Annotation of rpl/lapack/lapack/zlasyf.f, revision 1.19

1.14      bertrand    1: *> \brief \b ZLASYF computes a partial factorization of a complex symmetric matrix using the Bunch-Kaufman diagonal pivoting method.
1.9       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.14      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.14      bertrand    9: *> Download ZLASYF + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlasyf.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlasyf.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlasyf.f">
1.9       bertrand   15: *> [TXT]</a>
1.14      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZLASYF( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO )
1.14      bertrand   22: *
1.9       bertrand   23: *       .. Scalar Arguments ..
                     24: *       CHARACTER          UPLO
                     25: *       INTEGER            INFO, KB, LDA, LDW, N, NB
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       INTEGER            IPIV( * )
                     29: *       COMPLEX*16         A( LDA, * ), W( LDW, * )
                     30: *       ..
1.14      bertrand   31: *
1.9       bertrand   32: *
                     33: *> \par Purpose:
                     34: *  =============
                     35: *>
                     36: *> \verbatim
                     37: *>
                     38: *> ZLASYF computes a partial factorization of a complex symmetric matrix
                     39: *> A using the Bunch-Kaufman diagonal pivoting method. The partial
                     40: *> factorization has the form:
                     41: *>
                     42: *> A  =  ( I  U12 ) ( A11  0  ) (  I       0    )  if UPLO = 'U', or:
                     43: *>       ( 0  U22 ) (  0   D  ) ( U12**T U22**T )
                     44: *>
                     45: *> A  =  ( L11  0 ) ( D    0  ) ( L11**T L21**T )  if UPLO = 'L'
                     46: *>       ( L21  I ) ( 0   A22 ) (  0       I    )
                     47: *>
                     48: *> where the order of D is at most NB. The actual order is returned in
                     49: *> the argument KB, and is either NB or NB-1, or N if N <= NB.
                     50: *> Note that U**T denotes the transpose of U.
                     51: *>
                     52: *> ZLASYF is an auxiliary routine called by ZSYTRF. It uses blocked code
                     53: *> (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or
                     54: *> A22 (if UPLO = 'L').
                     55: *> \endverbatim
                     56: *
                     57: *  Arguments:
                     58: *  ==========
                     59: *
                     60: *> \param[in] UPLO
                     61: *> \verbatim
                     62: *>          UPLO is CHARACTER*1
                     63: *>          Specifies whether the upper or lower triangular part of the
                     64: *>          symmetric matrix A is stored:
                     65: *>          = 'U':  Upper triangular
                     66: *>          = 'L':  Lower triangular
                     67: *> \endverbatim
                     68: *>
                     69: *> \param[in] N
                     70: *> \verbatim
                     71: *>          N is INTEGER
                     72: *>          The order of the matrix A.  N >= 0.
                     73: *> \endverbatim
                     74: *>
                     75: *> \param[in] NB
                     76: *> \verbatim
                     77: *>          NB is INTEGER
                     78: *>          The maximum number of columns of the matrix A that should be
                     79: *>          factored.  NB should be at least 2 to allow for 2-by-2 pivot
                     80: *>          blocks.
                     81: *> \endverbatim
                     82: *>
                     83: *> \param[out] KB
                     84: *> \verbatim
                     85: *>          KB is INTEGER
                     86: *>          The number of columns of A that were actually factored.
                     87: *>          KB is either NB-1 or NB, or N if N <= NB.
                     88: *> \endverbatim
                     89: *>
                     90: *> \param[in,out] A
                     91: *> \verbatim
                     92: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     93: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
                     94: *>          n-by-n upper triangular part of A contains the upper
                     95: *>          triangular part of the matrix A, and the strictly lower
                     96: *>          triangular part of A is not referenced.  If UPLO = 'L', the
                     97: *>          leading n-by-n lower triangular part of A contains the lower
                     98: *>          triangular part of the matrix A, and the strictly upper
                     99: *>          triangular part of A is not referenced.
                    100: *>          On exit, A contains details of the partial factorization.
                    101: *> \endverbatim
                    102: *>
                    103: *> \param[in] LDA
                    104: *> \verbatim
                    105: *>          LDA is INTEGER
                    106: *>          The leading dimension of the array A.  LDA >= max(1,N).
                    107: *> \endverbatim
                    108: *>
                    109: *> \param[out] IPIV
                    110: *> \verbatim
                    111: *>          IPIV is INTEGER array, dimension (N)
                    112: *>          Details of the interchanges and the block structure of D.
                    113: *>
1.14      bertrand  114: *>          If UPLO = 'U':
                    115: *>             Only the last KB elements of IPIV are set.
                    116: *>
                    117: *>             If IPIV(k) > 0, then rows and columns k and IPIV(k) were
                    118: *>             interchanged and D(k,k) is a 1-by-1 diagonal block.
