File:  [local] / rpl / lapack / lapack / zlasyf.f
Revision 1.3: download - view: text, annotated - select for diffs - revision graph
Fri Aug 6 15:28:59 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Cohérence

    1:       SUBROUTINE ZLASYF( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO )
    2: *
    3: *  -- LAPACK routine (version 3.2) --
    4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    6: *     November 2006
    7: *
    8: *     .. Scalar Arguments ..
    9:       CHARACTER          UPLO
   10:       INTEGER            INFO, KB, LDA, LDW, N, NB
   11: *     ..
   12: *     .. Array Arguments ..
   13:       INTEGER            IPIV( * )
   14:       COMPLEX*16         A( LDA, * ), W( LDW, * )
   15: *     ..
   16: *
   17: *  Purpose
   18: *  =======
   19: *
   20: *  ZLASYF computes a partial factorization of a complex symmetric matrix
   21: *  A using the Bunch-Kaufman diagonal pivoting method. The partial
   22: *  factorization has the form:
   23: *
   24: *  A  =  ( I  U12 ) ( A11  0  ) (  I    0   )  if UPLO = 'U', or:
   25: *        ( 0  U22 ) (  0   D  ) ( U12' U22' )
   26: *
   27: *  A  =  ( L11  0 ) ( D    0  ) ( L11' L21' )  if UPLO = 'L'
   28: *        ( L21  I ) ( 0   A22 ) (  0    I   )
   29: *
   30: *  where the order of D is at most NB. The actual order is returned in
   31: *  the argument KB, and is either NB or NB-1, or N if N <= NB.
   32: *  Note that U' denotes the transpose of U.
   33: *
   34: *  ZLASYF is an auxiliary routine called by ZSYTRF. It uses blocked code
   35: *  (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or
   36: *  A22 (if UPLO = 'L').
   37: *
   38: *  Arguments
   39: *  =========
   40: *
   41: *  UPLO    (input) CHARACTER*1
   42: *          Specifies whether the upper or lower triangular part of the
   43: *          symmetric matrix A is stored:
   44: *          = 'U':  Upper triangular
   45: *          = 'L':  Lower triangular
   46: *
   47: *  N       (input) INTEGER
   48: *          The order of the matrix A.  N >= 0.
   49: *
   50: *  NB      (input) INTEGER
   51: *          The maximum number of columns of the matrix A that should be
   52: *          factored.  NB should be at least 2 to allow for 2-by-2 pivot
   53: *          blocks.
   54: *
   55: *  KB      (output) INTEGER
   56: *          The number of columns of A that were actually factored.
   57: *          KB is either NB-1 or NB, or N if N <= NB.
   58: *
   59: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
   60: *          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
   61: *          n-by-n upper triangular part of A contains the upper
   62: *          triangular part of the matrix A, and the strictly lower
   63: *          triangular part of A is not referenced.  If UPLO = 'L', the
   64: *          leading n-by-n lower triangular part of A contains the lower
   65: *          triangular part of the matrix A, and the strictly upper
   66: *          triangular part of A is not referenced.
   67: *          On exit, A contains details of the partial factorization.
   68: *
   69: *  LDA     (input) INTEGER
   70: *          The leading dimension of the array A.  LDA >= max(1,N).
   71: *
   72: *  IPIV    (output) INTEGER array, dimension (N)
   73: *          Details of the interchanges and the block structure of D.
   74: *          If UPLO = 'U', only the last KB elements of IPIV are set;
   75: *          if UPLO = 'L', only the first KB elements are set.
   76: *
   77: *          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
   78: *          interchanged and D(k,k) is a 1-by-1 diagonal block.
   79: *          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
   80: *          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
   81: *          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
   82: *          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
   83: *          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
   84: *
   85: *  W       (workspace) COMPLEX*16 array, dimension (LDW,NB)
   86: *
   87: *  LDW     (input) INTEGER
   88: *          The leading dimension of the array W.  LDW >= max(1,N).
   89: *
   90: *  INFO    (output) INTEGER
   91: *          = 0: successful exit
   92: *          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
   93: *               has been completed, but the block diagonal matrix D is
   94: *               exactly singular.
