE.JJ .AND. KSTEP.EQ.2 )
  884:      $         CALL ZSWAP( J, A( JP1, 1 ), LDA, A( JJ, 1 ), LDA )
  885:          IF( J.GE.1 )
  886:      $      GO TO 120
  887: *
  888: *        Set KB to the number of columns factorized
  889: *
  890:          KB = K - 1
  891: *
  892:       END IF
  893:       RETURN
  894: *
  895: *     End of ZLASYF_ROOK
  896: *
  897:       END

CVSweb interface <joel.bertrand@systella.fr>