                    119: *>
                    120: *>             If IPIV(k) = IPIV(k-1) < 0, then rows and columns
                    121: *>             k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
                    122: *>             is a 2-by-2 diagonal block.
                    123: *>
                    124: *>          If UPLO = 'L':
                    125: *>             Only the first KB elements of IPIV are set.
                    126: *>
                    127: *>             If IPIV(k) > 0, then rows and columns k and IPIV(k) were
                    128: *>             interchanged and D(k,k) is a 1-by-1 diagonal block.
                    129: *>
                    130: *>             If IPIV(k) = IPIV(k+1) < 0, then rows and columns
                    131: *>             k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1)
                    132: *>             is a 2-by-2 diagonal block.
1.9       bertrand  133: *> \endverbatim
                    134: *>
                    135: *> \param[out] W
                    136: *> \verbatim
                    137: *>          W is COMPLEX*16 array, dimension (LDW,NB)
                    138: *> \endverbatim
                    139: *>
                    140: *> \param[in] LDW
                    141: *> \verbatim
                    142: *>          LDW is INTEGER
                    143: *>          The leading dimension of the array W.  LDW >= max(1,N).
                    144: *> \endverbatim
                    145: *>
                    146: *> \param[out] INFO
                    147: *> \verbatim
                    148: *>          INFO is INTEGER
                    149: *>          = 0: successful exit
                    150: *>          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
                    151: *>               has been completed, but the block diagonal matrix D is
                    152: *>               exactly singular.
                    153: *> \endverbatim
                    154: *
                    155: *  Authors:
                    156: *  ========
                    157: *
1.14      bertrand  158: *> \author Univ. of Tennessee
                    159: *> \author Univ. of California Berkeley
                    160: *> \author Univ. of Colorado Denver
                    161: *> \author NAG Ltd.
1.9       bertrand  162: *
                    163: *> \ingroup complex16SYcomputational
                    164: *
1.14      bertrand  165: *> \par Contributors:
                    166: *  ==================
                    167: *>
                    168: *> \verbatim
                    169: *>
                    170: *>  November 2013,  Igor Kozachenko,
                    171: *>                  Computer Science Division,
                    172: *>                  University of California, Berkeley
                    173: *> \endverbatim
                    174: *
1.9       bertrand  175: *  =====================================================================
1.1       bertrand  176:       SUBROUTINE ZLASYF( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO )
                    177: *
1.19    ! bertrand  178: *  -- LAPACK computational routine --
1.1       bertrand  179: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    180: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    181: *
                    182: *     .. Scalar Arguments ..
                    183:       CHARACTER          UPLO
                    184:       INTEGER            INFO, KB, LDA, LDW, N, NB
                    185: *     ..
                    186: *     .. Array Arguments ..
                    187:       INTEGER            IPIV( * )
                    188:       COMPLEX*16         A( LDA, * ), W( LDW, * )
                    189: *     ..
                    190: *
                    191: *  =====================================================================
                    192: *
                    193: *     .. Parameters ..
                    194:       DOUBLE PRECISION   ZERO, ONE
                    195:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    196:       DOUBLE PRECISION   EIGHT, SEVTEN
                    197:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
                    198:       COMPLEX*16         CONE
                    199:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
                    200: *     ..
                    201: *     .. Local Scalars ..
                    202:       INTEGER            IMAX, J, JB, JJ, JMAX, JP, K, KK, KKW, KP,
                    203:      $                   KSTEP, KW
                    204:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, ROWMAX
                    205:       COMPLEX*16         D11, D21, D22, R1, T, Z
                    206: *     ..
                    207: *     .. External Functions ..
                    208:       LOGICAL            LSAME
                    209:       INTEGER            IZAMAX
                    210:       EXTERNAL           LSAME, IZAMAX
                    211: *     ..
                    212: *     .. External Subroutines ..
                    213:       EXTERNAL           ZCOPY, ZGEMM, ZGEMV, ZSCAL, ZSWAP
                    214: *     ..
                    215: *     .. Intrinsic Functions ..
                    216:       INTRINSIC          ABS, DBLE, DIMAG, MAX, MIN, SQRT
                    217: *     ..
                    218: *     .. Statement Functions ..
                    219:       DOUBLE PRECISION   CABS1
                    220: *     ..
                    221: *     .. Statement Function definitions ..
                    222:       CABS1( Z ) = ABS( DBLE( Z ) ) + ABS( DIMAG( Z ) )
                    223: *     ..
                    224: *     .. Executable Statements ..
                    225: *
                    226:       INFO = 0
                    227: *
                    228: *     Initialize ALPHA for use in choosing pivot block size.
