File:  [local] / rpl / lapack / lapack / zlasyf_rk.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:32 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZLASYF_RK computes a partial factorization of a complex symmetric indefinite matrix using bounded Bunch-Kaufman (rook) diagonal pivoting method.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZLASYF_RK + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlasyf_rk.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlasyf_rk.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlasyf_rk.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLASYF_RK( UPLO, N, NB, KB, A, LDA, E, IPIV, W, LDW,
   22: *                             INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          UPLO
   26: *       INTEGER            INFO, KB, LDA, LDW, N, NB
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       INTEGER            IPIV( * )
   30: *       COMPLEX*16         A( LDA, * ), E( * ), W( LDW, * )
   31: *       ..
   32: *
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *> ZLASYF_RK computes a partial factorization of a complex symmetric
   39: *> matrix A using the bounded Bunch-Kaufman (rook) diagonal
   40: *> pivoting method. The partial factorization has the form:
   41: *>
   42: *> A  =  ( I  U12 ) ( A11  0  ) (  I       0    )  if UPLO = 'U', or:
   43: *>       ( 0  U22 ) (  0   D  ) ( U12**T U22**T )
   44: *>
   45: *> A  =  ( L11  0 ) (  D   0  ) ( L11**T L21**T )  if UPLO = 'L',
   46: *>       ( L21  I ) (  0  A22 ) (  0       I    )
   47: *>
   48: *> where the order of D is at most NB. The actual order is returned in
   49: *> the argument KB, and is either NB or NB-1, or N if N <= NB.
   50: *>
   51: *> ZLASYF_RK is an auxiliary routine called by ZSYTRF_RK. It uses
   52: *> blocked code (calling Level 3 BLAS) to update the submatrix
   53: *> A11 (if UPLO = 'U') or A22 (if UPLO = 'L').
   54: *> \endverbatim
   55: *
   56: *  Arguments:
   57: *  ==========
   58: *
   59: *> \param[in] UPLO
   60: *> \verbatim
   61: *>          UPLO is CHARACTER*1
   62: *>          Specifies whether the upper or lower triangular part of the
   63: *>          symmetric matrix A is stored:
   64: *>          = 'U':  Upper triangular
   65: *>          = 'L':  Lower triangular
   66: *> \endverbatim
   67: *>
   68: *> \param[in] N
   69: *> \verbatim
   70: *>          N is INTEGER
   71: *>          The order of the matrix A.  N >= 0.
   72: *> \endverbatim
   73: *>
   74: *> \param[in] NB
   75: *> \verbatim
   76: *>          NB is INTEGER
   77: *>          The maximum number of columns of the matrix A that should be
   78: *>          factored.  NB should be at least 2 to allow for 2-by-2 pivot
   79: *>          blocks.
   80: *> \endverbatim
   81: *>
   82: *> \param[out] KB
   83: *> \verbatim
   84: *>          KB is INTEGER
   85: *>          The number of columns of A that were actually factored.
   86: *>          KB is either NB-1 or NB, or N if N <= NB.
   87: *> \endverbatim
   88: *>
   89: *> \param[in,out] A
   90: *> \verbatim
   91: *>          A is COMPLEX*16 array, dimension (LDA,N)
   92: *>          On entry, the symmetric matrix A.
   93: *>            If UPLO = 'U': the leading N-by-N upper triangular part
   94: *>            of A contains the upper triangular part of the matrix A,
   95: *>            and the strictly lower triangular part of A is not
   96: *>            referenced.
   97: *>
   98: *>            If UPLO = 'L': the leading N-by-N lower triangular part
   99: *>            of A contains the lower triangular part of the matrix A,
  100: *>            and the strictly upper triangular part of A is not
  101: *>            referenced.
  102: *>
  103: *>          On exit, contains:
  104: *>            a) ONLY diagonal elements of the symmetric block diagonal
  105: *>               matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
  106: *>               (superdiagonal (or subdiagonal) elements of D
  107: *>                are stored on exit in array E), and
  108: *>            b) If UPLO = 'U': factor U in the superdiagonal part of A.
  109: *>               If UPLO = 'L': factor L in the subdiagonal part of A.
  110: *> \endverbatim
  111: *>
  112: *> \param[in] LDA
  113: *> \verbatim
  114: *>          LDA is INTEGER
  115: *>          The leading dimension of the array A.  LDA >= max(1,N).
  116: *> \endverbatim
  117: *>
  118: *> \param[out] E
  119: *> \verbatim
  120: *>          E is COMPLEX*16 array, dimension (N)
  121: *>          On exit, contains the superdiagonal (or subdiagonal)
  122: *>          elements of the symmetric block diagonal matrix D
  123: *>          with 1-by-1 or 2-by-2 diagonal blocks, where
  124: *>          If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
  125: *>          If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.
  126: *>
  127: *>          NOTE: For 1-by-1 diagonal block D(k), where
  128: *>          1 <= k <= N, the element E(k) is set to 0 in both
  129: *>          UPLO = 'U' or UPLO = 'L' cases.
