File:  [local] / rpl / lapack / lapack / zlasyf.f
Revision 1.14: download - view: text, annotated - select for diffs - revision graph
Mon Jan 27 09:24:36 2014 UTC (10 years, 3 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de lapack vers la version 3.5.0.

    1: *> \brief \b ZLASYF computes a partial factorization of a complex symmetric matrix using the Bunch-Kaufman diagonal pivoting method.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZLASYF + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlasyf.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlasyf.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlasyf.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLASYF( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, KB, LDA, LDW, N, NB
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       COMPLEX*16         A( LDA, * ), W( LDW, * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZLASYF computes a partial factorization of a complex symmetric matrix
   39: *> A using the Bunch-Kaufman diagonal pivoting method. The partial
   40: *> factorization has the form:
   41: *>
   42: *> A  =  ( I  U12 ) ( A11  0  ) (  I       0    )  if UPLO = 'U', or:
   43: *>       ( 0  U22 ) (  0   D  ) ( U12**T U22**T )
   44: *>
   45: *> A  =  ( L11  0 ) ( D    0  ) ( L11**T L21**T )  if UPLO = 'L'
   46: *>       ( L21  I ) ( 0   A22 ) (  0       I    )
   47: *>
   48: *> where the order of D is at most NB. The actual order is returned in
   49: *> the argument KB, and is either NB or NB-1, or N if N <= NB.
   50: *> Note that U**T denotes the transpose of U.
   51: *>
   52: *> ZLASYF is an auxiliary routine called by ZSYTRF. It uses blocked code
   53: *> (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or
   54: *> A22 (if UPLO = 'L').
   55: *> \endverbatim
   56: *
   57: *  Arguments:
   58: *  ==========
   59: *
   60: *> \param[in] UPLO
   61: *> \verbatim
   62: *>          UPLO is CHARACTER*1
   63: *>          Specifies whether the upper or lower triangular part of the
   64: *>          symmetric matrix A is stored:
   65: *>          = 'U':  Upper triangular
   66: *>          = 'L':  Lower triangular
   67: *> \endverbatim
   68: *>
   69: *> \param[in] N
   70: *> \verbatim
   71: *>          N is INTEGER
   72: *>          The order of the matrix A.  N >= 0.
   73: *> \endverbatim
   74: *>
   75: *> \param[in] NB
   76: *> \verbatim
   77: *>          NB is INTEGER
   78: *>          The maximum number of columns of the matrix A that should be
   79: *>          factored.  NB should be at least 2 to allow for 2-by-2 pivot
   80: *>          blocks.
   81: *> \endverbatim
   82: *>
   83: *> \param[out] KB
   84: *> \verbatim
   85: *>          KB is INTEGER
   86: *>          The number of columns of A that were actually factored.
   87: *>          KB is either NB-1 or NB, or N if N <= NB.
   88: *> \endverbatim
   89: *>
   90: *> \param[in,out] A
   91: *> \verbatim
   92: *>          A is COMPLEX*16 array, dimension (LDA,N)
   93: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
   94: *>          n-by-n upper triangular part of A contains the upper
   95: *>          triangular part of the matrix A, and the strictly lower
   96: *>          triangular part of A is not referenced.  If UPLO = 'L', the
   97: *>          leading n-by-n lower triangular part of A contains the lower
   98: *>          triangular part of the matrix A, and the strictly upper
   99: *>          triangular part of A is not referenced.
  100: *>          On exit, A contains details of the partial factorization.
  101: *> \endverbatim
  102: *>
  103: *> \param[in] LDA
  104: *> \verbatim
  105: *>          LDA is INTEGER
  106: *>          The leading dimension of the array A.  LDA >= max(1,N).
  107: *> \endverbatim
  108: *>
  109: *> \param[out] IPIV
  110: *> \verbatim
  111: *>          IPIV is INTEGER array, dimension (N)
  112: *>          Details of the interchanges and the block structure of D.
  113: *>
  114: *>          If UPLO = 'U':
  115: *>             Only the last KB elements of IPIV are set.
  116: *>
  117: *>             If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  118: *>             interchanged and D(k,k) is a 1-by-1 diagonal block.
  119: *>
  120: *>             If IPIV(k) = IPIV(k-1) < 0, then rows and columns
  121: *>             k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
  122: *>             is a 2-by-2 diagonal block.
