File:  [local] / rpl / lapack / lapack / zlasyf_rook.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Tue May 29 07:18:30 2018 UTC (6 years ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, rpl-4_1_31, rpl-4_1_30, rpl-4_1_29, rpl-4_1_28, HEAD
Mise à jour de Lapack.

    1: *> \brief \b ZLASYF_ROOK computes a partial factorization of a complex symmetric matrix using the bounded Bunch-Kaufman ("rook") diagonal pivoting method.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZLASYF_ROOK + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlasyf_rook.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlasyf_rook.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlasyf_rook.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLASYF_ROOK( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, KB, LDA, LDW, N, NB
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       COMPLEX*16         A( LDA, * ), W( LDW, * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZLASYF_ROOK computes a partial factorization of a complex symmetric
   39: *> matrix A using the bounded Bunch-Kaufman ("rook") diagonal
   40: *> pivoting method. The partial factorization has the form:
   41: *>
   42: *> A  =  ( I  U12 ) ( A11  0  ) (  I       0    )  if UPLO = 'U', or:
   43: *>       ( 0  U22 ) (  0   D  ) ( U12**T U22**T )
   44: *>
   45: *> A  =  ( L11  0 ) (  D   0  ) ( L11**T L21**T )  if UPLO = 'L'
   46: *>       ( L21  I ) (  0  A22 ) (  0       I    )
   47: *>
   48: *> where the order of D is at most NB. The actual order is returned in
   49: *> the argument KB, and is either NB or NB-1, or N if N <= NB.
   50: *>
   51: *> ZLASYF_ROOK is an auxiliary routine called by ZSYTRF_ROOK. It uses
   52: *> blocked code (calling Level 3 BLAS) to update the submatrix
   53: *> A11 (if UPLO = 'U') or A22 (if UPLO = 'L').
   54: *> \endverbatim
   55: *
   56: *  Arguments:
   57: *  ==========
   58: *
   59: *> \param[in] UPLO
   60: *> \verbatim
   61: *>          UPLO is CHARACTER*1
   62: *>          Specifies whether the upper or lower triangular part of the
   63: *>          symmetric matrix A is stored:
   64: *>          = 'U':  Upper triangular
   65: *>          = 'L':  Lower triangular
   66: *> \endverbatim
   67: *>
   68: *> \param[in] N
   69: *> \verbatim
   70: *>          N is INTEGER
   71: *>          The order of the matrix A.  N >= 0.
   72: *> \endverbatim
   73: *>
   74: *> \param[in] NB
   75: *> \verbatim
   76: *>          NB is INTEGER
   77: *>          The maximum number of columns of the matrix A that should be
   78: *>          factored.  NB should be at least 2 to allow for 2-by-2 pivot
   79: *>          blocks.
   80: *> \endverbatim
   81: *>
   82: *> \param[out] KB
   83: *> \verbatim
   84: *>          KB is INTEGER
   85: *>          The number of columns of A that were actually factored.
   86: *>          KB is either NB-1 or NB, or N if N <= NB.
   87: *> \endverbatim
   88: *>
   89: *> \param[in,out] A
   90: *> \verbatim
   91: *>          A is COMPLEX*16 array, dimension (LDA,N)
   92: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
   93: *>          n-by-n upper triangular part of A contains the upper
   94: *>          triangular part of the matrix A, and the strictly lower
   95: *>          triangular part of A is not referenced.  If UPLO = 'L', the
   96: *>          leading n-by-n lower triangular part of A contains the lower
   97: *>          triangular part of the matrix A, and the strictly upper
   98: *>          triangular part of A is not referenced.
   99: *>          On exit, A contains details of the partial factorization.
  100: *> \endverbatim
  101: *>
  102: *> \param[in] LDA
  103: *> \verbatim
  104: *>          LDA is INTEGER
  105: *>          The leading dimension of the array A.  LDA >= max(1,N).
  106: *> \endverbatim
  107: *>
  108: *> \param[out] IPIV
  109: *> \verbatim
  110: *>          IPIV is INTEGER array, dimension (N)
  111: *>          Details of the interchanges and the block structure of D.
  112: *>
  113: *>          If UPLO = 'U':
  114: *>             Only the last KB elements of IPIV are set.
  115: *>
  116: *>             If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  117: *>             interchanged and D(k,k) is a 1-by-1 diagonal block.