                    229: *
                    230:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
                    231: *
                    232:       IF( LSAME( UPLO, 'U' ) ) THEN
                    233: *
                    234: *        Factorize the trailing columns of A using the upper triangle
                    235: *        of A and working backwards, and compute the matrix W = U12*D
                    236: *        for use in updating A11
                    237: *
                    238: *        K is the main loop index, decreasing from N in steps of 1 or 2
                    239: *
                    240: *        KW is the column of W which corresponds to column K of A
                    241: *
                    242:          K = N
                    243:    10    CONTINUE
                    244:          KW = NB + K - N
                    245: *
                    246: *        Exit from loop
                    247: *
                    248:          IF( ( K.LE.N-NB+1 .AND. NB.LT.N ) .OR. K.LT.1 )
                    249:      $      GO TO 30
                    250: *
                    251: *        Copy column K of A to column KW of W and update it
                    252: *
                    253:          CALL ZCOPY( K, A( 1, K ), 1, W( 1, KW ), 1 )
                    254:          IF( K.LT.N )
                    255:      $      CALL ZGEMV( 'No transpose', K, N-K, -CONE, A( 1, K+1 ), LDA,
                    256:      $                  W( K, KW+1 ), LDW, CONE, W( 1, KW ), 1 )
                    257: *
                    258:          KSTEP = 1
                    259: *
                    260: *        Determine rows and columns to be interchanged and whether
                    261: *        a 1-by-1 or 2-by-2 pivot block will be used
                    262: *
                    263:          ABSAKK = CABS1( W( K, KW ) )
                    264: *
                    265: *        IMAX is the row-index of the largest off-diagonal element in
1.14      bertrand  266: 
1.1       bertrand  267: *
                    268:          IF( K.GT.1 ) THEN
                    269:             IMAX = IZAMAX( K-1, W( 1, KW ), 1 )
                    270:             COLMAX = CABS1( W( IMAX, KW ) )
                    271:          ELSE
                    272:             COLMAX = ZERO
                    273:          END IF
                    274: *
                    275:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
                    276: *
1.14      bertrand  277: *           Column K is zero or underflow: set INFO and continue
1.1       bertrand  278: *
                    279:             IF( INFO.EQ.0 )
                    280:      $         INFO = K
                    281:             KP = K
                    282:          ELSE
                    283:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
                    284: *
                    285: *              no interchange, use 1-by-1 pivot block
                    286: *
                    287:                KP = K
                    288:             ELSE
                    289: *
                    290: *              Copy column IMAX to column KW-1 of W and update it
                    291: *
                    292:                CALL ZCOPY( IMAX, A( 1, IMAX ), 1, W( 1, KW-1 ), 1 )
                    293:                CALL ZCOPY( K-IMAX, A( IMAX, IMAX+1 ), LDA,
                    294:      $                     W( IMAX+1, KW-1 ), 1 )
                    295:                IF( K.LT.N )
                    296:      $            CALL ZGEMV( 'No transpose', K, N-K, -CONE,
                    297:      $                        A( 1, K+1 ), LDA, W( IMAX, KW+1 ), LDW,
                    298:      $                        CONE, W( 1, KW-1 ), 1 )
                    299: *
                    300: *              JMAX is the column-index of the largest off-diagonal
                    301: *              element in row IMAX, and ROWMAX is its absolute value
                    302: *
                    303:                JMAX = IMAX + IZAMAX( K-IMAX, W( IMAX+1, KW-1 ), 1 )
                    304:                ROWMAX = CABS1( W( JMAX, KW-1 ) )
                    305:                IF( IMAX.GT.1 ) THEN
                    306:                   JMAX = IZAMAX( IMAX-1, W( 1, KW-1 ), 1 )
                    307:                   ROWMAX = MAX( ROWMAX, CABS1( W( JMAX, KW-1 ) ) )
                    308:                END IF
                    309: *
                    310:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
                    311: *
                    312: *                 no interchange, use 1-by-1 pivot block
                    313: *
                    314:                   KP = K
                    315:                ELSE IF( CABS1( W( IMAX, KW-1 ) ).GE.ALPHA*ROWMAX ) THEN
                    316: *
                    317: *                 interchange rows and columns K and IMAX, use 1-by-1
                    318: *                 pivot block
                    319: *
                    320:                   KP = IMAX
                    321: *
1.14      bertrand  322: *                 copy column KW-1 of W to column KW of W
1.1       bertrand  323: *
                    324:                   CALL ZCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
                    325:                ELSE
                    326: *
                    327: *                 interchange rows and columns K-1 and IMAX, use 2-by-2
                    328: *                 pivot block
                    329: *
                    330:                   KP = IMAX
                    331:                   KSTEP = 2
                    332:                END IF
                    333:             END IF
                    334: *
1.14      bertrand  335: *           ============================================================
                    336: *
                    337: *           KK is the column of A where pivoting step stopped
                    338: *
1.1       bertrand  339:             KK = K - KSTEP + 1
1.14      bertrand  340: *
                    341: *           KKW is the column of W which corresponds to column KK of A
                    342: *
1.1       bertrand  343:             KKW = NB + KK - N
                    344: *
1.14      bertrand  345: *           Interchange rows and columns KP and KK.