  130: *> \endverbatim
  131: *>
  132: *> \param[out] IPIV
  133: *> \verbatim
  134: *>          IPIV is INTEGER array, dimension (N)
  135: *>          IPIV describes the permutation matrix P in the factorization
  136: *>          of matrix A as follows. The absolute value of IPIV(k)
  137: *>          represents the index of row and column that were
  138: *>          interchanged with the k-th row and column. The value of UPLO
  139: *>          describes the order in which the interchanges were applied.
  140: *>          Also, the sign of IPIV represents the block structure of
  141: *>          the symmetric block diagonal matrix D with 1-by-1 or 2-by-2
  142: *>          diagonal blocks which correspond to 1 or 2 interchanges
  143: *>          at each factorization step.
  144: *>
  145: *>          If UPLO = 'U',
  146: *>          ( in factorization order, k decreases from N to 1 ):
  147: *>            a) A single positive entry IPIV(k) > 0 means:
  148: *>               D(k,k) is a 1-by-1 diagonal block.
  149: *>               If IPIV(k) != k, rows and columns k and IPIV(k) were
  150: *>               interchanged in the submatrix A(1:N,N-KB+1:N);
  151: *>               If IPIV(k) = k, no interchange occurred.
  152: *>
  153: *>
  154: *>            b) A pair of consecutive negative entries
  155: *>               IPIV(k) < 0 and IPIV(k-1) < 0 means:
  156: *>               D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
  157: *>               (NOTE: negative entries in IPIV appear ONLY in pairs).
  158: *>               1) If -IPIV(k) != k, rows and columns
  159: *>                  k and -IPIV(k) were interchanged
  160: *>                  in the matrix A(1:N,N-KB+1:N).
  161: *>                  If -IPIV(k) = k, no interchange occurred.
  162: *>               2) If -IPIV(k-1) != k-1, rows and columns
  163: *>                  k-1 and -IPIV(k-1) were interchanged
  164: *>                  in the submatrix A(1:N,N-KB+1:N).
  165: *>                  If -IPIV(k-1) = k-1, no interchange occurred.
  166: *>
  167: *>            c) In both cases a) and b) is always ABS( IPIV(k) ) <= k.
  168: *>
  169: *>            d) NOTE: Any entry IPIV(k) is always NONZERO on output.
  170: *>
  171: *>          If UPLO = 'L',
  172: *>          ( in factorization order, k increases from 1 to N ):
  173: *>            a) A single positive entry IPIV(k) > 0 means:
  174: *>               D(k,k) is a 1-by-1 diagonal block.
  175: *>               If IPIV(k) != k, rows and columns k and IPIV(k) were
  176: *>               interchanged in the submatrix A(1:N,1:KB).
  177: *>               If IPIV(k) = k, no interchange occurred.
  178: *>
  179: *>            b) A pair of consecutive negative entries
  180: *>               IPIV(k) < 0 and IPIV(k+1) < 0 means:
  181: *>               D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
  182: *>               (NOTE: negative entries in IPIV appear ONLY in pairs).
  183: *>               1) If -IPIV(k) != k, rows and columns
  184: *>                  k and -IPIV(k) were interchanged
  185: *>                  in the submatrix A(1:N,1:KB).
  186: *>                  If -IPIV(k) = k, no interchange occurred.
  187: *>               2) If -IPIV(k+1) != k+1, rows and columns
  188: *>                  k-1 and -IPIV(k-1) were interchanged
  189: *>                  in the submatrix A(1:N,1:KB).
  190: *>                  If -IPIV(k+1) = k+1, no interchange occurred.
  191: *>
  192: *>            c) In both cases a) and b) is always ABS( IPIV(k) ) >= k.
  193: *>
  194: *>            d) NOTE: Any entry IPIV(k) is always NONZERO on output.
  195: *> \endverbatim
  196: *>
  197: *> \param[out] W
  198: *> \verbatim
  199: *>          W is COMPLEX*16 array, dimension (LDW,NB)
  200: *> \endverbatim
  201: *>
  202: *> \param[in] LDW
  203: *> \verbatim
  204: *>          LDW is INTEGER
  205: *>          The leading dimension of the array W.  LDW >= max(1,N).
  206: *> \endverbatim
  207: *>
  208: *> \param[out] INFO
  209: *> \verbatim
  210: *>          INFO is INTEGER
  211: *>          = 0: successful exit
  212: *>
  213: *>          < 0: If INFO = -k, the k-th argument had an illegal value
  214: *>
  215: *>          > 0: If INFO = k, the matrix A is singular, because:
  216: *>                 If UPLO = 'U': column k in the upper
  217: *>                 triangular part of A contains all zeros.
  218: *>                 If UPLO = 'L': column k in the lower
  219: *>                 triangular part of A contains all zeros.