  118: *>
  119: *>             If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
  120: *>             columns k and -IPIV(k) were interchanged and rows and
  121: *>             columns k-1 and -IPIV(k-1) were inerchaged,
  122: *>             D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
  123: *>
  124: *>          If UPLO = 'L':
  125: *>             Only the first KB elements of IPIV are set.
  126: *>
  127: *>             If IPIV(k) > 0, then rows and columns k and IPIV(k)
  128: *>             were interchanged and D(k,k) is a 1-by-1 diagonal block.
  129: *>
  130: *>             If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
  131: *>             columns k and -IPIV(k) were interchanged and rows and
  132: *>             columns k+1 and -IPIV(k+1) were inerchaged,
  133: *>             D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
  134: *> \endverbatim
  135: *>
  136: *> \param[out] W
  137: *> \verbatim
  138: *>          W is COMPLEX*16 array, dimension (LDW,NB)
  139: *> \endverbatim
  140: *>
  141: *> \param[in] LDW
  142: *> \verbatim
  143: *>          LDW is INTEGER
  144: *>          The leading dimension of the array W.  LDW >= max(1,N).
  145: *> \endverbatim
  146: *>
  147: *> \param[out] INFO
  148: *> \verbatim
  149: *>          INFO is INTEGER
  150: *>          = 0: successful exit
  151: *>          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
  152: *>               has been completed, but the block diagonal matrix D is
  153: *>               exactly singular.
  154: *> \endverbatim
  155: *
  156: *  Authors:
  157: *  ========
  158: *
  159: *> \author Univ. of Tennessee
  160: *> \author Univ. of California Berkeley
  161: *> \author Univ. of Colorado Denver
  162: *> \author NAG Ltd.
  163: *
  164: *> \date November 2013
  165: *
  166: *> \ingroup complex16SYcomputational
  167: *
  168: *> \par Contributors:
  169: *  ==================
  170: *>
  171: *> \verbatim
  172: *>
  173: *>  November 2013,  Igor Kozachenko,
  174: *>                  Computer Science Division,
  175: *>                  University of California, Berkeley
  176: *>
  177: *>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
  178: *>                  School of Mathematics,
  179: *>                  University of Manchester
  180: *>
  181: *> \endverbatim
  182: *
  183: *  =====================================================================
  184:       SUBROUTINE ZLASYF_ROOK( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW,
  185:      $                        INFO )
  186: *
  187: *  -- LAPACK computational routine (version 3.5.0) --
  188: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  189: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  190: *     November 2013
  191: *
  192: *     .. Scalar Arguments ..
  193:       CHARACTER          UPLO
  194:       INTEGER            INFO, KB, LDA, LDW, N, NB
  195: *     ..
  196: *     .. Array Arguments ..
  197:       INTEGER            IPIV( * )
  198:       COMPLEX*16         A( LDA, * ), W( LDW, * )
  199: *     ..
  200: *
  201: *  =====================================================================
  202: *
  203: *     .. Parameters ..
  204:       DOUBLE PRECISION   ZERO, ONE
  205:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  206:       DOUBLE PRECISION   EIGHT, SEVTEN
  207:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  208:       COMPLEX*16         CONE, CZERO
  209:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ),
  210:      $                   CZERO = ( 0.0D+0, 0.0D+0 ) )
  211: *     ..
  212: *     .. Local Scalars ..
  213:       LOGICAL            DONE
  214:       INTEGER            IMAX, ITEMP, J, JB, JJ, JMAX, JP1, JP2, K, KK,
  215:      $                   KW, KKW, KP, KSTEP, P, II
  216:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, ROWMAX, DTEMP, SFMIN
  217:       COMPLEX*16         D11, D12, D21, D22, R1, T, Z
  218: *     ..
  219: *     .. External Functions ..
  220:       LOGICAL            LSAME
  221:       INTEGER            IZAMAX
  222:       DOUBLE PRECISION   DLAMCH
  223:       EXTERNAL           LSAME, IZAMAX, DLAMCH
  224: *     ..
  225: *     .. External Subroutines ..
  226:       EXTERNAL           ZCOPY, ZGEMM, ZGEMV, ZSCAL, ZSWAP
  227: *     ..
  228: *     .. Intrinsic Functions ..
  229:       INTRINSIC          ABS, MAX, MIN, SQRT, DIMAG, DBLE
  230: *     ..
  231: *     .. Statement Functions ..
  232:       DOUBLE PRECISION   CABS1
  233: *     ..
  234: *     .. Statement Function definitions ..