                    346: *           Updated column KP is already stored in column KKW of W.
1.1       bertrand  347: *
                    348:             IF( KP.NE.KK ) THEN
                    349: *
1.14      bertrand  350: *              Copy non-updated column KK to column KP of submatrix A
                    351: *              at step K. No need to copy element into column K
                    352: *              (or K and K-1 for 2-by-2 pivot) of A, since these columns
                    353: *              will be later overwritten.
1.1       bertrand  354: *
1.14      bertrand  355:                A( KP, KP ) = A( KK, KK )
                    356:                CALL ZCOPY( KK-1-KP, A( KP+1, KK ), 1, A( KP, KP+1 ),
1.1       bertrand  357:      $                     LDA )
1.14      bertrand  358:                IF( KP.GT.1 )
                    359:      $            CALL ZCOPY( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
1.1       bertrand  360: *
1.14      bertrand  361: *              Interchange rows KK and KP in last K+1 to N columns of A
                    362: *              (columns K (or K and K-1 for 2-by-2 pivot) of A will be
                    363: *              later overwritten). Interchange rows KK and KP
                    364: *              in last KKW to NB columns of W.
1.1       bertrand  365: *
1.14      bertrand  366:                IF( K.LT.N )
                    367:      $            CALL ZSWAP( N-K, A( KK, K+1 ), LDA, A( KP, K+1 ),
                    368:      $                        LDA )
1.1       bertrand  369:                CALL ZSWAP( N-KK+1, W( KK, KKW ), LDW, W( KP, KKW ),
                    370:      $                     LDW )
                    371:             END IF
                    372: *
                    373:             IF( KSTEP.EQ.1 ) THEN
                    374: *
1.14      bertrand  375: *              1-by-1 pivot block D(k): column kw of W now holds
1.1       bertrand  376: *
1.14      bertrand  377: *              W(kw) = U(k)*D(k),
1.1       bertrand  378: *
                    379: *              where U(k) is the k-th column of U
                    380: *
1.14      bertrand  381: *              Store subdiag. elements of column U(k)
                    382: *              and 1-by-1 block D(k) in column k of A.
                    383: *              NOTE: Diagonal element U(k,k) is a UNIT element
                    384: *              and not stored.
                    385: *                 A(k,k) := D(k,k) = W(k,kw)
                    386: *                 A(1:k-1,k) := U(1:k-1,k) = W(1:k-1,kw)/D(k,k)
1.1       bertrand  387: *
                    388:                CALL ZCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
                    389:                R1 = CONE / A( K, K )
                    390:                CALL ZSCAL( K-1, R1, A( 1, K ), 1 )
1.14      bertrand  391: *
1.1       bertrand  392:             ELSE
                    393: *
1.14      bertrand  394: *              2-by-2 pivot block D(k): columns kw and kw-1 of W now hold
1.1       bertrand  395: *
1.14      bertrand  396: *              ( W(kw-1) W(kw) ) = ( U(k-1) U(k) )*D(k)
1.1       bertrand  397: *
                    398: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
                    399: *              of U
                    400: *
1.14      bertrand  401: *              Store U(1:k-2,k-1) and U(1:k-2,k) and 2-by-2
                    402: *              block D(k-1:k,k-1:k) in columns k-1 and k of A.
                    403: *              NOTE: 2-by-2 diagonal block U(k-1:k,k-1:k) is a UNIT
                    404: *              block and not stored.