  220: *>
  221: *>               Therefore D(k,k) is exactly zero, and superdiagonal
  222: *>               elements of column k of U (or subdiagonal elements of
  223: *>               column k of L ) are all zeros. The factorization has
  224: *>               been completed, but the block diagonal matrix D is
  225: *>               exactly singular, and division by zero will occur if
  226: *>               it is used to solve a system of equations.
  227: *>
  228: *>               NOTE: INFO only stores the first occurrence of
  229: *>               a singularity, any subsequent occurrence of singularity
  230: *>               is not stored in INFO even though the factorization
  231: *>               always completes.
  232: *> \endverbatim
  233: *
  234: *  Authors:
  235: *  ========
  236: *
  237: *> \author Univ. of Tennessee
  238: *> \author Univ. of California Berkeley
  239: *> \author Univ. of Colorado Denver
  240: *> \author NAG Ltd.
  241: *
  242: *> \ingroup complex16SYcomputational
  243: *
  244: *> \par Contributors:
  245: *  ==================
  246: *>
  247: *> \verbatim
  248: *>
  249: *>  December 2016,  Igor Kozachenko,
  250: *>                  Computer Science Division,
  251: *>                  University of California, Berkeley
  252: *>
  253: *>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
  254: *>                  School of Mathematics,
  255: *>                  University of Manchester
  256: *>
  257: *> \endverbatim
  258: *
  259: *  =====================================================================
  260:       SUBROUTINE ZLASYF_RK( UPLO, N, NB, KB, A, LDA, E, IPIV, W, LDW,
  261:      $                      INFO )
  262: *
  263: *  -- LAPACK computational routine --
  264: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  265: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  266: *
  267: *     .. Scalar Arguments ..
  268:       CHARACTER          UPLO
  269:       INTEGER            INFO, KB, LDA, LDW, N, NB
  270: *     ..
  271: *     .. Array Arguments ..
  272:       INTEGER            IPIV( * )
  273:       COMPLEX*16         A( LDA, * ), E( * ), W( LDW, * )
  274: *     ..
  275: *
  276: *  =====================================================================
  277: *
  278: *     .. Parameters ..
  279:       DOUBLE PRECISION   ZERO, ONE
  280:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  281:       DOUBLE PRECISION   EIGHT, SEVTEN
  282:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  283:       COMPLEX*16         CONE, CZERO
  284:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ),
  285:      $                   CZERO = ( 0.0D+0, 0.0D+0 ) )
  286: *     ..
  287: *     .. Local Scalars ..
  288:       LOGICAL            DONE
  289:       INTEGER            IMAX, ITEMP, J, JB, JJ, JMAX, K, KK, KW, KKW,
  290:      $                   KP, KSTEP, P, II
  291:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, ROWMAX, SFMIN, DTEMP
  292:       COMPLEX*16         D11, D12, D21, D22, R1, T, Z
  293: *     ..
  294: *     .. External Functions ..
  295:       LOGICAL            LSAME
  296:       INTEGER            IZAMAX
  297:       DOUBLE PRECISION   DLAMCH
  298:       EXTERNAL           LSAME, IZAMAX, DLAMCH
  299: *     ..
  300: *     .. External Subroutines ..
  301:       EXTERNAL           ZCOPY, ZGEMM, ZGEMV, ZSCAL, ZSWAP
  302: *     ..
  303: *     .. Intrinsic Functions ..
  304:       INTRINSIC          ABS, DBLE, DIMAG, MAX, MIN, SQRT
  305: *     ..
  306: *     .. Statement Functions ..
  307:       DOUBLE PRECISION   CABS1
  308: *     ..
  309: *     .. Statement Function definitions ..
  310:       CABS1( Z ) = ABS( DBLE( Z ) ) + ABS( DIMAG( Z ) )
  311: *     ..
  312: *     .. Executable Statements ..
  313: *
  314:       INFO = 0
  315: *
  316: *     Initialize ALPHA for use in choosing pivot block size.
  317: *
  318:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  319: *
  320: *     Compute machine safe minimum
  321: *
  322:       SFMIN = DLAMCH( 'S' )
  323: *
  324:       IF( LSAME( UPLO, 'U' ) ) THEN
  325: *
  326: *        Factorize the trailing columns of A using the upper triangle
  327: *        of A and working backwards, and compute the matrix W = U12*D
  328: *        for use in updating A11
  329: *
  330: *        Initialize the first entry of array E, where superdiagonal
  331: *        elements of D are stored
  332: *
  333:          E( 1 ) = CZERO
  334: *
  335: *        K is the main loop index, decreasing from N in steps of 1 or 2
  336: *
  337:          K = N
  338:    10    CONTINUE
  339: *
  340: *        KW is the column of W which corresponds to column K of A
  341: *
  342:          KW = NB + K - N
  343: *
  344: *        Exit from loop
  345: *
  346:          IF( ( K.LE.N-NB+1 .AND. NB.LT.N ) .OR. K.LT.1 )
  347:      $      GO TO 30
  348: *
  349:          KSTEP = 1
  350:          P = K
  351: *
  352: *        Copy column K of A to column KW of W and update it
  353: *
  354:          CALL ZCOPY( K, A( 1, K ), 1, W( 1, KW ), 1 )
  355:          IF( K.LT.N )
  356:      $      CALL ZGEMV( 'No transpose', K, N-K, -CONE, A( 1, K+1 ),
  357:      $                  LDA, W( K, KW+1 ), LDW, CONE, W( 1, KW ), 1 )
  358: *
  359: *        Determine rows and columns to be interchanged and whether
  360: *        a 1-by-1 or 2-by-2 pivot block will be used
  361: *
  362:          ABSAKK = CABS1( W( K, KW ) )
  363: *
  364: *        IMAX is the row-index of the largest off-diagonal element in
  365: *        column K, and COLMAX is its absolute value.