  123: *>
  124: *>          If UPLO = 'L':
  125: *>             Only the first KB elements of IPIV are set.
  126: *>
  127: *>             If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  128: *>             interchanged and D(k,k) is a 1-by-1 diagonal block.
  129: *>
  130: *>             If IPIV(k) = IPIV(k+1) < 0, then rows and columns
  131: *>             k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1)
  132: *>             is a 2-by-2 diagonal block.
  133: *> \endverbatim
  134: *>
  135: *> \param[out] W
  136: *> \verbatim
  137: *>          W is COMPLEX*16 array, dimension (LDW,NB)
  138: *> \endverbatim
  139: *>
  140: *> \param[in] LDW
  141: *> \verbatim
  142: *>          LDW is INTEGER
  143: *>          The leading dimension of the array W.  LDW >= max(1,N).
  144: *> \endverbatim
  145: *>
  146: *> \param[out] INFO
  147: *> \verbatim
  148: *>          INFO is INTEGER
  149: *>          = 0: successful exit
  150: *>          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
  151: *>               has been completed, but the block diagonal matrix D is
  152: *>               exactly singular.
  153: *> \endverbatim
  154: *
  155: *  Authors:
  156: *  ========
  157: *
  158: *> \author Univ. of Tennessee
  159: *> \author Univ. of California Berkeley
  160: *> \author Univ. of Colorado Denver
  161: *> \author NAG Ltd.
  162: *
  163: *> \date November 2013
  164: *
  165: *> \ingroup complex16SYcomputational
  166: *
  167: *> \par Contributors:
  168: *  ==================
  169: *>
  170: *> \verbatim
  171: *>
  172: *>  November 2013,  Igor Kozachenko,
  173: *>                  Computer Science Division,
  174: *>                  University of California, Berkeley
  175: *> \endverbatim
  176: *
  177: *  =====================================================================
  178:       SUBROUTINE ZLASYF( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO )
  179: *
  180: *  -- LAPACK computational routine (version 3.5.0) --
  181: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  182: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  183: *     November 2013
  184: *
  185: *     .. Scalar Arguments ..
  186:       CHARACTER          UPLO
  187:       INTEGER            INFO, KB, LDA, LDW, N, NB
  188: *     ..
  189: *     .. Array Arguments ..
  190:       INTEGER            IPIV( * )
  191:       COMPLEX*16         A( LDA, * ), W( LDW, * )
  192: *     ..
  193: *
  194: *  =====================================================================
  195: *
  196: *     .. Parameters ..
  197:       DOUBLE PRECISION   ZERO, ONE
  198:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  199:       DOUBLE PRECISION   EIGHT, SEVTEN
  200:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  201:       COMPLEX*16         CONE
  202:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
  203: *     ..
  204: *     .. Local Scalars ..
  205:       INTEGER            IMAX, J, JB, JJ, JMAX, JP, K, KK, KKW, KP,
  206:      $                   KSTEP, KW
  207:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, ROWMAX
  208:       COMPLEX*16         D11, D21, D22, R1, T, Z
  209: *     ..
  210: *     .. External Functions ..
  211:       LOGICAL            LSAME
  212:       INTEGER            IZAMAX
  213:       EXTERNAL           LSAME, IZAMAX
  214: *     ..
  215: *     .. External Subroutines ..
  216:       EXTERNAL           ZCOPY, ZGEMM, ZGEMV, ZSCAL, ZSWAP
  217: *     ..
  218: *     .. Intrinsic Functions ..
  219:       INTRINSIC          ABS, DBLE, DIMAG, MAX, MIN, SQRT
  220: *     ..
  221: *     .. Statement Functions ..
  222:       DOUBLE PRECISION   CABS1
  223: *     ..
  224: *     .. Statement Function definitions ..
  225:       CABS1( Z ) = ABS( DBLE( Z ) ) + ABS( DIMAG( Z ) )
  226: *     ..
  227: *     .. Executable Statements ..
  228: *
  229:       INFO = 0
  230: *
  231: *     Initialize ALPHA for use in choosing pivot block size.