                    405: *                 A(k-1:k,k-1:k) := D(k-1:k,k-1:k) = W(k-1:k,kw-1:kw)
                    406: *                 A(1:k-2,k-1:k) := U(1:k-2,k:k-1:k) =
                    407: *                 = W(1:k-2,kw-1:kw) * ( D(k-1:k,k-1:k)**(-1) )
                    408: *
1.1       bertrand  409:                IF( K.GT.2 ) THEN
                    410: *
1.14      bertrand  411: *                 Compose the columns of the inverse of 2-by-2 pivot
                    412: *                 block D in the following way to reduce the number
                    413: *                 of FLOPS when we myltiply panel ( W(kw-1) W(kw) ) by
                    414: *                 this inverse
                    415: *
                    416: *                 D**(-1) = ( d11 d21 )**(-1) =
                    417: *                           ( d21 d22 )
                    418: *
                    419: *                 = 1/(d11*d22-d21**2) * ( ( d22 ) (-d21 ) ) =
                    420: *                                        ( (-d21 ) ( d11 ) )
                    421: *
                    422: *                 = 1/d21 * 1/((d11/d21)*(d22/d21)-1) *
                    423: *
                    424: *                   * ( ( d22/d21 ) (      -1 ) ) =
                    425: *                     ( (      -1 ) ( d11/d21 ) )
                    426: *
                    427: *                 = 1/d21 * 1/(D22*D11-1) * ( ( D11 ) (  -1 ) ) =
                    428: *                                           ( ( -1  ) ( D22 ) )
                    429: *
                    430: *                 = 1/d21 * T * ( ( D11 ) (  -1 ) )
                    431: *                               ( (  -1 ) ( D22 ) )
                    432: *
                    433: *                 = D21 * ( ( D11 ) (  -1 ) )
                    434: *                         ( (  -1 ) ( D22 ) )
1.1       bertrand  435: *
                    436:                   D21 = W( K-1, KW )
                    437:                   D11 = W( K, KW ) / D21
                    438:                   D22 = W( K-1, KW-1 ) / D21
                    439:                   T = CONE / ( D11*D22-CONE )
                    440:                   D21 = T / D21
1.14      bertrand  441: *
                    442: *                 Update elements in columns A(k-1) and A(k) as
                    443: *                 dot products of rows of ( W(kw-1) W(kw) ) and columns
                    444: *                 of D**(-1)
                    445: *
1.1       bertrand  446:                   DO 20 J = 1, K - 2
                    447:                      A( J, K-1 ) = D21*( D11*W( J, KW-1 )-W( J, KW ) )
                    448:                      A( J, K ) = D21*( D22*W( J, KW )-W( J, KW-1 ) )
                    449:    20             CONTINUE
                    450:                END IF
                    451: *
                    452: *              Copy D(k) to A
                    453: *
                    454:                A( K-1, K-1 ) = W( K-1, KW-1 )
                    455:                A( K-1, K ) = W( K-1, KW )
                    456:                A( K, K ) = W( K, KW )
1.14      bertrand  457: *
1.1       bertrand  458:             END IF
1.14      bertrand  459: *
1.1       bertrand  460:          END IF
                    461: *
                    462: *        Store details of the interchanges in IPIV
                    463: *
                    464:          IF( KSTEP.EQ.1 ) THEN
                    465:             IPIV( K ) = KP
                    466:          ELSE
                    467:             IPIV( K ) = -KP
                    468:             IPIV( K-1 ) = -KP
                    469:          END IF
                    470: *
                    471: *        Decrease K and return to the start of the main loop
                    472: *
                    473:          K = K - KSTEP
                    474:          GO TO 10
                    475: *
                    476:    30    CONTINUE
                    477: *
                    478: *        Update the upper triangle of A11 (= A(1:k,1:k)) as
                    479: *
1.8       bertrand  480: *        A11 := A11 - U12*D*U12**T = A11 - U12*W**T
1.1       bertrand  481: *
                    482: *        computing blocks of NB columns at a time
                    483: *
                    484:          DO 50 J = ( ( K-1 ) / NB )*NB + 1, 1, -NB
                    485:             JB = MIN( NB, K-J+1 )
                    486: *
                    487: *           Update the upper triangle of the diagonal block
                    488: *
                    489:             DO 40 JJ = J, J + JB - 1
                    490:                CALL ZGEMV( 'No transpose', JJ-J+1, N-K, -CONE,
                    491:      $                     A( J, K+1 ), LDA, W( JJ, KW+1 ), LDW, CONE,
                    492:      $                     A( J, JJ ), 1 )
                    493:    40       CONTINUE
                    494: *
                    495: *           Update the rectangular superdiagonal block
                    496: *
                    497:             CALL ZGEMM( 'No transpose', 'Transpose', J-1, JB, N-K,
                    498:      $                  -CONE, A( 1, K+1 ), LDA, W( J, KW+1 ), LDW,
                    499:      $                  CONE, A( 1, J ), LDA )
                    500:    50    CONTINUE
                    501: *
                    502: *        Put U12 in standard form by partially undoing the interchanges
1.14      bertrand  503: *        in columns k+1:n looping backwards from k+1 to n
1.1       bertrand  504: *
                    505:          J = K + 1
                    506:    60    CONTINUE
1.14      bertrand  507: *
                    508: *           Undo the interchanges (if any) of rows JJ and JP at each
                    509: *           step J
                    510: *
                    511: *           (Here, J is a diagonal index)
                    512:             JJ = J
                    513:             JP = IPIV( J )
                    514:             IF( JP.LT.0 ) THEN
                    515:                JP = -JP
                    516: *              (Here, J is a diagonal index)
                    517:                J = J + 1
                    518:             END IF
                    519: *           (NOTE: Here, J is used to determine row length. Length N-J+1