  366: *        Determine both COLMAX and IMAX.
  367: *
  368:          IF( K.GT.1 ) THEN
  369:             IMAX = IZAMAX( K-1, W( 1, KW ), 1 )
  370:             COLMAX = CABS1( W( IMAX, KW ) )
  371:          ELSE
  372:             COLMAX = ZERO
  373:          END IF
  374: *
  375:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  376: *
  377: *           Column K is zero or underflow: set INFO and continue
  378: *
  379:             IF( INFO.EQ.0 )
  380:      $         INFO = K
  381:             KP = K
  382:             CALL ZCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
  383: *
  384: *           Set E( K ) to zero
  385: *
  386:             IF( K.GT.1 )
  387:      $         E( K ) = CZERO
  388: *
  389:          ELSE
  390: *
  391: *           ============================================================
  392: *
  393: *           Test for interchange
  394: *
  395: *           Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
  396: *           (used to handle NaN and Inf)
  397: *
  398:             IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
  399: *
  400: *              no interchange, use 1-by-1 pivot block
  401: *
  402:                KP = K
  403: *
  404:             ELSE
  405: *
  406:                DONE = .FALSE.
  407: *
  408: *              Loop until pivot found
  409: *
  410:    12          CONTINUE
  411: *
  412: *                 Begin pivot search loop body
  413: *
  414: *
  415: *                 Copy column IMAX to column KW-1 of W and update it
  416: *
  417:                   CALL ZCOPY( IMAX, A( 1, IMAX ), 1, W( 1, KW-1 ), 1 )
  418:                   CALL ZCOPY( K-IMAX, A( IMAX, IMAX+1 ), LDA,
  419:      $                        W( IMAX+1, KW-1 ), 1 )
  420: *
  421:                   IF( K.LT.N )
  422:      $               CALL ZGEMV( 'No transpose', K, N-K, -CONE,
  423:      $                           A( 1, K+1 ), LDA, W( IMAX, KW+1 ), LDW,
  424:      $                           CONE, W( 1, KW-1 ), 1 )
  425: *
  426: *                 JMAX is the column-index of the largest off-diagonal
  427: *                 element in row IMAX, and ROWMAX is its absolute value.
  428: *                 Determine both ROWMAX and JMAX.
  429: *
  430:                   IF( IMAX.NE.K ) THEN
  431:                      JMAX = IMAX + IZAMAX( K-IMAX, W( IMAX+1, KW-1 ),
  432:      $                                     1 )
  433:                      ROWMAX = CABS1( W( JMAX, KW-1 ) )
  434:                   ELSE
  435:                      ROWMAX = ZERO
  436:                   END IF
  437: *
  438:                   IF( IMAX.GT.1 ) THEN
  439:                      ITEMP = IZAMAX( IMAX-1, W( 1, KW-1 ), 1 )
  440:                      DTEMP = CABS1( W( ITEMP, KW-1 ) )
  441:                      IF( DTEMP.GT.ROWMAX ) THEN
  442:                         ROWMAX = DTEMP
  443:                         JMAX = ITEMP
  444:                      END IF
  445:                   END IF
  446: *
  447: *                 Equivalent to testing for
  448: *                 CABS1( W( IMAX, KW-1 ) ).GE.ALPHA*ROWMAX
  449: *                 (used to handle NaN and Inf)
  450: *
  451:                   IF( .NOT.(CABS1( W( IMAX, KW-1 ) ).LT.ALPHA*ROWMAX ) )
  452:      $            THEN
  453: *
  454: *                    interchange rows and columns K and IMAX,
  455: *                    use 1-by-1 pivot block
  456: *
  457:                      KP = IMAX
  458: *
  459: *                    copy column KW-1 of W to column KW of W
  460: *
  461:                      CALL ZCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
  462: *
  463:                      DONE = .TRUE.