  232: *
  233:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  234: *
  235:       IF( LSAME( UPLO, 'U' ) ) THEN
  236: *
  237: *        Factorize the trailing columns of A using the upper triangle
  238: *        of A and working backwards, and compute the matrix W = U12*D
  239: *        for use in updating A11
  240: *
  241: *        K is the main loop index, decreasing from N in steps of 1 or 2
  242: *
  243: *        KW is the column of W which corresponds to column K of A
  244: *
  245:          K = N
  246:    10    CONTINUE
  247:          KW = NB + K - N
  248: *
  249: *        Exit from loop
  250: *
  251:          IF( ( K.LE.N-NB+1 .AND. NB.LT.N ) .OR. K.LT.1 )
  252:      $      GO TO 30
  253: *
  254: *        Copy column K of A to column KW of W and update it
  255: *
  256:          CALL ZCOPY( K, A( 1, K ), 1, W( 1, KW ), 1 )
  257:          IF( K.LT.N )
  258:      $      CALL ZGEMV( 'No transpose', K, N-K, -CONE, A( 1, K+1 ), LDA,
  259:      $                  W( K, KW+1 ), LDW, CONE, W( 1, KW ), 1 )
  260: *
  261:          KSTEP = 1
  262: *
  263: *        Determine rows and columns to be interchanged and whether
  264: *        a 1-by-1 or 2-by-2 pivot block will be used
  265: *
  266:          ABSAKK = CABS1( W( K, KW ) )
  267: *
  268: *        IMAX is the row-index of the largest off-diagonal element in
  269: 
  270: *
  271:          IF( K.GT.1 ) THEN
  272:             IMAX = IZAMAX( K-1, W( 1, KW ), 1 )
  273:             COLMAX = CABS1( W( IMAX, KW ) )
  274:          ELSE
  275:             COLMAX = ZERO
  276:          END IF
  277: *
  278:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  279: *
  280: *           Column K is zero or underflow: set INFO and continue
  281: *
  282:             IF( INFO.EQ.0 )
  283:      $         INFO = K
  284:             KP = K
  285:          ELSE
  286:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  287: *
  288: *              no interchange, use 1-by-1 pivot block
  289: *
  290:                KP = K
  291:             ELSE
  292: *
  293: *              Copy column IMAX to column KW-1 of W and update it
  294: *
  295:                CALL ZCOPY( IMAX, A( 1, IMAX ), 1, W( 1, KW-1 ), 1 )
  296:                CALL ZCOPY( K-IMAX, A( IMAX, IMAX+1 ), LDA,
  297:      $                     W( IMAX+1, KW-1 ), 1 )
  298:                IF( K.LT.N )
  299:      $            CALL ZGEMV( 'No transpose', K, N-K, -CONE,
  300:      $                        A( 1, K+1 ), LDA, W( IMAX, KW+1 ), LDW,
  301:      $                        CONE, W( 1, KW-1 ), 1 )
  302: *
  303: *              JMAX is the column-index of the largest off-diagonal
  304: *              element in row IMAX, and ROWMAX is its absolute value
  305: *
  306:                JMAX = IMAX + IZAMAX( K-IMAX, W( IMAX+1, KW-1 ), 1 )
  307:                ROWMAX = CABS1( W( JMAX, KW-1 ) )
  308:                IF( IMAX.GT.1 ) THEN
  309:                   JMAX = IZAMAX( IMAX-1, W( 1, KW-1 ), 1 )
  310:                   ROWMAX = MAX( ROWMAX, CABS1( W( JMAX, KW-1 ) ) )
  311:                END IF
  312: *
  313:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  314: *
  315: *                 no interchange, use 1-by-1 pivot block
  316: *
  317:                   KP = K
  318:                ELSE IF( CABS1( W( IMAX, KW-1 ) ).GE.ALPHA*ROWMAX ) THEN
  319: *
  320: *                 interchange rows and columns K and IMAX, use 1-by-1
  321: *                 pivot block
  322: *
  323:                   KP = IMAX
  324: *
  325: *                 copy column KW-1 of W to column KW of W
  326: *
  327:                   CALL ZCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
  328:                ELSE
  329: *
  330: *                 interchange rows and columns K-1 and IMAX, use 2-by-2
  331: *                 pivot block
  332: *
  333:                   KP = IMAX
  334:                   KSTEP = 2
  335:                END IF
  336:             END IF
  337: *
  338: *           ============================================================
  339: *
  340: *           KK is the column of A where pivoting step stopped
  341: *
  342:             KK = K - KSTEP + 1
  343: *
  344: *           KKW is the column of W which corresponds to column KK of A
  345: *
  346:             KKW = NB + KK - N
  347: *
  348: *           Interchange rows and columns KP and KK.