                    520: *           of the rows to swap back doesn't include diagonal element)
1.1       bertrand  521:             J = J + 1
1.14      bertrand  522:             IF( JP.NE.JJ .AND. J.LE.N )
                    523:      $         CALL ZSWAP( N-J+1, A( JP, J ), LDA, A( JJ, J ), LDA )
                    524:          IF( J.LT.N )
1.1       bertrand  525:      $      GO TO 60
                    526: *
                    527: *        Set KB to the number of columns factorized
                    528: *
                    529:          KB = N - K
                    530: *
                    531:       ELSE
                    532: *
                    533: *        Factorize the leading columns of A using the lower triangle
                    534: *        of A and working forwards, and compute the matrix W = L21*D
                    535: *        for use in updating A22
                    536: *
                    537: *        K is the main loop index, increasing from 1 in steps of 1 or 2
                    538: *
                    539:          K = 1
                    540:    70    CONTINUE
                    541: *
                    542: *        Exit from loop
                    543: *
                    544:          IF( ( K.GE.NB .AND. NB.LT.N ) .OR. K.GT.N )
                    545:      $      GO TO 90
                    546: *
                    547: *        Copy column K of A to column K of W and update it
                    548: *
                    549:          CALL ZCOPY( N-K+1, A( K, K ), 1, W( K, K ), 1 )
                    550:          CALL ZGEMV( 'No transpose', N-K+1, K-1, -CONE, A( K, 1 ), LDA,
                    551:      $               W( K, 1 ), LDW, CONE, W( K, K ), 1 )
                    552: *
                    553:          KSTEP = 1
                    554: *
                    555: *        Determine rows and columns to be interchanged and whether
                    556: *        a 1-by-1 or 2-by-2 pivot block will be used
                    557: *
                    558:          ABSAKK = CABS1( W( K, K ) )
                    559: *
                    560: *        IMAX is the row-index of the largest off-diagonal element in
1.14      bertrand  561: 
1.1       bertrand  562: *
                    563:          IF( K.LT.N ) THEN
                    564:             IMAX = K + IZAMAX( N-K, W( K+1, K ), 1 )
                    565:             COLMAX = CABS1( W( IMAX, K ) )
                    566:          ELSE
                    567:             COLMAX = ZERO
                    568:          END IF
                    569: *
                    570:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
                    571: *
1.14      bertrand  572: *           Column K is zero or underflow: set INFO and continue
1.1       bertrand  573: *
                    574:             IF( INFO.EQ.0 )
                    575:      $         INFO = K
                    576:             KP = K
                    577:          ELSE
                    578:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
                    579: *
                    580: *              no interchange, use 1-by-1 pivot block
                    581: *
                    582:                KP = K
                    583:             ELSE
                    584: *
                    585: *              Copy column IMAX to column K+1 of W and update it
                    586: *
                    587:                CALL ZCOPY( IMAX-K, A( IMAX, K ), LDA, W( K, K+1 ), 1 )
                    588:                CALL ZCOPY( N-IMAX+1, A( IMAX, IMAX ), 1, W( IMAX, K+1 ),
                    589:      $                     1 )
                    590:                CALL ZGEMV( 'No transpose', N-K+1, K-1, -CONE, A( K, 1 ),
                    591:      $                     LDA, W( IMAX, 1 ), LDW, CONE, W( K, K+1 ),
                    592:      $                     1 )
                    593: *
                    594: *              JMAX is the column-index of the largest off-diagonal
                    595: *              element in row IMAX, and ROWMAX is its absolute value
                    596: *
                    597:                JMAX = K - 1 + IZAMAX( IMAX-K, W( K, K+1 ), 1 )
                    598:                ROWMAX = CABS1( W( JMAX, K+1 ) )
                    599:                IF( IMAX.LT.N ) THEN
                    600:                   JMAX = IMAX + IZAMAX( N-IMAX, W( IMAX+1, K+1 ), 1 )
                    601:                   ROWMAX = MAX( ROWMAX, CABS1( W( JMAX, K+1 ) ) )
                    602:                END IF
                    603: *
                    604:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
                    605: *
                    606: *                 no interchange, use 1-by-1 pivot block
                    607: *
                    608:                   KP = K
                    609:                ELSE IF( CABS1( W( IMAX, K+1 ) ).GE.ALPHA*ROWMAX ) THEN
                    610: *
                    611: *                 interchange rows and columns K and IMAX, use 1-by-1
                    612: *                 pivot block
                    613: *
                    614:                   KP = IMAX
                    615: *
1.14      bertrand  616: *                 copy column K+1 of W to column K of W
1.1       bertrand  617: *
                    618:                   CALL ZCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
                    619:                ELSE
                    620: *
                    621: *                 interchange rows and columns K+1 and IMAX, use 2-by-2
                    622: *                 pivot block
                    623: *
                    624:                   KP = IMAX
                    625:                   KSTEP = 2
                    626:                END IF
                    627:             END IF
                    628: *
1.14      bertrand  629: *           ============================================================
                    630: *
                    631: *           KK is the column of A where pivoting step stopped
                    632: *
1.1       bertrand  633:             KK = K + KSTEP - 1
                    634: *
1.14      bertrand  635: *           Interchange rows and columns KP and KK.