   95: *
   96: *  =====================================================================
   97: *
   98: *     .. Parameters ..
   99:       DOUBLE PRECISION   ZERO, ONE
  100:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  101:       DOUBLE PRECISION   EIGHT, SEVTEN
  102:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  103:       COMPLEX*16         CONE
  104:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
  105: *     ..
  106: *     .. Local Scalars ..
  107:       INTEGER            IMAX, J, JB, JJ, JMAX, JP, K, KK, KKW, KP,
  108:      $                   KSTEP, KW
  109:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, ROWMAX
  110:       COMPLEX*16         D11, D21, D22, R1, T, Z
  111: *     ..
  112: *     .. External Functions ..
  113:       LOGICAL            LSAME
  114:       INTEGER            IZAMAX
  115:       EXTERNAL           LSAME, IZAMAX
  116: *     ..
  117: *     .. External Subroutines ..
  118:       EXTERNAL           ZCOPY, ZGEMM, ZGEMV, ZSCAL, ZSWAP
  119: *     ..
  120: *     .. Intrinsic Functions ..
  121:       INTRINSIC          ABS, DBLE, DIMAG, MAX, MIN, SQRT
  122: *     ..
  123: *     .. Statement Functions ..
  124:       DOUBLE PRECISION   CABS1
  125: *     ..
  126: *     .. Statement Function definitions ..
  127:       CABS1( Z ) = ABS( DBLE( Z ) ) + ABS( DIMAG( Z ) )
  128: *     ..
  129: *     .. Executable Statements ..
  130: *
  131:       INFO = 0
  132: *
  133: *     Initialize ALPHA for use in choosing pivot block size.
  134: *
  135:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  136: *
  137:       IF( LSAME( UPLO, 'U' ) ) THEN
  138: *
  139: *        Factorize the trailing columns of A using the upper triangle
  140: *        of A and working backwards, and compute the matrix W = U12*D
  141: *        for use in updating A11
  142: *
  143: *        K is the main loop index, decreasing from N in steps of 1 or 2
  144: *
  145: *        KW is the column of W which corresponds to column K of A
  146: *
  147:          K = N
  148:    10    CONTINUE
  149:          KW = NB + K - N
  150: *
  151: *        Exit from loop
  152: *
  153:          IF( ( K.LE.N-NB+1 .AND. NB.LT.N ) .OR. K.LT.1 )
  154:      $      GO TO 30
  155: *
  156: *        Copy column K of A to column KW of W and update it
  157: *
  158:          CALL ZCOPY( K, A( 1, K ), 1, W( 1, KW ), 1 )
  159:          IF( K.LT.N )
  160:      $      CALL ZGEMV( 'No transpose', K, N-K, -CONE, A( 1, K+1 ), LDA,
  161:      $                  W( K, KW+1 ), LDW, CONE, W( 1, KW ), 1 )
  162: *
  163:          KSTEP = 1
  164: *
  165: *        Determine rows and columns to be interchanged and whether
  166: *        a 1-by-1 or 2-by-2 pivot block will be used
  167: *
  168:          ABSAKK = CABS1( W( K, KW ) )
  169: *
  170: *        IMAX is the row-index of the largest off-diagonal element in
  171: *        column K, and COLMAX is its absolute value
  172: *
  173:          IF( K.GT.1 ) THEN
  174:             IMAX = IZAMAX( K-1, W( 1, KW ), 1 )
  175:             COLMAX = CABS1( W( IMAX, KW ) )
  176:          ELSE
  177:             COLMAX = ZERO
  178:          END IF
  179: *
  180:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  181: *
  182: *           Column K is zero: set INFO and continue
  183: *
  184:             IF( INFO.EQ.0 )
  185:      $         INFO = K
  186:             KP = K
  187:          ELSE
  188:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  189: *
  190: *              no interchange, use 1-by-1 pivot block
  191: *
  192:                KP = K
  193:             ELSE
  194: *
  195: *              Copy column IMAX to column KW-1 of W and update it
  196: *