  349: *           Updated column KP is already stored in column KKW of W.
  350: *
  351:             IF( KP.NE.KK ) THEN
  352: *
  353: *              Copy non-updated column KK to column KP of submatrix A
  354: *              at step K. No need to copy element into column K
  355: *              (or K and K-1 for 2-by-2 pivot) of A, since these columns
  356: *              will be later overwritten.
  357: *
  358:                A( KP, KP ) = A( KK, KK )
  359:                CALL ZCOPY( KK-1-KP, A( KP+1, KK ), 1, A( KP, KP+1 ),
  360:      $                     LDA )
  361:                IF( KP.GT.1 )
  362:      $            CALL ZCOPY( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
  363: *
  364: *              Interchange rows KK and KP in last K+1 to N columns of A
  365: *              (columns K (or K and K-1 for 2-by-2 pivot) of A will be
  366: *              later overwritten). Interchange rows KK and KP
  367: *              in last KKW to NB columns of W.
  368: *
  369:                IF( K.LT.N )
  370:      $            CALL ZSWAP( N-K, A( KK, K+1 ), LDA, A( KP, K+1 ),
  371:      $                        LDA )
  372:                CALL ZSWAP( N-KK+1, W( KK, KKW ), LDW, W( KP, KKW ),
  373:      $                     LDW )
  374:             END IF
  375: *
  376:             IF( KSTEP.EQ.1 ) THEN
  377: *
  378: *              1-by-1 pivot block D(k): column kw of W now holds
  379: *
  380: *              W(kw) = U(k)*D(k),
  381: *
  382: *              where U(k) is the k-th column of U
  383: *
  384: *              Store subdiag. elements of column U(k)
  385: *              and 1-by-1 block D(k) in column k of A.
  386: *              NOTE: Diagonal element U(k,k) is a UNIT element
  387: *              and not stored.
  388: *                 A(k,k) := D(k,k) = W(k,kw)
  389: *                 A(1:k-1,k) := U(1:k-1,k) = W(1:k-1,kw)/D(k,k)
  390: *
  391:                CALL ZCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
  392:                R1 = CONE / A( K, K )
  393:                CALL ZSCAL( K-1, R1, A( 1, K ), 1 )
  394: *
  395:             ELSE
  396: *
  397: *              2-by-2 pivot block D(k): columns kw and kw-1 of W now hold
  398: *
  399: *              ( W(kw-1) W(kw) ) = ( U(k-1) U(k) )*D(k)
  400: *
  401: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
  402: *              of U
  403: *
  404: *              Store U(1:k-2,k-1) and U(1:k-2,k) and 2-by-2
  405: *              block D(k-1:k,k-1:k) in columns k-1 and k of A.
  406: *              NOTE: 2-by-2 diagonal block U(k-1:k,k-1:k) is a UNIT
  407: *              block and not stored.
  408: *                 A(k-1:k,k-1:k) := D(k-1:k,k-1:k) = W(k-1:k,kw-1:kw)
  409: *                 A(1:k-2,k-1:k) := U(1:k-2,k:k-1:k) =
  410: *                 = W(1:k-2,kw-1:kw) * ( D(k-1:k,k-1:k)**(-1) )
  411: *
  412:                IF( K.GT.2 ) THEN
  413: *
  414: *                 Compose the columns of the inverse of 2-by-2 pivot
  415: *                 block D in the following way to reduce the number
  416: *                 of FLOPS when we myltiply panel ( W(kw-1) W(kw) ) by
  417: *                 this inverse
  418: *
  419: *                 D**(-1) = ( d11 d21 )**(-1) =
  420: *                           ( d21 d22 )
  421: *
  422: *                 = 1/(d11*d22-d21**2) * ( ( d22 ) (-d21 ) ) =
  423: *                                        ( (-d21 ) ( d11 ) )
  424: *
  425: *                 = 1/d21 * 1/((d11/d21)*(d22/d21)-1) *
  426: *
  427: *                   * ( ( d22/d21 ) (      -1 ) ) =
  428: *                     ( (      -1 ) ( d11/d21 ) )
  429: *
  430: *                 = 1/d21 * 1/(D22*D11-1) * ( ( D11 ) (  -1 ) ) =
  431: *                                           ( ( -1  ) ( D22 ) )
  432: *