  464: *
  465: *                 Equivalent to testing for ROWMAX.EQ.COLMAX,
  466: *                 (used to handle NaN and Inf)
  467: *
  468:                   ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
  469:      $            THEN
  470: *
  471: *                    interchange rows and columns K-1 and IMAX,
  472: *                    use 2-by-2 pivot block
  473: *
  474:                      KP = IMAX
  475:                      KSTEP = 2
  476:                      DONE = .TRUE.
  477:                   ELSE
  478: *
  479: *                    Pivot not found: set params and repeat
  480: *
  481:                      P = IMAX
  482:                      COLMAX = ROWMAX
  483:                      IMAX = JMAX
  484: *
  485: *                    Copy updated JMAXth (next IMAXth) column to Kth of W
  486: *
  487:                      CALL ZCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
  488: *
  489:                   END IF
  490: *
  491: *                 End pivot search loop body
  492: *
  493:                IF( .NOT. DONE ) GOTO 12
  494: *
  495:             END IF
  496: *
  497: *           ============================================================
  498: *
  499:             KK = K - KSTEP + 1
  500: *
  501: *           KKW is the column of W which corresponds to column KK of A
  502: *
  503:             KKW = NB + KK - N
  504: *
  505:             IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
  506: *
  507: *              Copy non-updated column K to column P
  508: *
  509:                CALL ZCOPY( K-P, A( P+1, K ), 1, A( P, P+1 ), LDA )
  510:                CALL ZCOPY( P, A( 1, K ), 1, A( 1, P ), 1 )
  511: *
  512: *              Interchange rows K and P in last N-K+1 columns of A
  513: *              and last N-K+2 columns of W
  514: *
  515:                CALL ZSWAP( N-K+1, A( K, K ), LDA, A( P, K ), LDA )
  516:                CALL ZSWAP( N-KK+1, W( K, KKW ), LDW, W( P, KKW ), LDW )
  517:             END IF
  518: *
  519: *           Updated column KP is already stored in column KKW of W
  520: *
  521:             IF( KP.NE.KK ) THEN
  522: *
  523: *              Copy non-updated column KK to column KP
  524: *
  525:                A( KP, K ) = A( KK, K )
  526:                CALL ZCOPY( K-1-KP, A( KP+1, KK ), 1, A( KP, KP+1 ),
  527:      $                     LDA )
  528:                CALL ZCOPY( KP, A( 1, KK ), 1, A( 1, KP ), 1 )
  529: *
  530: *              Interchange rows KK and KP in last N-KK+1 columns
  531: *              of A and W
  532: *
  533:                CALL ZSWAP( N-KK+1, A( KK, KK ), LDA, A( KP, KK ), LDA )
  534:                CALL ZSWAP( N-KK+1, W( KK, KKW ), LDW, W( KP, KKW ),
  535:      $                     LDW )
  536:             END IF
  537: *
  538:             IF( KSTEP.EQ.1 ) THEN
  539: *
  540: *              1-by-1 pivot block D(k): column KW of W now holds
  541: *
  542: *              W(k) = U(k)*D(k)
  543: *
  544: *              where U(k) is the k-th column of U
  545: *
  546: *              Store U(k) in column k of A
  547: *
  548:                CALL ZCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
  549:                IF( K.GT.1 ) THEN
  550:                   IF( CABS1( A( K, K ) ).GE.SFMIN ) THEN
  551:                      R1 = CONE / A( K, K )
  552:                      CALL ZSCAL( K-1, R1, A( 1, K ), 1 )
  553:                   ELSE IF( A( K, K ).NE.CZERO ) THEN
  554:                      DO 14 II = 1, K - 1
  555:                         A( II, K ) = A( II, K ) / A( K, K )
  556:    14                CONTINUE
  557:                   END IF
  558: *
  559: *                 Store the superdiagonal element of D in array E
  560: *
  561:                   E( K ) = CZERO
  562: *
  563:                END IF
  564: *
  565:             ELSE
  566: *
  567: *              2-by-2 pivot block D(k): columns KW and KW-1 of W now
  568: *              hold
  569: *
  570: *              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
  571: *
  572: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
  573: *              of U
  574: *
  575:                IF( K.GT.2 ) THEN
  576: *
  577: *                 Store U(k) and U(k-1) in columns k and k-1 of A
  578: *
  579:                   D12 = W( K-1, KW )
  580:                   D11 = W( K, KW ) / D12
  581:                   D22 = W( K-1, KW-1 ) / D12
  582:                   T = CONE / ( D11*D22-CONE )
  583:                   DO 20 J = 1, K - 2
  584:                      A( J, K-1 ) = T*( (D11*W( J, KW-1 )-W( J, KW ) ) /
  585:      $                             D12 )
  586:                      A( J, K ) = T*( ( D22*W( J, KW )-W( J, KW-1 ) ) /
  587:      $                           D12 )
  588:    20             CONTINUE