  197:                CALL ZCOPY( IMAX, A( 1, IMAX ), 1, W( 1, KW-1 ), 1 )
  198:                CALL ZCOPY( K-IMAX, A( IMAX, IMAX+1 ), LDA,
  199:      $                     W( IMAX+1, KW-1 ), 1 )
  200:                IF( K.LT.N )
  201:      $            CALL ZGEMV( 'No transpose', K, N-K, -CONE,
  202:      $                        A( 1, K+1 ), LDA, W( IMAX, KW+1 ), LDW,
  203:      $                        CONE, W( 1, KW-1 ), 1 )
  204: *
  205: *              JMAX is the column-index of the largest off-diagonal
  206: *              element in row IMAX, and ROWMAX is its absolute value
  207: *
  208:                JMAX = IMAX + IZAMAX( K-IMAX, W( IMAX+1, KW-1 ), 1 )
  209:                ROWMAX = CABS1( W( JMAX, KW-1 ) )
  210:                IF( IMAX.GT.1 ) THEN
  211:                   JMAX = IZAMAX( IMAX-1, W( 1, KW-1 ), 1 )
  212:                   ROWMAX = MAX( ROWMAX, CABS1( W( JMAX, KW-1 ) ) )
  213:                END IF
  214: *
  215:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  216: *
  217: *                 no interchange, use 1-by-1 pivot block
  218: *
  219:                   KP = K
  220:                ELSE IF( CABS1( W( IMAX, KW-1 ) ).GE.ALPHA*ROWMAX ) THEN
  221: *
  222: *                 interchange rows and columns K and IMAX, use 1-by-1
  223: *                 pivot block
  224: *
  225:                   KP = IMAX
  226: *
  227: *                 copy column KW-1 of W to column KW
  228: *
  229:                   CALL ZCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
  230:                ELSE
  231: *
  232: *                 interchange rows and columns K-1 and IMAX, use 2-by-2
  233: *                 pivot block
  234: *
  235:                   KP = IMAX
  236:                   KSTEP = 2
  237:                END IF
  238:             END IF
  239: *
  240:             KK = K - KSTEP + 1
  241:             KKW = NB + KK - N
  242: *
  243: *           Updated column KP is already stored in column KKW of W
  244: *
  245:             IF( KP.NE.KK ) THEN
  246: *
  247: *              Copy non-updated column KK to column KP
  248: *
  249:                A( KP, K ) = A( KK, K )
  250:                CALL ZCOPY( K-1-KP, A( KP+1, KK ), 1, A( KP, KP+1 ),
  251:      $                     LDA )
  252:                CALL ZCOPY( KP, A( 1, KK ), 1, A( 1, KP ), 1 )
  253: *
  254: *              Interchange rows KK and KP in last KK columns of A and W
  255: *
  256:                CALL ZSWAP( N-KK+1, A( KK, KK ), LDA, A( KP, KK ), LDA )
  257:                CALL ZSWAP( N-KK+1, W( KK, KKW ), LDW, W( KP, KKW ),
  258:      $                     LDW )
  259:             END IF
  260: *
  261:             IF( KSTEP.EQ.1 ) THEN
  262: *
  263: *              1-by-1 pivot block D(k): column KW of W now holds
  264: *
  265: *              W(k) = U(k)*D(k)
  266: *
  267: *              where U(k) is the k-th column of U
  268: *
  269: *              Store U(k) in column k of A
  270: *
  271:                CALL ZCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
  272:                R1 = CONE / A( K, K )
  273:                CALL ZSCAL( K-1, R1, A( 1, K ), 1 )
  274:             ELSE
  275: *
  276: *              2-by-2 pivot block D(k): columns KW and KW-1 of W now
  277: *              hold
  278: *
  279: *              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
  280: *
  281: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
  282: *              of U
  283: *
  284:                IF( K.GT.2 ) THEN
  285: *
  286: *                 Store U(k) and U(k-1) in columns k and k-1 of A
  287: *
  288:                   D21 = W( K-1, KW )
  289:                   D11 = W( K, KW ) / D21