  433: *                 = 1/d21 * T * ( ( D11 ) (  -1 ) )
  434: *                               ( (  -1 ) ( D22 ) )
  435: *
  436: *                 = D21 * ( ( D11 ) (  -1 ) )
  437: *                         ( (  -1 ) ( D22 ) )
  438: *
  439:                   D21 = W( K-1, KW )
  440:                   D11 = W( K, KW ) / D21
  441:                   D22 = W( K-1, KW-1 ) / D21
  442:                   T = CONE / ( D11*D22-CONE )
  443:                   D21 = T / D21
  444: *
  445: *                 Update elements in columns A(k-1) and A(k) as
  446: *                 dot products of rows of ( W(kw-1) W(kw) ) and columns
  447: *                 of D**(-1)
  448: *
  449:                   DO 20 J = 1, K - 2
  450:                      A( J, K-1 ) = D21*( D11*W( J, KW-1 )-W( J, KW ) )
  451:                      A( J, K ) = D21*( D22*W( J, KW )-W( J, KW-1 ) )
  452:    20             CONTINUE
  453:                END IF
  454: *
  455: *              Copy D(k) to A
  456: *
  457:                A( K-1, K-1 ) = W( K-1, KW-1 )
  458:                A( K-1, K ) = W( K-1, KW )
  459:                A( K, K ) = W( K, KW )
  460: *
  461:             END IF
  462: *
  463:          END IF
  464: *
  465: *        Store details of the interchanges in IPIV
  466: *
  467:          IF( KSTEP.EQ.1 ) THEN
  468:             IPIV( K ) = KP
  469:          ELSE
  470:             IPIV( K ) = -KP
  471:             IPIV( K-1 ) = -KP
  472:          END IF
  473: *
  474: *        Decrease K and return to the start of the main loop
  475: *
  476:          K = K - KSTEP
  477:          GO TO 10
  478: *
  479:    30    CONTINUE
  480: *
  481: *        Update the upper triangle of A11 (= A(1:k,1:k)) as
  482: *
  483: *        A11 := A11 - U12*D*U12**T = A11 - U12*W**T
  484: *
  485: *        computing blocks of NB columns at a time
  486: *
  487:          DO 50 J = ( ( K-1 ) / NB )*NB + 1, 1, -NB
  488:             JB = MIN( NB, K-J+1 )
  489: *
  490: *           Update the upper triangle of the diagonal block
  491: *
  492:             DO 40 JJ = J, J + JB - 1
  493:                CALL ZGEMV( 'No transpose', JJ-J+1, N-K, -CONE,
  494:      $                     A( J, K+1 ), LDA, W( JJ, KW+1 ), LDW, CONE,
  495:      $                     A( J, JJ ), 1 )
  496:    40       CONTINUE
  497: *
  498: *           Update the rectangular superdiagonal block
  499: *
  500:             CALL ZGEMM( 'No transpose', 'Transpose', J-1, JB, N-K,
  501:      $                  -CONE, A( 1, K+1 ), LDA, W( J, KW+1 ), LDW,
  502:      $                  CONE, A( 1, J ), LDA )
  503:    50    CONTINUE
  504: *
  505: *        Put U12 in standard form by partially undoing the interchanges
  506: *        in columns k+1:n looping backwards from k+1 to n
  507: *
  508:          J = K + 1
  509:    60    CONTINUE
  510: *
  511: *           Undo the interchanges (if any) of rows JJ and JP at each
  512: *           step J
  513: *
  514: *           (Here, J is a diagonal index)
  515:             JJ = J
  516:             JP = IPIV( J )
  517:             IF( JP.LT.0 ) THEN
  518:                JP = -JP
  519: *              (Here, J is a diagonal index)
  520:                J = J + 1
  521:             END IF
  522: *           (NOTE: Here, J is used to determine row length. Length N-J+1
  523: *           of the rows to swap back doesn't include diagonal element)
  524:             J = J + 1
  525:             IF( JP.NE.JJ .AND. J.LE.N )
  526:      $         CALL ZSWAP( N-J+1, A( JP, J ), LDA, A( JJ, J ), LDA )
  527:          IF( J.LT.N )
  528:      $      GO TO 60
  529: *
  530: *        Set KB to the number of columns factorized
  531: *
  532:          KB = N - K
  533: *
  534:       ELSE
  535: *
  536: *        Factorize the leading columns of A using the lower triangle