  235:       CABS1( Z ) = ABS( DBLE( Z ) ) + ABS( DIMAG( Z ) )
  236: *     ..
  237: *     .. Executable Statements ..
  238: *
  239:       INFO = 0
  240: *
  241: *     Initialize ALPHA for use in choosing pivot block size.
  242: *
  243:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  244: *
  245: *     Compute machine safe minimum
  246: *
  247:       SFMIN = DLAMCH( 'S' )
  248: *
  249:       IF( LSAME( UPLO, 'U' ) ) THEN
  250: *
  251: *        Factorize the trailing columns of A using the upper triangle
  252: *        of A and working backwards, and compute the matrix W = U12*D
  253: *        for use in updating A11
  254: *
  255: *        K is the main loop index, decreasing from N in steps of 1 or 2
  256: *
  257:          K = N
  258:    10    CONTINUE
  259: *
  260: *        KW is the column of W which corresponds to column K of A
  261: *
  262:          KW = NB + K - N
  263: *
  264: *        Exit from loop
  265: *
  266:          IF( ( K.LE.N-NB+1 .AND. NB.LT.N ) .OR. K.LT.1 )
  267:      $      GO TO 30
  268: *
  269:          KSTEP = 1
  270:          P = K
  271: *
  272: *        Copy column K of A to column KW of W and update it
  273: *
  274:          CALL ZCOPY( K, A( 1, K ), 1, W( 1, KW ), 1 )
  275:          IF( K.LT.N )
  276:      $      CALL ZGEMV( 'No transpose', K, N-K, -CONE, A( 1, K+1 ),
  277:      $                  LDA, W( K, KW+1 ), LDW, CONE, W( 1, KW ), 1 )
  278: *
  279: *        Determine rows and columns to be interchanged and whether
  280: *        a 1-by-1 or 2-by-2 pivot block will be used
  281: *
  282:          ABSAKK = CABS1( W( K, KW ) )
  283: *
  284: *        IMAX is the row-index of the largest off-diagonal element in
  285: *        column K, and COLMAX is its absolute value.
  286: *        Determine both COLMAX and IMAX.
  287: *
  288:          IF( K.GT.1 ) THEN
  289:             IMAX = IZAMAX( K-1, W( 1, KW ), 1 )
  290:             COLMAX = CABS1( W( IMAX, KW ) )
  291:          ELSE
  292:             COLMAX = ZERO
  293:          END IF
  294: *
  295:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  296: *
  297: *           Column K is zero or underflow: set INFO and continue
  298: *
  299:             IF( INFO.EQ.0 )
  300:      $         INFO = K
  301:             KP = K
  302:             CALL ZCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
  303:          ELSE
  304: *
  305: *           ============================================================
  306: *
  307: *           Test for interchange
  308: *
  309: *           Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
  310: *           (used to handle NaN and Inf)
  311: *
  312:             IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
  313: *
  314: *              no interchange, use 1-by-1 pivot block
  315: *
  316:                KP = K
  317: *
  318:             ELSE
  319: *
  320:                DONE = .FALSE.
  321: *
  322: *              Loop until pivot found
  323: *
  324:    12          CONTINUE
  325: *
  326: *                 Begin pivot search loop body
  327: *
  328: *
  329: *                 Copy column IMAX to column KW-1 of W and update it
  330: *
  331:                   CALL ZCOPY( IMAX, A( 1, IMAX ), 1, W( 1, KW-1 ), 1 )
  332:                   CALL ZCOPY( K-IMAX, A( IMAX, IMAX+1 ), LDA,
  333:      $                        W( IMAX+1, KW-1 ), 1 )
  334: *
  335:                   IF( K.LT.N )
  336:      $               CALL ZGEMV( 'No transpose', K, N-K, -CONE,
  337:      $                           A( 1, K+1 ), LDA, W( IMAX, KW+1 ), LDW,
  338:      $                           CONE, W( 1, KW-1 ), 1 )
  339: *
  340: *                 JMAX is the column-index of the largest off-diagonal
  341: *                 element in row IMAX, and ROWMAX is its absolute value.
  342: *                 Determine both ROWMAX and JMAX.