  589:                END IF
  590: *
  591: *              Copy diagonal elements of D(K) to A,
  592: *              copy superdiagonal element of D(K) to E(K) and
  593: *              ZERO out superdiagonal entry of A
  594: *
  595:                A( K-1, K-1 ) = W( K-1, KW-1 )
  596:                A( K-1, K ) = CZERO
  597:                A( K, K ) = W( K, KW )
  598:                E( K ) = W( K-1, KW )
  599:                E( K-1 ) = CZERO
  600: *
  601:             END IF
  602: *
  603: *           End column K is nonsingular
  604: *
  605:          END IF
  606: *
  607: *        Store details of the interchanges in IPIV
  608: *
  609:          IF( KSTEP.EQ.1 ) THEN
  610:             IPIV( K ) = KP
  611:          ELSE
  612:             IPIV( K ) = -P
  613:             IPIV( K-1 ) = -KP
  614:          END IF
  615: *
  616: *        Decrease K and return to the start of the main loop
  617: *
  618:          K = K - KSTEP
  619:          GO TO 10
  620: *
  621:    30    CONTINUE
  622: *
  623: *        Update the upper triangle of A11 (= A(1:k,1:k)) as
  624: *
  625: *        A11 := A11 - U12*D*U12**T = A11 - U12*W**T
  626: *
  627: *        computing blocks of NB columns at a time
  628: *
  629:          DO 50 J = ( ( K-1 ) / NB )*NB + 1, 1, -NB
  630:             JB = MIN( NB, K-J+1 )
  631: *
  632: *           Update the upper triangle of the diagonal block
  633: *
  634:             DO 40 JJ = J, J + JB - 1
  635:                CALL ZGEMV( 'No transpose', JJ-J+1, N-K, -CONE,
  636:      $                     A( J, K+1 ), LDA, W( JJ, KW+1 ), LDW, CONE,
  637:      $                     A( J, JJ ), 1 )
  638:    40       CONTINUE
  639: *
  640: *           Update the rectangular superdiagonal block
  641: *
  642:             IF( J.GE.2 )
  643:      $         CALL ZGEMM( 'No transpose', 'Transpose', J-1, JB,
  644:      $                     N-K, -CONE, A( 1, K+1 ), LDA, W( J, KW+1 ),
  645:      $                     LDW, CONE, A( 1, J ), LDA )
  646:    50    CONTINUE
  647: *
  648: *        Set KB to the number of columns factorized
  649: *
  650:          KB = N - K
  651: *
  652:       ELSE
  653: *
  654: *        Factorize the leading columns of A using the lower triangle
  655: *        of A and working forwards, and compute the matrix W = L21*D
  656: *        for use in updating A22
  657: *
  658: *        Initialize the unused last entry of the subdiagonal array E.
  659: *
  660:          E( N ) = CZERO
  661: *
  662: *        K is the main loop index, increasing from 1 in steps of 1 or 2
  663: *
  664:          K = 1
  665:    70   CONTINUE
  666: *
  667: *        Exit from loop
  668: *
  669:          IF( ( K.GE.NB .AND. NB.LT.N ) .OR. K.GT.N )
  670:      $      GO TO 90
  671: *
  672:          KSTEP = 1
  673:          P = K
  674: *
  675: *        Copy column K of A to column K of W and update it
  676: *
  677:          CALL ZCOPY( N-K+1, A( K, K ), 1, W( K, K ), 1 )
  678:          IF( K.GT.1 )
  679:      $      CALL ZGEMV( 'No transpose', N-K+1, K-1, -CONE, A( K, 1 ),
  680:      $                  LDA, W( K, 1 ), LDW, CONE, W( K, K ), 1 )
  681: *
  682: *        Determine rows and columns to be interchanged and whether
  683: *        a 1-by-1 or 2-by-2 pivot block will be used
  684: *
  685:          ABSAKK = CABS1( W( K, K ) )
  686: *
  687: *        IMAX is the row-index of the largest off-diagonal element in
  688: *        column K, and COLMAX is its absolute value.
  689: *        Determine both COLMAX and IMAX.
  690: *
  691:          IF( K.LT.N ) THEN
  692:             IMAX = K + IZAMAX( N-K, W( K+1, K ), 1 )
  693:             COLMAX = CABS1( W( IMAX, K ) )
  694:          ELSE
  695:             COLMAX = ZERO
  696:          END IF
  697: *
  698:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  699: *
  700: *           Column K is zero or underflow: set INFO and continue
  701: *
  702:             IF( INFO.EQ.0 )
  703:      $         INFO = K
  704:             KP = K
  705:             CALL ZCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
  706: *
  707: *           Set E( K ) to zero
  708: *
  709:             IF( K.LT.N )
  710:      $         E( K ) = CZERO
  711: *
  712:          ELSE
  713: *
  714: *           ============================================================
  715: *
  716: *           Test for interchange
  717: *
  718: *           Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
  719: *           (used to handle NaN and Inf)
  720: *
  721:             IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
  722: *
  723: *              no interchange, use 1-by-1 pivot block
  724: *
  725:                KP = K
  726: *
  727:             ELSE
  728: *
  729:                DONE = .FALSE.