  290:                   D22 = W( K-1, KW-1 ) / D21
  291:                   T = CONE / ( D11*D22-CONE )
  292:                   D21 = T / D21
  293:                   DO 20 J = 1, K - 2
  294:                      A( J, K-1 ) = D21*( D11*W( J, KW-1 )-W( J, KW ) )
  295:                      A( J, K ) = D21*( D22*W( J, KW )-W( J, KW-1 ) )
  296:    20             CONTINUE
  297:                END IF
  298: *
  299: *              Copy D(k) to A
  300: *
  301:                A( K-1, K-1 ) = W( K-1, KW-1 )
  302:                A( K-1, K ) = W( K-1, KW )
  303:                A( K, K ) = W( K, KW )
  304:             END IF
  305:          END IF
  306: *
  307: *        Store details of the interchanges in IPIV
  308: *
  309:          IF( KSTEP.EQ.1 ) THEN
  310:             IPIV( K ) = KP
  311:          ELSE
  312:             IPIV( K ) = -KP
  313:             IPIV( K-1 ) = -KP
  314:          END IF
  315: *
  316: *        Decrease K and return to the start of the main loop
  317: *
  318:          K = K - KSTEP
  319:          GO TO 10
  320: *
  321:    30    CONTINUE
  322: *
  323: *        Update the upper triangle of A11 (= A(1:k,1:k)) as
  324: *
  325: *        A11 := A11 - U12*D*U12' = A11 - U12*W'
  326: *
  327: *        computing blocks of NB columns at a time
  328: *
  329:          DO 50 J = ( ( K-1 ) / NB )*NB + 1, 1, -NB
  330:             JB = MIN( NB, K-J+1 )
  331: *
  332: *           Update the upper triangle of the diagonal block
  333: *
  334:             DO 40 JJ = J, J + JB - 1
  335:                CALL ZGEMV( 'No transpose', JJ-J+1, N-K, -CONE,
  336:      $                     A( J, K+1 ), LDA, W( JJ, KW+1 ), LDW, CONE,
  337:      $                     A( J, JJ ), 1 )
  338:    40       CONTINUE
  339: *
  340: *           Update the rectangular superdiagonal block
  341: *
  342:             CALL ZGEMM( 'No transpose', 'Transpose', J-1, JB, N-K,
  343:      $                  -CONE, A( 1, K+1 ), LDA, W( J, KW+1 ), LDW,
  344:      $                  CONE, A( 1, J ), LDA )
  345:    50    CONTINUE
  346: *
  347: *        Put U12 in standard form by partially undoing the interchanges
  348: *        in columns k+1:n
  349: *
  350:          J = K + 1
  351:    60    CONTINUE
  352:          JJ = J
  353:          JP = IPIV( J )
  354:          IF( JP.LT.0 ) THEN
  355:             JP = -JP
  356:             J = J + 1
  357:          END IF
  358:          J = J + 1
  359:          IF( JP.NE.JJ .AND. J.LE.N )
  360:      $      CALL ZSWAP( N-J+1, A( JP, J ), LDA, A( JJ, J ), LDA )
  361:          IF( J.LE.N )
  362:      $      GO TO 60
  363: *
  364: *        Set KB to the number of columns factorized
  365: *
  366:          KB = N - K
  367: *
  368:       ELSE
  369: *
  370: *        Factorize the leading columns of A using the lower triangle
  371: *        of A and working forwards, and compute the matrix W = L21*D
  372: *        for use in updating A22
  373: *
  374: *        K is the main loop index, increasing from 1 in steps of 1 or 2
  375: *
  376:          K = 1
  377:    70    CONTINUE
  378: *
  379: *        Exit from loop
  380: *
  381:          IF( ( K.GE.NB .AND. NB.LT.N ) .OR. K.GT.N )
  382:      $      GO TO 90
  383: *
  384: *        Copy column K of A to column K of W and update it
  385: *
  386:          CALL ZCOPY( N-K+1, A( K, K ), 1, W( K, K ), 1 )
  387:          CALL ZGEMV( 'No transpose', N-K+1, K-1, -CONE, A( K, 1 ), LDA,
  388:      $               W( K, 1 ), LDW, CONE, W( K, K ), 1 )
  389: *
  390:          KSTEP = 1
  391: *
  392: *        Determine rows and columns to be interchanged and whether
  393: *        a 1-by-1 or 2-by-2 pivot block will be used
  394: *
  395:          ABSAKK = CABS1( W( K, K ) )