  343: *
  344:                   IF( IMAX.NE.K ) THEN
  345:                      JMAX = IMAX + IZAMAX( K-IMAX, W( IMAX+1, KW-1 ),
  346:      $                                     1 )
  347:                      ROWMAX = CABS1( W( JMAX, KW-1 ) )
  348:                   ELSE
  349:                      ROWMAX = ZERO
  350:                   END IF
  351: *
  352:                   IF( IMAX.GT.1 ) THEN
  353:                      ITEMP = IZAMAX( IMAX-1, W( 1, KW-1 ), 1 )
  354:                      DTEMP = CABS1( W( ITEMP, KW-1 ) )
  355:                      IF( DTEMP.GT.ROWMAX ) THEN
  356:                         ROWMAX = DTEMP
  357:                         JMAX = ITEMP
  358:                      END IF
  359:                   END IF
  360: *
  361: *                 Equivalent to testing for
  362: *                 CABS1( W( IMAX, KW-1 ) ).GE.ALPHA*ROWMAX
  363: *                 (used to handle NaN and Inf)
  364: *
  365:                   IF( .NOT.(CABS1( W( IMAX, KW-1 ) ).LT.ALPHA*ROWMAX ) )
  366:      $            THEN
  367: *
  368: *                    interchange rows and columns K and IMAX,
  369: *                    use 1-by-1 pivot block
  370: *
  371:                      KP = IMAX
  372: *
  373: *                    copy column KW-1 of W to column KW of W
  374: *
  375:                      CALL ZCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
  376: *
  377:                      DONE = .TRUE.
  378: *
  379: *                 Equivalent to testing for ROWMAX.EQ.COLMAX,
  380: *                 (used to handle NaN and Inf)
  381: *
  382:                   ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
  383:      $            THEN
  384: *
  385: *                    interchange rows and columns K-1 and IMAX,
  386: *                    use 2-by-2 pivot block
  387: *
  388:                      KP = IMAX
  389:                      KSTEP = 2
  390:                      DONE = .TRUE.
  391:                   ELSE
  392: *
  393: *                    Pivot not found: set params and repeat
  394: *
  395:                      P = IMAX
  396:                      COLMAX = ROWMAX
  397:                      IMAX = JMAX
  398: *
  399: *                    Copy updated JMAXth (next IMAXth) column to Kth of W
  400: *
  401:                      CALL ZCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
  402: *
  403:                   END IF
  404: *
  405: *                 End pivot search loop body
  406: *
  407:                IF( .NOT. DONE ) GOTO 12
  408: *
  409:             END IF
  410: *
  411: *           ============================================================
  412: *
  413:             KK = K - KSTEP + 1
  414: *
  415: *           KKW is the column of W which corresponds to column KK of A
  416: *
  417:             KKW = NB + KK - N
  418: *
  419:             IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
  420: *
  421: *              Copy non-updated column K to column P
  422: *
  423:                CALL ZCOPY( K-P, A( P+1, K ), 1, A( P, P+1 ), LDA )
  424:                CALL ZCOPY( P, A( 1, K ), 1, A( 1, P ), 1 )
  425: *
  426: *              Interchange rows K and P in last N-K+1 columns of A
  427: *              and last N-K+2 columns of W
  428: *
  429:                CALL ZSWAP( N-K+1, A( K, K ), LDA, A( P, K ), LDA )
  430:                CALL ZSWAP( N-KK+1, W( K, KKW ), LDW, W( P, KKW ), LDW )
  431:             END IF
  432: *
  433: *           Updated column KP is already stored in column KKW of W
  434: *
  435:             IF( KP.NE.KK ) THEN
  436: *
  437: *              Copy non-updated column KK to column KP
  438: *
  439:                A( KP, K ) = A( KK, K )
  440:                CALL ZCOPY( K-1-KP, A( KP+1, KK ), 1, A( KP, KP+1 ),
  441:      $                     LDA )
  442:                CALL ZCOPY( KP, A( 1, KK ), 1, A( 1, KP ), 1 )
  443: *
  444: *              Interchange rows KK and KP in last N-KK+1 columns
  445: *              of A and W
  446: *