  537: *        of A and working forwards, and compute the matrix W = L21*D
  538: *        for use in updating A22
  539: *
  540: *        K is the main loop index, increasing from 1 in steps of 1 or 2
  541: *
  542:          K = 1
  543:    70    CONTINUE
  544: *
  545: *        Exit from loop
  546: *
  547:          IF( ( K.GE.NB .AND. NB.LT.N ) .OR. K.GT.N )
  548:      $      GO TO 90
  549: *
  550: *        Copy column K of A to column K of W and update it
  551: *
  552:          CALL ZCOPY( N-K+1, A( K, K ), 1, W( K, K ), 1 )
  553:          CALL ZGEMV( 'No transpose', N-K+1, K-1, -CONE, A( K, 1 ), LDA,
  554:      $               W( K, 1 ), LDW, CONE, W( K, K ), 1 )
  555: *
  556:          KSTEP = 1
  557: *
  558: *        Determine rows and columns to be interchanged and whether
  559: *        a 1-by-1 or 2-by-2 pivot block will be used
  560: *
  561:          ABSAKK = CABS1( W( K, K ) )
  562: *
  563: *        IMAX is the row-index of the largest off-diagonal element in
  564: 
  565: *
  566:          IF( K.LT.N ) THEN
  567:             IMAX = K + IZAMAX( N-K, W( K+1, K ), 1 )
  568:             COLMAX = CABS1( W( IMAX, K ) )
  569:          ELSE
  570:             COLMAX = ZERO
  571:          END IF
  572: *
  573:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  574: *
  575: *           Column K is zero or underflow: set INFO and continue
  576: *
  577:             IF( INFO.EQ.0 )
  578:      $         INFO = K
  579:             KP = K
  580:          ELSE
  581:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  582: *
  583: *              no interchange, use 1-by-1 pivot block
  584: *
  585:                KP = K
  586:             ELSE
  587: *
  588: *              Copy column IMAX to column K+1 of W and update it
  589: *
  590:                CALL ZCOPY( IMAX-K, A( IMAX, K ), LDA, W( K, K+1 ), 1 )
  591:                CALL ZCOPY( N-IMAX+1, A( IMAX, IMAX ), 1, W( IMAX, K+1 ),
  592:      $                     1 )
  593:                CALL ZGEMV( 'No transpose', N-K+1, K-1, -CONE, A( K, 1 ),
  594:      $                     LDA, W( IMAX, 1 ), LDW, CONE, W( K, K+1 ),
  595:      $                     1 )
  596: *
  597: *              JMAX is the column-index of the largest off-diagonal
  598: *              element in row IMAX, and ROWMAX is its absolute value
  599: *
  600:                JMAX = K - 1 + IZAMAX( IMAX-K, W( K, K+1 ), 1 )
  601:                ROWMAX = CABS1( W( JMAX, K+1 ) )
  602:                IF( IMAX.LT.N ) THEN
  603:                   JMAX = IMAX + IZAMAX( N-IMAX, W( IMAX+1, K+1 ), 1 )
  604:                   ROWMAX = MAX( ROWMAX, CABS1( W( JMAX, K+1 ) ) )
  605:                END IF
  606: *
  607:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  608: *
  609: *                 no interchange, use 1-by-1 pivot block
  610: *
  611:                   KP = K
  612:                ELSE IF( CABS1( W( IMAX, K+1 ) ).GE.ALPHA*ROWMAX ) THEN
  613: *
  614: *                 interchange rows and columns K and IMAX, use 1-by-1
  615: *                 pivot block
  616: *
  617:                   KP = IMAX
  618: *
  619: *                 copy column K+1 of W to column K of W
  620: *
  621:                   CALL ZCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
  622:                ELSE
  623: *
  624: *                 interchange rows and columns K+1 and IMAX, use 2-by-2
  625: *                 pivot block
  626: *
  627:                   KP = IMAX
  628:                   KSTEP = 2
  629:                END IF
  630:             END IF
  631: *
  632: *           ============================================================
  633: *
  634: *           KK is the column of A where pivoting step stopped
  635: *
  636:             KK = K + KSTEP - 1
  637: *
  638: *           Interchange rows and columns KP and KK.