                    636: *           Updated column KP is already stored in column KK of W.
1.1       bertrand  637: *
                    638:             IF( KP.NE.KK ) THEN
                    639: *
1.14      bertrand  640: *              Copy non-updated column KK to column KP of submatrix A
                    641: *              at step K. No need to copy element into column K
                    642: *              (or K and K+1 for 2-by-2 pivot) of A, since these columns
                    643: *              will be later overwritten.
1.1       bertrand  644: *
1.14      bertrand  645:                A( KP, KP ) = A( KK, KK )
                    646:                CALL ZCOPY( KP-KK-1, A( KK+1, KK ), 1, A( KP, KK+1 ),
                    647:      $                     LDA )
                    648:                IF( KP.LT.N )
                    649:      $            CALL ZCOPY( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
1.1       bertrand  650: *
1.14      bertrand  651: *              Interchange rows KK and KP in first K-1 columns of A
                    652: *              (columns K (or K and K+1 for 2-by-2 pivot) of A will be
                    653: *              later overwritten). Interchange rows KK and KP
                    654: *              in first KK columns of W.
1.1       bertrand  655: *
1.14      bertrand  656:                IF( K.GT.1 )
                    657:      $            CALL ZSWAP( K-1, A( KK, 1 ), LDA, A( KP, 1 ), LDA )
1.1       bertrand  658:                CALL ZSWAP( KK, W( KK, 1 ), LDW, W( KP, 1 ), LDW )
                    659:             END IF
                    660: *
                    661:             IF( KSTEP.EQ.1 ) THEN
                    662: *
                    663: *              1-by-1 pivot block D(k): column k of W now holds
                    664: *
1.14      bertrand  665: *              W(k) = L(k)*D(k),
1.1       bertrand  666: *
                    667: *              where L(k) is the k-th column of L
                    668: *
1.14      bertrand  669: *              Store subdiag. elements of column L(k)
                    670: *              and 1-by-1 block D(k) in column k of A.
                    671: *              (NOTE: Diagonal element L(k,k) is a UNIT element
                    672: *              and not stored)
                    673: *                 A(k,k) := D(k,k) = W(k,k)
                    674: *                 A(k+1:N,k) := L(k+1:N,k) = W(k+1:N,k)/D(k,k)
1.1       bertrand  675: *
                    676:                CALL ZCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
                    677:                IF( K.LT.N ) THEN
                    678:                   R1 = CONE / A( K, K )
                    679:                   CALL ZSCAL( N-K, R1, A( K+1, K ), 1 )
                    680:                END IF
1.14      bertrand  681: *
1.1       bertrand  682:             ELSE
                    683: *
                    684: *              2-by-2 pivot block D(k): columns k and k+1 of W now hold
                    685: *
                    686: *              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
                    687: *
                    688: *              where L(k) and L(k+1) are the k-th and (k+1)-th columns
                    689: *              of L
                    690: *
1.14      bertrand  691: *              Store L(k+2:N,k) and L(k+2:N,k+1) and 2-by-2
                    692: *              block D(k:k+1,k:k+1) in columns k and k+1 of A.
                    693: *              (NOTE: 2-by-2 diagonal block L(k:k+1,k:k+1) is a UNIT
                    694: *              block and not stored)
                    695: *                 A(k:k+1,k:k+1) := D(k:k+1,k:k+1) = W(k:k+1,k:k+1)
                    696: *                 A(k+2:N,k:k+1) := L(k+2:N,k:k+1) =
                    697: *                 = W(k+2:N,k:k+1) * ( D(k:k+1,k:k+1)**(-1) )
                    698: *
1.1       bertrand  699:                IF( K.LT.N-1 ) THEN
                    700: *
1.14      bertrand  701: *                 Compose the columns of the inverse of 2-by-2 pivot
                    702: *                 block D in the following way to reduce the number
                    703: *                 of FLOPS when we myltiply panel ( W(k) W(k+1) ) by
                    704: *                 this inverse
                    705: *
                    706: *                 D**(-1) = ( d11 d21 )**(-1) =
                    707: *                           ( d21 d22 )
                    708: *
                    709: *                 = 1/(d11*d22-d21**2) * ( ( d22 ) (-d21 ) ) =
                    710: *                                        ( (-d21 ) ( d11 ) )
                    711: *
                    712: *                 = 1/d21 * 1/((d11/d21)*(d22/d21)-1) *
                    713: *
                    714: *                   * ( ( d22/d21 ) (      -1 ) ) =
                    715: *                     ( (      -1 ) ( d11/d21 ) )
                    716: *
                    717: *                 = 1/d21 * 1/(D22*D11-1) * ( ( D11 ) (  -1 ) ) =
                    718: *                                           ( ( -1  ) ( D22 ) )
                    719: *
                    720: *                 = 1/d21 * T * ( ( D11 ) (  -1 ) )
                    721: *                               ( (  -1 ) ( D22 ) )
                    722: *
                    723: *                 = D21 * ( ( D11 ) (  -1 ) )