  447:                CALL ZSWAP( N-KK+1, A( KK, KK ), LDA, A( KP, KK ), LDA )
  448:                CALL ZSWAP( N-KK+1, W( KK, KKW ), LDW, W( KP, KKW ),
  449:      $                     LDW )
  450:             END IF
  451: *
  452:             IF( KSTEP.EQ.1 ) THEN
  453: *
  454: *              1-by-1 pivot block D(k): column KW of W now holds
  455: *
  456: *              W(k) = U(k)*D(k)
  457: *
  458: *              where U(k) is the k-th column of U
  459: *
  460: *              Store U(k) in column k of A
  461: *
  462:                CALL ZCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
  463:                IF( K.GT.1 ) THEN
  464:                   IF( CABS1( A( K, K ) ).GE.SFMIN ) THEN
  465:                      R1 = CONE / A( K, K )
  466:                      CALL ZSCAL( K-1, R1, A( 1, K ), 1 )
  467:                   ELSE IF( A( K, K ).NE.CZERO ) THEN
  468:                      DO 14 II = 1, K - 1
  469:                         A( II, K ) = A( II, K ) / A( K, K )
  470:    14                CONTINUE
  471:                   END IF
  472:                END IF
  473: *
  474:             ELSE
  475: *
  476: *              2-by-2 pivot block D(k): columns KW and KW-1 of W now
  477: *              hold
  478: *
  479: *              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
  480: *
  481: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
  482: *              of U
  483: *
  484:                IF( K.GT.2 ) THEN
  485: *
  486: *                 Store U(k) and U(k-1) in columns k and k-1 of A
  487: *
  488:                   D12 = W( K-1, KW )
  489:                   D11 = W( K, KW ) / D12
  490:                   D22 = W( K-1, KW-1 ) / D12
  491:                   T = CONE / ( D11*D22-CONE )
  492:                   DO 20 J = 1, K - 2
  493:                      A( J, K-1 ) = T*( (D11*W( J, KW-1 )-W( J, KW ) ) /
  494:      $                             D12 )
  495:                      A( J, K ) = T*( ( D22*W( J, KW )-W( J, KW-1 ) ) /
  496:      $                           D12 )
  497:    20             CONTINUE
  498:                END IF
  499: *
  500: *              Copy D(k) to A
  501: *
  502:                A( K-1, K-1 ) = W( K-1, KW-1 )
  503:                A( K-1, K ) = W( K-1, KW )
  504:                A( K, K ) = W( K, KW )
  505:             END IF
  506:          END IF
  507: *
  508: *        Store details of the interchanges in IPIV
  509: *
  510:          IF( KSTEP.EQ.1 ) THEN
  511:             IPIV( K ) = KP
  512:          ELSE
  513:             IPIV( K ) = -P
  514:             IPIV( K-1 ) = -KP
  515:          END IF
  516: *
  517: *        Decrease K and return to the start of the main loop
  518: *
  519:          K = K - KSTEP
  520:          GO TO 10
  521: *
  522:    30    CONTINUE
  523: *
  524: *        Update the upper triangle of A11 (= A(1:k,1:k)) as
  525: *
  526: *        A11 := A11 - U12*D*U12**T = A11 - U12*W**T
  527: *
  528: *        computing blocks of NB columns at a time
  529: *
  530:          DO 50 J = ( ( K-1 ) / NB )*NB + 1, 1, -NB
  531:             JB = MIN( NB, K-J+1 )
  532: *
  533: *           Update the upper triangle of the diagonal block
  534: *
  535:             DO 40 JJ = J, J + JB - 1
  536:                CALL ZGEMV( 'No transpose', JJ-J+1, N-K, -CONE,
  537:      $                     A( J, K+1 ), LDA, W( JJ, KW+1 ), LDW, CONE,
  538:      $                     A( J, JJ ), 1 )
  539:    40       CONTINUE
  540: *
  541: *           Update the rectangular superdiagonal block
  542: *
  543:             IF( J.GE.2 )
  544:      $         CALL ZGEMM( 'No transpose', 'Transpose', J-1, JB,
  545:      $                  N-K, -CONE, A( 1, K+1 ), LDA, W( J, KW+1 ), LDW,
  546:      $                  CONE, A( 1, J ), LDA )
  547:    50    CONTINUE
  548: *
  549: *        Put U12 in standard form by partially undoing the interchanges
  550: *        in columns k+1:n
  551: *
  552:          J = K + 1
  553:    60    CONTINUE
  554: *
  555:             KSTEP = 1
  556:             JP1 = 1
  557:             JJ = J