  730: *
  731: *              Loop until pivot found
  732: *
  733:    72          CONTINUE
  734: *
  735: *                 Begin pivot search loop body
  736: *
  737: *
  738: *                 Copy column IMAX to column K+1 of W and update it
  739: *
  740:                   CALL ZCOPY( IMAX-K, A( IMAX, K ), LDA, W( K, K+1 ), 1)
  741:                   CALL ZCOPY( N-IMAX+1, A( IMAX, IMAX ), 1,
  742:      $                        W( IMAX, K+1 ), 1 )
  743:                   IF( K.GT.1 )
  744:      $               CALL ZGEMV( 'No transpose', N-K+1, K-1, -CONE,
  745:      $                           A( K, 1 ), LDA, W( IMAX, 1 ), LDW,
  746:      $                           CONE, W( K, K+1 ), 1 )
  747: *
  748: *                 JMAX is the column-index of the largest off-diagonal
  749: *                 element in row IMAX, and ROWMAX is its absolute value.
  750: *                 Determine both ROWMAX and JMAX.
  751: *
  752:                   IF( IMAX.NE.K ) THEN
  753:                      JMAX = K - 1 + IZAMAX( IMAX-K, W( K, K+1 ), 1 )
  754:                      ROWMAX = CABS1( W( JMAX, K+1 ) )
  755:                   ELSE
  756:                      ROWMAX = ZERO
  757:                   END IF
  758: *
  759:                   IF( IMAX.LT.N ) THEN
  760:                      ITEMP = IMAX + IZAMAX( N-IMAX, W( IMAX+1, K+1 ), 1)
  761:                      DTEMP = CABS1( W( ITEMP, K+1 ) )
  762:                      IF( DTEMP.GT.ROWMAX ) THEN
  763:                         ROWMAX = DTEMP
  764:                         JMAX = ITEMP
  765:                      END IF
  766:                   END IF
  767: *
  768: *                 Equivalent to testing for
  769: *                 CABS1( W( IMAX, K+1 ) ).GE.ALPHA*ROWMAX
  770: *                 (used to handle NaN and Inf)
  771: *
  772:                   IF( .NOT.( CABS1( W( IMAX, K+1 ) ).LT.ALPHA*ROWMAX ) )
  773:      $            THEN
  774: *
  775: *                    interchange rows and columns K and IMAX,
  776: *                    use 1-by-1 pivot block
  777: *
  778:                      KP = IMAX
  779: *
  780: *                    copy column K+1 of W to column K of W
  781: *
  782:                      CALL ZCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
  783: *
  784:                      DONE = .TRUE.
  785: *
  786: *                 Equivalent to testing for ROWMAX.EQ.COLMAX,
  787: *                 (used to handle NaN and Inf)
  788: *
  789:                   ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
  790:      $            THEN
  791: *
  792: *                    interchange rows and columns K+1 and IMAX,
  793: *                    use 2-by-2 pivot block
  794: *
  795:                      KP = IMAX
  796:                      KSTEP = 2
  797:                      DONE = .TRUE.
  798:                   ELSE
  799: *
  800: *                    Pivot not found: set params and repeat
  801: *
  802:                      P = IMAX
  803:                      COLMAX = ROWMAX
  804:                      IMAX = JMAX
  805: *
  806: *                    Copy updated JMAXth (next IMAXth) column to Kth of W
  807: *
  808:                      CALL ZCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
  809: *
  810:                   END IF
  811: *
  812: *                 End pivot search loop body
  813: *
  814:                IF( .NOT. DONE ) GOTO 72
  815: *
  816:             END IF
  817: *
  818: *           ============================================================
  819: *
  820:             KK = K + KSTEP - 1
  821: *
  822:             IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
  823: *
  824: *              Copy non-updated column K to column P
  825: *
  826:                CALL ZCOPY( P-K, A( K, K ), 1, A( P, K ), LDA )
  827:                CALL ZCOPY( N-P+1, A( P, K ), 1, A( P, P ), 1 )
  828: *
  829: *              Interchange rows K and P in first K columns of A
  830: *              and first K+1 columns of W
  831: *
  832:                CALL ZSWAP( K, A( K, 1 ), LDA, A( P, 1 ), LDA )
  833:                CALL ZSWAP( KK, W( K, 1 ), LDW, W( P, 1 ), LDW )
  834:             END IF
  835: *
  836: *           Updated column KP is already stored in column KK of W
  837: *
  838:             IF( KP.NE.KK ) THEN
  839: *
  840: *              Copy non-updated column KK to column KP
  841: *
  842:                A( KP, K ) = A( KK, K )
  843:                CALL ZCOPY( KP-K-1, A( K+1, KK ), 1, A( KP, K+1 ), LDA )
  844:                CALL ZCOPY( N-KP+1, A( KP, KK ), 1, A( KP, KP ), 1 )