  396: *
  397: *        IMAX is the row-index of the largest off-diagonal element in
  398: *        column K, and COLMAX is its absolute value
  399: *
  400:          IF( K.LT.N ) THEN
  401:             IMAX = K + IZAMAX( N-K, W( K+1, K ), 1 )
  402:             COLMAX = CABS1( W( IMAX, K ) )
  403:          ELSE
  404:             COLMAX = ZERO
  405:          END IF
  406: *
  407:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  408: *
  409: *           Column K is zero: set INFO and continue
  410: *
  411:             IF( INFO.EQ.0 )
  412:      $         INFO = K
  413:             KP = K
  414:          ELSE
  415:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  416: *
  417: *              no interchange, use 1-by-1 pivot block
  418: *
  419:                KP = K
  420:             ELSE
  421: *
  422: *              Copy column IMAX to column K+1 of W and update it
  423: *
  424:                CALL ZCOPY( IMAX-K, A( IMAX, K ), LDA, W( K, K+1 ), 1 )
  425:                CALL ZCOPY( N-IMAX+1, A( IMAX, IMAX ), 1, W( IMAX, K+1 ),
  426:      $                     1 )
  427:                CALL ZGEMV( 'No transpose', N-K+1, K-1, -CONE, A( K, 1 ),
  428:      $                     LDA, W( IMAX, 1 ), LDW, CONE, W( K, K+1 ),
  429:      $                     1 )
  430: *
  431: *              JMAX is the column-index of the largest off-diagonal
  432: *              element in row IMAX, and ROWMAX is its absolute value
  433: *
  434:                JMAX = K - 1 + IZAMAX( IMAX-K, W( K, K+1 ), 1 )
  435:                ROWMAX = CABS1( W( JMAX, K+1 ) )
  436:                IF( IMAX.LT.N ) THEN
  437:                   JMAX = IMAX + IZAMAX( N-IMAX, W( IMAX+1, K+1 ), 1 )
  438:                   ROWMAX = MAX( ROWMAX, CABS1( W( JMAX, K+1 ) ) )
  439:                END IF
  440: *
  441:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  442: *
  443: *                 no interchange, use 1-by-1 pivot block
  444: *
  445:                   KP = K
  446:                ELSE IF( CABS1( W( IMAX, K+1 ) ).GE.ALPHA*ROWMAX ) THEN
  447: *
  448: *                 interchange rows and columns K and IMAX, use 1-by-1
  449: *                 pivot block
  450: *
  451:                   KP = IMAX
  452: *
  453: *                 copy column K+1 of W to column K
  454: *
  455:                   CALL ZCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
  456:                ELSE
  457: *
  458: *                 interchange rows and columns K+1 and IMAX, use 2-by-2
  459: *                 pivot block
  460: *
  461:                   KP = IMAX
  462:                   KSTEP = 2
  463:                END IF
  464:             END IF
  465: *
  466:             KK = K + KSTEP - 1
  467: *
  468: *           Updated column KP is already stored in column KK of W
  469: *
  470:             IF( KP.NE.KK ) THEN
  471: *
  472: *              Copy non-updated column KK to column KP
  473: *
  474:                A( KP, K ) = A( KK, K )
  475:                CALL ZCOPY( KP-K-1, A( K+1, KK ), 1, A( KP, K+1 ), LDA )
  476:                CALL ZCOPY( N-KP+1, A( KP, KK ), 1, A( KP, KP ), 1 )
  477: *
  478: *              Interchange rows KK and KP in first KK columns of A and W
  479: *
  480:                CALL ZSWAP( KK, A( KK, 1 ), LDA, A( KP, 1 ), LDA )
  481:                CALL ZSWAP( KK, W( KK, 1 ), LDW, W( KP, 1 ), LDW )
  482:             END IF
  483: *
  484:             IF( KSTEP.EQ.1 ) THEN
  485: *
  486: *              1-by-1 pivot block D(k): column k of W now holds
  487: *
  488: *              W(k) = L(k)*D(k)
  489: *
  490: *              where L(k) is the k-th column of L
  491: *
  492: *              Store L(k) in column k of A