  558:             JP2 = IPIV( J )
  559:             IF( JP2.LT.0 ) THEN
  560:                JP2 = -JP2
  561:                J = J + 1
  562:                JP1 = -IPIV( J )
  563:                KSTEP = 2
  564:             END IF
  565: *
  566:             J = J + 1
  567:             IF( JP2.NE.JJ .AND. J.LE.N )
  568:      $         CALL ZSWAP( N-J+1, A( JP2, J ), LDA, A( JJ, J ), LDA )
  569:             JJ = J - 1
  570:             IF( JP1.NE.JJ .AND. KSTEP.EQ.2 )
  571:      $         CALL ZSWAP( N-J+1, A( JP1, J ), LDA, A( JJ, J ), LDA )
  572:          IF( J.LE.N )
  573:      $      GO TO 60
  574: *
  575: *        Set KB to the number of columns factorized
  576: *
  577:          KB = N - K
  578: *
  579:       ELSE
  580: *
  581: *        Factorize the leading columns of A using the lower triangle
  582: *        of A and working forwards, and compute the matrix W = L21*D
  583: *        for use in updating A22
  584: *
  585: *        K is the main loop index, increasing from 1 in steps of 1 or 2
  586: *
  587:          K = 1
  588:    70   CONTINUE
  589: *
  590: *        Exit from loop
  591: *
  592:          IF( ( K.GE.NB .AND. NB.LT.N ) .OR. K.GT.N )
  593:      $      GO TO 90
  594: *
  595:          KSTEP = 1
  596:          P = K
  597: *
  598: *        Copy column K of A to column K of W and update it
  599: *
  600:          CALL ZCOPY( N-K+1, A( K, K ), 1, W( K, K ), 1 )
  601:          IF( K.GT.1 )
  602:      $      CALL ZGEMV( 'No transpose', N-K+1, K-1, -CONE, A( K, 1 ),
  603:      $                  LDA, W( K, 1 ), LDW, CONE, W( K, K ), 1 )
  604: *
  605: *        Determine rows and columns to be interchanged and whether
  606: *        a 1-by-1 or 2-by-2 pivot block will be used
  607: *
  608:          ABSAKK = CABS1( W( K, K ) )
  609: *
  610: *        IMAX is the row-index of the largest off-diagonal element in
  611: *        column K, and COLMAX is its absolute value.
  612: *        Determine both COLMAX and IMAX.
  613: *
  614:          IF( K.LT.N ) THEN
  615:             IMAX = K + IZAMAX( N-K, W( K+1, K ), 1 )
  616:             COLMAX = CABS1( W( IMAX, K ) )
  617:          ELSE
  618:             COLMAX = ZERO
  619:          END IF
  620: *
  621:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  622: *
  623: *           Column K is zero or underflow: set INFO and continue
  624: *
  625:             IF( INFO.EQ.0 )
  626:      $         INFO = K
  627:             KP = K
  628:             CALL ZCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
  629:          ELSE
  630: *
  631: *           ============================================================
  632: *
  633: *           Test for interchange
  634: *
  635: *           Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
  636: *           (used to handle NaN and Inf)
  637: *
  638:             IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
  639: *
  640: *              no interchange, use 1-by-1 pivot block
  641: *
  642:                KP = K
  643: *
  644:             ELSE
  645: *
  646:                DONE = .FALSE.
  647: *
  648: *              Loop until pivot found
  649: *
  650:    72          CONTINUE
  651: *
  652: *                 Begin pivot search loop body
  653: *
  654: *
  655: *                 Copy column IMAX to column K+1 of W and update it
  656: *
  657:                   CALL ZCOPY( IMAX-K, A( IMAX, K ), LDA, W( K, K+1 ), 1)
  658:                   CALL ZCOPY( N-IMAX+1, A( IMAX, IMAX ), 1,
  659:      $                        W( IMAX, K+1 ), 1 )
  660:                   IF( K.GT.1 )
  661:      $               CALL ZGEMV( 'No transpose', N-K+1, K-1, -CONE,
  662:      $                           A( K, 1 ), LDA, W( IMAX, 1 ), LDW,
  663:      $                           CONE, W( K, K+1 ), 1 )
  664: *
  665: *                 JMAX is the column-index of the largest off-diagonal
  666: *                 element in row IMAX, and ROWMAX is its absolute value.
  667: *                 Determine both ROWMAX and JMAX.