  639: *           Updated column KP is already stored in column KK of W.
  640: *
  641:             IF( KP.NE.KK ) THEN
  642: *
  643: *              Copy non-updated column KK to column KP of submatrix A
  644: *              at step K. No need to copy element into column K
  645: *              (or K and K+1 for 2-by-2 pivot) of A, since these columns
  646: *              will be later overwritten.
  647: *
  648:                A( KP, KP ) = A( KK, KK )
  649:                CALL ZCOPY( KP-KK-1, A( KK+1, KK ), 1, A( KP, KK+1 ),
  650:      $                     LDA )
  651:                IF( KP.LT.N )
  652:      $            CALL ZCOPY( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
  653: *
  654: *              Interchange rows KK and KP in first K-1 columns of A
  655: *              (columns K (or K and K+1 for 2-by-2 pivot) of A will be
  656: *              later overwritten). Interchange rows KK and KP
  657: *              in first KK columns of W.
  658: *
  659:                IF( K.GT.1 )
  660:      $            CALL ZSWAP( K-1, A( KK, 1 ), LDA, A( KP, 1 ), LDA )
  661:                CALL ZSWAP( KK, W( KK, 1 ), LDW, W( KP, 1 ), LDW )
  662:             END IF
  663: *
  664:             IF( KSTEP.EQ.1 ) THEN
  665: *
  666: *              1-by-1 pivot block D(k): column k of W now holds
  667: *
  668: *              W(k) = L(k)*D(k),
  669: *
  670: *              where L(k) is the k-th column of L
  671: *
  672: *              Store subdiag. elements of column L(k)
  673: *              and 1-by-1 block D(k) in column k of A.
  674: *              (NOTE: Diagonal element L(k,k) is a UNIT element
  675: *              and not stored)
  676: *                 A(k,k) := D(k,k) = W(k,k)
  677: *                 A(k+1:N,k) := L(k+1:N,k) = W(k+1:N,k)/D(k,k)
  678: *
  679:                CALL ZCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
  680:                IF( K.LT.N ) THEN
  681:                   R1 = CONE / A( K, K )
  682:                   CALL ZSCAL( N-K, R1, A( K+1, K ), 1 )
  683:                END IF
  684: *
  685:             ELSE
  686: *
  687: *              2-by-2 pivot block D(k): columns k and k+1 of W now hold
  688: *
  689: *              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
  690: *
  691: *              where L(k) and L(k+1) are the k-th and (k+1)-th columns
  692: *              of L
  693: *
  694: *              Store L(k+2:N,k) and L(k+2:N,k+1) and 2-by-2
  695: *              block D(k:k+1,k:k+1) in columns k and k+1 of A.
  696: *              (NOTE: 2-by-2 diagonal block L(k:k+1,k:k+1) is a UNIT
  697: *              block and not stored)
  698: *                 A(k:k+1,k:k+1) := D(k:k+1,k:k+1) = W(k:k+1,k:k+1)
  699: *                 A(k+2:N,k:k+1) := L(k+2:N,k:k+1) =
  700: *                 = W(k+2:N,k:k+1) * ( D(k:k+1,k:k+1)**(-1) )
  701: *
  702:                IF( K.LT.N-1 ) THEN
  703: *
  704: *                 Compose the columns of the inverse of 2-by-2 pivot
  705: *                 block D in the following way to reduce the number
  706: *                 of FLOPS when we myltiply panel ( W(k) W(k+1) ) by
  707: *                 this inverse
  708: *
  709: *                 D**(-1) = ( d11 d21 )**(-1) =
  710: *                           ( d21 d22 )
  711: *
  712: *                 = 1/(d11*d22-d21**2) * ( ( d22 ) (-d21 ) ) =
  713: *                                        ( (-d21 ) ( d11 ) )
  714: *
  715: *                 = 1/d21 * 1/((d11/d21)*(d22/d21)-1) *
  716: *
  717: *                   * ( ( d22/d21 ) (      -1 ) ) =
  718: *                     ( (      -1 ) ( d11/d21 ) )
  719: *
  720: *                 = 1/d21 * 1/(D22*D11-1) * ( ( D11 ) (  -1 ) ) =
  721: *                                           ( ( -1  ) ( D22 ) )
  722: *
  723: *                 = 1/d21 * T * ( ( D11 ) (  -1 ) )