  493: *
  494:                CALL ZCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
  495:                IF( K.LT.N ) THEN
  496:                   R1 = CONE / A( K, K )
  497:                   CALL ZSCAL( N-K, R1, A( K+1, K ), 1 )
  498:                END IF
  499:             ELSE
  500: *
  501: *              2-by-2 pivot block D(k): columns k and k+1 of W now hold
  502: *
  503: *              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
  504: *
  505: *              where L(k) and L(k+1) are the k-th and (k+1)-th columns
  506: *              of L
  507: *
  508:                IF( K.LT.N-1 ) THEN
  509: *
  510: *                 Store L(k) and L(k+1) in columns k and k+1 of A
  511: *
  512:                   D21 = W( K+1, K )
  513:                   D11 = W( K+1, K+1 ) / D21
  514:                   D22 = W( K, K ) / D21
  515:                   T = CONE / ( D11*D22-CONE )
  516:                   D21 = T / D21
  517:                   DO 80 J = K + 2, N
  518:                      A( J, K ) = D21*( D11*W( J, K )-W( J, K+1 ) )
  519:                      A( J, K+1 ) = D21*( D22*W( J, K+1 )-W( J, K ) )
  520:    80             CONTINUE
  521:                END IF
  522: *
  523: *              Copy D(k) to A
  524: *
  525:                A( K, K ) = W( K, K )
  526:                A( K+1, K ) = W( K+1, K )
  527:                A( K+1, K+1 ) = W( K+1, K+1 )
  528:             END IF
  529:          END IF
  530: *
  531: *        Store details of the interchanges in IPIV
  532: *
  533:          IF( KSTEP.EQ.1 ) THEN
  534:             IPIV( K ) = KP
  535:          ELSE
  536:             IPIV( K ) = -KP
  537:             IPIV( K+1 ) = -KP
  538:          END IF
  539: *
  540: *        Increase K and return to the start of the main loop
  541: *
  542:          K = K + KSTEP
  543:          GO TO 70
  544: *
  545:    90    CONTINUE
  546: *
  547: *        Update the lower triangle of A22 (= A(k:n,k:n)) as
  548: *
  549: *        A22 := A22 - L21*D*L21' = A22 - L21*W'
  550: *
  551: *        computing blocks of NB columns at a time
  552: *
  553:          DO 110 J = K, N, NB
  554:             JB = MIN( NB, N-J+1 )
  555: *
  556: *           Update the lower triangle of the diagonal block
  557: *
  558:             DO 100 JJ = J, J + JB - 1
  559:                CALL ZGEMV( 'No transpose', J+JB-JJ, K-1, -CONE,
  560:      $                     A( JJ, 1 ), LDA, W( JJ, 1 ), LDW, CONE,
  561:      $                     A( JJ, JJ ), 1 )
  562:   100       CONTINUE
  563: *
  564: *           Update the rectangular subdiagonal block
  565: *
  566:             IF( J+JB.LE.N )
  567:      $         CALL ZGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
  568:      $                     K-1, -CONE, A( J+JB, 1 ), LDA, W( J, 1 ),
  569:      $                     LDW, CONE, A( J+JB, J ), LDA )
  570:   110    CONTINUE
  571: *
  572: *        Put L21 in standard form by partially undoing the interchanges
  573: *        in columns 1:k-1
  574: *
  575:          J = K - 1
  576:   120    CONTINUE
  577:          JJ = J
  578:          JP = IPIV( J )
  579:          IF( JP.LT.0 ) THEN
  580:             JP = -JP
  581:             J = J - 1
  582:          END IF
  583:          J = J - 1
  584:          IF( JP.NE.JJ .AND. J.GE.1 )
  585:      $      CALL ZSWAP( J, A( JP, 1 ), LDA, A( JJ, 1 ), LDA )
  586:          IF( J.GE.1 )
  587:      $      GO TO 120
  588: *
  589: *        Set KB to the number of columns factorized
  590: *
  591:          KB = K - 1
  592: *
  593:       END IF
  594:       RETURN
  595: *
  596: *     End of ZLASYF
  597: *
  598:       END

CVSweb interface <joel.bertrand@systella.fr>