  668: *
  669:                   IF( IMAX.NE.K ) THEN
  670:                      JMAX = K - 1 + IZAMAX( IMAX-K, W( K, K+1 ), 1 )
  671:                      ROWMAX = CABS1( W( JMAX, K+1 ) )
  672:                   ELSE
  673:                      ROWMAX = ZERO
  674:                   END IF
  675: *
  676:                   IF( IMAX.LT.N ) THEN
  677:                      ITEMP = IMAX + IZAMAX( N-IMAX, W( IMAX+1, K+1 ), 1)
  678:                      DTEMP = CABS1( W( ITEMP, K+1 ) )
  679:                      IF( DTEMP.GT.ROWMAX ) THEN
  680:                         ROWMAX = DTEMP
  681:                         JMAX = ITEMP
  682:                      END IF
  683:                   END IF
  684: *
  685: *                 Equivalent to testing for
  686: *                 CABS1( W( IMAX, K+1 ) ).GE.ALPHA*ROWMAX
  687: *                 (used to handle NaN and Inf)
  688: *
  689:                   IF( .NOT.( CABS1( W( IMAX, K+1 ) ).LT.ALPHA*ROWMAX ) )
  690:      $            THEN
  691: *
  692: *                    interchange rows and columns K and IMAX,
  693: *                    use 1-by-1 pivot block
  694: *
  695:                      KP = IMAX
  696: *
  697: *                    copy column K+1 of W to column K of W
  698: *
  699:                      CALL ZCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
  700: *
  701:                      DONE = .TRUE.
  702: *
  703: *                 Equivalent to testing for ROWMAX.EQ.COLMAX,
  704: *                 (used to handle NaN and Inf)
  705: *
  706:                   ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
  707:      $            THEN
  708: *
  709: *                    interchange rows and columns K+1 and IMAX,
  710: *                    use 2-by-2 pivot block
  711: *
  712:                      KP = IMAX
  713:                      KSTEP = 2
  714:                      DONE = .TRUE.
  715:                   ELSE
  716: *
  717: *                    Pivot not found: set params and repeat
  718: *
  719:                      P = IMAX
  720:                      COLMAX = ROWMAX
  721:                      IMAX = JMAX
  722: *
  723: *                    Copy updated JMAXth (next IMAXth) column to Kth of W
  724: *
  725:                      CALL ZCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
  726: *
  727:                   END IF
  728: *
  729: *                 End pivot search loop body
  730: *
  731:                IF( .NOT. DONE ) GOTO 72
  732: *
  733:             END IF
  734: *
  735: *           ============================================================
  736: *
  737:             KK = K + KSTEP - 1
  738: *
  739:             IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
  740: *
  741: *              Copy non-updated column K to column P
  742: *
  743:                CALL ZCOPY( P-K, A( K, K ), 1, A( P, K ), LDA )
  744:                CALL ZCOPY( N-P+1, A( P, K ), 1, A( P, P ), 1 )
  745: *
  746: *              Interchange rows K and P in first K columns of A
  747: *              and first K+1 columns of W
  748: *
  749:                CALL ZSWAP( K, A( K, 1 ), LDA, A( P, 1 ), LDA )
  750:                CALL ZSWAP( KK, W( K, 1 ), LDW, W( P, 1 ), LDW )
  751:             END IF
  752: *
  753: *           Updated column KP is already stored in column KK of W
  754: *
  755:             IF( KP.NE.KK ) THEN
  756: *
  757: *              Copy non-updated column KK to column KP
  758: *
  759:                A( KP, K ) = A( KK, K )
  760:                CALL ZCOPY( KP-K-1, A( K+1, KK ), 1, A( KP, K+1 ), LDA )
  761:                CALL ZCOPY( N-KP+1, A( KP, KK ), 1, A( KP, KP ), 1 )
  762: *
  763: *              Interchange rows KK and KP in first KK columns of A and W
  764: *
  765:                CALL ZSWAP( KK, A( KK, 1 ), LDA, A( KP, 1 ), LDA )
  766:                CALL ZSWAP( KK, W( KK, 1 ), LDW, W( KP, 1 ), LDW )
  767:             END IF
  768: *
  769:             IF( KSTEP.EQ.1 ) THEN
  770: *
  771: *              1-by-1 pivot block D(k): column k of W now holds
  772: *
  773: *              W(k) = L(k)*D(k)
  774: *
  775: *              where L(k) is the k-th column of L
  776: *
  777: *              Store L(k) in column k of A
  778: *
  779:                CALL ZCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