  724: *                               ( (  -1 ) ( D22 ) )
  725: *
  726: *                 = D21 * ( ( D11 ) (  -1 ) )
  727: *                         ( (  -1 ) ( D22 ) )
  728: *
  729:                   D21 = W( K+1, K )
  730:                   D11 = W( K+1, K+1 ) / D21
  731:                   D22 = W( K, K ) / D21
  732:                   T = CONE / ( D11*D22-CONE )
  733:                   D21 = T / D21
  734: *
  735: *                 Update elements in columns A(k) and A(k+1) as
  736: *                 dot products of rows of ( W(k) W(k+1) ) and columns
  737: *                 of D**(-1)
  738: *
  739:                   DO 80 J = K + 2, N
  740:                      A( J, K ) = D21*( D11*W( J, K )-W( J, K+1 ) )
  741:                      A( J, K+1 ) = D21*( D22*W( J, K+1 )-W( J, K ) )
  742:    80             CONTINUE
  743:                END IF
  744: *
  745: *              Copy D(k) to A
  746: *
  747:                A( K, K ) = W( K, K )
  748:                A( K+1, K ) = W( K+1, K )
  749:                A( K+1, K+1 ) = W( K+1, K+1 )
  750: *
  751:             END IF
  752: *
  753:          END IF
  754: *
  755: *        Store details of the interchanges in IPIV
  756: *
  757:          IF( KSTEP.EQ.1 ) THEN
  758:             IPIV( K ) = KP
  759:          ELSE
  760:             IPIV( K ) = -KP
  761:             IPIV( K+1 ) = -KP
  762:          END IF
  763: *
  764: *        Increase K and return to the start of the main loop
  765: *
  766:          K = K + KSTEP
  767:          GO TO 70
  768: *
  769:    90    CONTINUE
  770: *
  771: *        Update the lower triangle of A22 (= A(k:n,k:n)) as
  772: *
  773: *        A22 := A22 - L21*D*L21**T = A22 - L21*W**T
  774: *
  775: *        computing blocks of NB columns at a time
  776: *
  777:          DO 110 J = K, N, NB
  778:             JB = MIN( NB, N-J+1 )
  779: *
  780: *           Update the lower triangle of the diagonal block
  781: *
  782:             DO 100 JJ = J, J + JB - 1
  783:                CALL ZGEMV( 'No transpose', J+JB-JJ, K-1, -CONE,
  784:      $                     A( JJ, 1 ), LDA, W( JJ, 1 ), LDW, CONE,
  785:      $                     A( JJ, JJ ), 1 )
  786:   100       CONTINUE
  787: *
  788: *           Update the rectangular subdiagonal block
  789: *
  790:             IF( J+JB.LE.N )
  791:      $         CALL ZGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
  792:      $                     K-1, -CONE, A( J+JB, 1 ), LDA, W( J, 1 ),
  793:      $                     LDW, CONE, A( J+JB, J ), LDA )
  794:   110    CONTINUE
  795: *
  796: *        Put L21 in standard form by partially undoing the interchanges
  797: *        of rows in columns 1:k-1 looping backwards from k-1 to 1
  798: *
  799:          J = K - 1
  800:   120    CONTINUE
  801: *
  802: *           Undo the interchanges (if any) of rows JJ and JP at each
  803: *           step J
  804: *
  805: *           (Here, J is a diagonal index)
  806:             JJ = J
  807:             JP = IPIV( J )
  808:             IF( JP.LT.0 ) THEN
  809:                JP = -JP
  810: *              (Here, J is a diagonal index)
  811:                J = J - 1
  812:             END IF
  813: *           (NOTE: Here, J is used to determine row length. Length J
  814: *           of the rows to swap back doesn't include diagonal element)
  815:             J = J - 1
  816:             IF( JP.NE.JJ .AND. J.GE.1 )
  817:      $         CALL ZSWAP( J, A( JP, 1 ), LDA, A( JJ, 1 ), LDA )
  818:          IF( J.GT.1 )
  819:      $      GO TO 120
  820: *
  821: *        Set KB to the number of columns factorized
  822: *
  823:          KB = K - 1
  824: *
  825:       END IF
  826:       RETURN
  827: *
  828: *     End of ZLASYF
  829: *
  830:       END

CVSweb interface <joel.bertrand@systella.fr>