                    724: *                         ( (  -1 ) ( D22 ) )
1.1       bertrand  725: *
                    726:                   D21 = W( K+1, K )
                    727:                   D11 = W( K+1, K+1 ) / D21
                    728:                   D22 = W( K, K ) / D21
                    729:                   T = CONE / ( D11*D22-CONE )
                    730:                   D21 = T / D21
1.14      bertrand  731: *
                    732: *                 Update elements in columns A(k) and A(k+1) as
                    733: *                 dot products of rows of ( W(k) W(k+1) ) and columns
                    734: *                 of D**(-1)
                    735: *
1.1       bertrand  736:                   DO 80 J = K + 2, N
                    737:                      A( J, K ) = D21*( D11*W( J, K )-W( J, K+1 ) )
                    738:                      A( J, K+1 ) = D21*( D22*W( J, K+1 )-W( J, K ) )
                    739:    80             CONTINUE
                    740:                END IF
                    741: *
                    742: *              Copy D(k) to A
                    743: *
                    744:                A( K, K ) = W( K, K )
                    745:                A( K+1, K ) = W( K+1, K )
                    746:                A( K+1, K+1 ) = W( K+1, K+1 )
1.14      bertrand  747: *
1.1       bertrand  748:             END IF
1.14      bertrand  749: *
1.1       bertrand  750:          END IF
                    751: *
                    752: *        Store details of the interchanges in IPIV
                    753: *
                    754:          IF( KSTEP.EQ.1 ) THEN
                    755:             IPIV( K ) = KP
                    756:          ELSE
                    757:             IPIV( K ) = -KP
                    758:             IPIV( K+1 ) = -KP
                    759:          END IF
                    760: *
                    761: *        Increase K and return to the start of the main loop
                    762: *
                    763:          K = K + KSTEP
                    764:          GO TO 70
                    765: *
                    766:    90    CONTINUE
                    767: *
                    768: *        Update the lower triangle of A22 (= A(k:n,k:n)) as
                    769: *
1.8       bertrand  770: *        A22 := A22 - L21*D*L21**T = A22 - L21*W**T
1.1       bertrand  771: *
                    772: *        computing blocks of NB columns at a time
                    773: *
                    774:          DO 110 J = K, N, NB
                    775:             JB = MIN( NB, N-J+1 )
                    776: *
                    777: *           Update the lower triangle of the diagonal block
                    778: *
                    779:             DO 100 JJ = J, J + JB - 1
                    780:                CALL ZGEMV( 'No transpose', J+JB-JJ, K-1, -CONE,
                    781:      $                     A( JJ, 1 ), LDA, W( JJ, 1 ), LDW, CONE,
                    782:      $                     A( JJ, JJ ), 1 )
                    783:   100       CONTINUE
                    784: *
                    785: *           Update the rectangular subdiagonal block
                    786: *
                    787:             IF( J+JB.LE.N )
                    788:      $         CALL ZGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
                    789:      $                     K-1, -CONE, A( J+JB, 1 ), LDA, W( J, 1 ),
                    790:      $                     LDW, CONE, A( J+JB, J ), LDA )
                    791:   110    CONTINUE
                    792: *
                    793: *        Put L21 in standard form by partially undoing the interchanges
1.14      bertrand  794: *        of rows in columns 1:k-1 looping backwards from k-1 to 1
1.1       bertrand  795: *
                    796:          J = K - 1
                    797:   120    CONTINUE
1.14      bertrand  798: *
                    799: *           Undo the interchanges (if any) of rows JJ and JP at each
                    800: *           step J
                    801: *
                    802: *           (Here, J is a diagonal index)
                    803:             JJ = J
                    804:             JP = IPIV( J )
                    805:             IF( JP.LT.0 ) THEN
                    806:                JP = -JP
                    807: *              (Here, J is a diagonal index)
                    808:                J = J - 1
                    809:             END IF
                    810: *           (NOTE: Here, J is used to determine row length. Length J
                    811: *           of the rows to swap back doesn't include diagonal element)
1.1       bertrand  812:             J = J - 1
1.14      bertrand  813:             IF( JP.NE.JJ .AND. J.GE.1 )
                    814:      $         CALL ZSWAP( J, A( JP, 1 ), LDA, A( JJ, 1 ), LDA )
                    815:          IF( J.GT.1 )
1.1       bertrand  816:      $      GO TO 120
                    817: *
                    818: *        Set KB to the number of columns factorized
                    819: *
                    820:          KB = K - 1
                    821: *
                    822:       END IF
                    823:       RETURN
                    824: *
                    825: *     End of ZLASYF
                    826: *
                    827:       END

CVSweb interface <joel.bertrand@systella.fr>