  780:                IF( K.LT.N ) THEN
  781:                   IF( CABS1( A( K, K ) ).GE.SFMIN ) THEN
  782:                      R1 = CONE / A( K, K )
  783:                      CALL ZSCAL( N-K, R1, A( K+1, K ), 1 )
  784:                   ELSE IF( A( K, K ).NE.CZERO ) THEN
  785:                      DO 74 II = K + 1, N
  786:                         A( II, K ) = A( II, K ) / A( K, K )
  787:    74                CONTINUE
  788:                   END IF
  789:                END IF
  790: *
  791:             ELSE
  792: *
  793: *              2-by-2 pivot block D(k): columns k and k+1 of W now hold
  794: *
  795: *              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
  796: *
  797: *              where L(k) and L(k+1) are the k-th and (k+1)-th columns
  798: *              of L
  799: *
  800:                IF( K.LT.N-1 ) THEN
  801: *
  802: *                 Store L(k) and L(k+1) in columns k and k+1 of A
  803: *
  804:                   D21 = W( K+1, K )
  805:                   D11 = W( K+1, K+1 ) / D21
  806:                   D22 = W( K, K ) / D21
  807:                   T = CONE / ( D11*D22-CONE )
  808:                   DO 80 J = K + 2, N
  809:                      A( J, K ) = T*( ( D11*W( J, K )-W( J, K+1 ) ) /
  810:      $                           D21 )
  811:                      A( J, K+1 ) = T*( ( D22*W( J, K+1 )-W( J, K ) ) /
  812:      $                             D21 )
  813:    80             CONTINUE
  814:                END IF
  815: *
  816: *              Copy D(k) to A
  817: *
  818:                A( K, K ) = W( K, K )
  819:                A( K+1, K ) = W( K+1, K )
  820:                A( K+1, K+1 ) = W( K+1, K+1 )
  821:             END IF
  822:          END IF
  823: *
  824: *        Store details of the interchanges in IPIV
  825: *
  826:          IF( KSTEP.EQ.1 ) THEN
  827:             IPIV( K ) = KP
  828:          ELSE
  829:             IPIV( K ) = -P
  830:             IPIV( K+1 ) = -KP
  831:          END IF
  832: *
  833: *        Increase K and return to the start of the main loop
  834: *
  835:          K = K + KSTEP
  836:          GO TO 70
  837: *
  838:    90    CONTINUE
  839: *
  840: *        Update the lower triangle of A22 (= A(k:n,k:n)) as
  841: *
  842: *        A22 := A22 - L21*D*L21**T = A22 - L21*W**T
  843: *
  844: *        computing blocks of NB columns at a time
  845: *
  846:          DO 110 J = K, N, NB
  847:             JB = MIN( NB, N-J+1 )
  848: *
  849: *           Update the lower triangle of the diagonal block
  850: *
  851:             DO 100 JJ = J, J + JB - 1
  852:                CALL ZGEMV( 'No transpose', J+JB-JJ, K-1, -CONE,
  853:      $                     A( JJ, 1 ), LDA, W( JJ, 1 ), LDW, CONE,
  854:      $                     A( JJ, JJ ), 1 )
  855:   100       CONTINUE
  856: *
  857: *           Update the rectangular subdiagonal block
  858: *
  859:             IF( J+JB.LE.N )
  860:      $         CALL ZGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
  861:      $                    K-1, -CONE, A( J+JB, 1 ), LDA, W( J, 1 ), LDW,
  862:      $                    CONE, A( J+JB, J ), LDA )
  863:   110    CONTINUE
  864: *
  865: *        Put L21 in standard form by partially undoing the interchanges
  866: *        in columns 1:k-1
  867: *
  868:          J = K - 1
  869:   120    CONTINUE
  870: *
  871:             KSTEP = 1
  872:             JP1 = 1
  873:             JJ = J
  874:             JP2 = IPIV( J )
  875:             IF( JP2.LT.0 ) THEN
  876:                JP2 = -JP2
  877:                J = J - 1
  878:                JP1 = -IPIV( J )
  879:                KSTEP = 2
  880:             END IF
  881: *
  882:             J = J - 1
  883:             IF( JP2.NE.JJ .AND. J.GE.1 )
  884:      $         CALL ZSWAP( J, A( JP2, 1 ), LDA, A( JJ, 1 ), LDA )
  885:             JJ = J + 1
  886:             IF( JP1.NE.JJ .AND. KSTEP.EQ.2 )
  887:      $         CALL ZSWAP( J, A( JP1, 1 ), LDA, A( JJ, 1 ), LDA )
  888:          IF( J.GE.1 )
  889:      $      GO TO 120
  890: *
  891: *        Set KB to the number of columns factorized
  892: *
  893:          KB = K - 1
  894: *
  895:       END IF
  896:       RETURN
  897: *
  898: *     End of ZLASYF_ROOK
  899: *
  900:       END

CVSweb interface <joel.bertrand@systella.fr>