  845: *
  846: *              Interchange rows KK and KP in first KK columns of A and W
  847: *
  848:                CALL ZSWAP( KK, A( KK, 1 ), LDA, A( KP, 1 ), LDA )
  849:                CALL ZSWAP( KK, W( KK, 1 ), LDW, W( KP, 1 ), LDW )
  850:             END IF
  851: *
  852:             IF( KSTEP.EQ.1 ) THEN
  853: *
  854: *              1-by-1 pivot block D(k): column k of W now holds
  855: *
  856: *              W(k) = L(k)*D(k)
  857: *
  858: *              where L(k) is the k-th column of L
  859: *
  860: *              Store L(k) in column k of A
  861: *
  862:                CALL ZCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
  863:                IF( K.LT.N ) THEN
  864:                   IF( CABS1( A( K, K ) ).GE.SFMIN ) THEN
  865:                      R1 = CONE / A( K, K )
  866:                      CALL ZSCAL( N-K, R1, A( K+1, K ), 1 )
  867:                   ELSE IF( A( K, K ).NE.CZERO ) THEN
  868:                      DO 74 II = K + 1, N
  869:                         A( II, K ) = A( II, K ) / A( K, K )
  870:    74                CONTINUE
  871:                   END IF
  872: *
  873: *                 Store the subdiagonal element of D in array E
  874: *
  875:                   E( K ) = CZERO
  876: *
  877:                END IF
  878: *
  879:             ELSE
  880: *
  881: *              2-by-2 pivot block D(k): columns k and k+1 of W now hold
  882: *
  883: *              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
  884: *
  885: *              where L(k) and L(k+1) are the k-th and (k+1)-th columns
  886: *              of L
  887: *
  888:                IF( K.LT.N-1 ) THEN
  889: *
  890: *                 Store L(k) and L(k+1) in columns k and k+1 of A
  891: *
  892:                   D21 = W( K+1, K )
  893:                   D11 = W( K+1, K+1 ) / D21
  894:                   D22 = W( K, K ) / D21
  895:                   T = CONE / ( D11*D22-CONE )
  896:                   DO 80 J = K + 2, N
  897:                      A( J, K ) = T*( ( D11*W( J, K )-W( J, K+1 ) ) /
  898:      $                           D21 )
  899:                      A( J, K+1 ) = T*( ( D22*W( J, K+1 )-W( J, K ) ) /
  900:      $                             D21 )
  901:    80             CONTINUE
  902:                END IF
  903: *
  904: *              Copy diagonal elements of D(K) to A,
  905: *              copy subdiagonal element of D(K) to E(K) and
  906: *              ZERO out subdiagonal entry of A
  907: *
  908:                A( K, K ) = W( K, K )
  909:                A( K+1, K ) = CZERO
  910:                A( K+1, K+1 ) = W( K+1, K+1 )
  911:                E( K ) = W( K+1, K )
  912:                E( K+1 ) = CZERO
  913: *
  914:             END IF
  915: *
  916: *           End column K is nonsingular
  917: *
  918:          END IF
  919: *
  920: *        Store details of the interchanges in IPIV
  921: *
  922:          IF( KSTEP.EQ.1 ) THEN
  923:             IPIV( K ) = KP
  924:          ELSE
  925:             IPIV( K ) = -P
  926:             IPIV( K+1 ) = -KP
  927:          END IF
  928: *
  929: *        Increase K and return to the start of the main loop
  930: *
  931:          K = K + KSTEP
  932:          GO TO 70
  933: *
  934:    90    CONTINUE
  935: *
  936: *        Update the lower triangle of A22 (= A(k:n,k:n)) as
  937: *
  938: *        A22 := A22 - L21*D*L21**T = A22 - L21*W**T
  939: *
  940: *        computing blocks of NB columns at a time
  941: *
  942:          DO 110 J = K, N, NB
  943:             JB = MIN( NB, N-J+1 )
  944: *
  945: *           Update the lower triangle of the diagonal block
  946: *
  947:             DO 100 JJ = J, J + JB - 1
  948:                CALL ZGEMV( 'No transpose', J+JB-JJ, K-1, -CONE,
  949:      $                     A( JJ, 1 ), LDA, W( JJ, 1 ), LDW, CONE,
  950:      $                     A( JJ, JJ ), 1 )
  951:   100       CONTINUE
  952: *
  953: *           Update the rectangular subdiagonal block
  954: *
  955:             IF( J+JB.LE.N )
  956:      $         CALL ZGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
  957:      $                     K-1, -CONE, A( J+JB, 1 ), LDA, W( J, 1 ),
  958:      $                     LDW, CONE, A( J+JB, J ), LDA )
  959:   110    CONTINUE
  960: *
  961: *        Set KB to the number of columns factorized
  962: *
  963:          KB = K - 1
  964: *
  965:       END IF
  966: *
  967:       RETURN
  968: *
  969: *     End of ZLASYF_RK
  970: *
  971:       END

CVSweb interface <joel.bertrand@systella.fr>