File:  [local] / rpl / lapack / lapack / zlascl.f
Revision 1.15: download - view: text, annotated - select for diffs - revision graph
Sat Aug 27 15:27:14 2016 UTC (7 years, 8 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD

Mise à jour de lapack.

    1: *> \brief \b ZLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZLASCL + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlascl.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlascl.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlascl.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLASCL( TYPE, KL, KU, CFROM, CTO, M, N, A, LDA, INFO )
   22:    23: *       .. Scalar Arguments ..
   24: *       CHARACTER          TYPE
   25: *       INTEGER            INFO, KL, KU, LDA, M, N
   26: *       DOUBLE PRECISION   CFROM, CTO
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       COMPLEX*16         A( LDA, * )
   30: *       ..
   31: *  
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZLASCL multiplies the M by N complex matrix A by the real scalar
   39: *> CTO/CFROM.  This is done without over/underflow as long as the final
   40: *> result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that
   41: *> A may be full, upper triangular, lower triangular, upper Hessenberg,
   42: *> or banded.
   43: *> \endverbatim
   44: *
   45: *  Arguments:
   46: *  ==========
   47: *
   48: *> \param[in] TYPE
   49: *> \verbatim
   50: *>          TYPE is CHARACTER*1
   51: *>          TYPE indices the storage type of the input matrix.
   52: *>          = 'G':  A is a full matrix.
   53: *>          = 'L':  A is a lower triangular matrix.
   54: *>          = 'U':  A is an upper triangular matrix.
   55: *>          = 'H':  A is an upper Hessenberg matrix.
   56: *>          = 'B':  A is a symmetric band matrix with lower bandwidth KL
   57: *>                  and upper bandwidth KU and with the only the lower
   58: *>                  half stored.
   59: *>          = 'Q':  A is a symmetric band matrix with lower bandwidth KL
   60: *>                  and upper bandwidth KU and with the only the upper
   61: *>                  half stored.
   62: *>          = 'Z':  A is a band matrix with lower bandwidth KL and upper
   63: *>                  bandwidth KU. See ZGBTRF for storage details.
   64: *> \endverbatim
   65: *>
   66: *> \param[in] KL
   67: *> \verbatim
   68: *>          KL is INTEGER
   69: *>          The lower bandwidth of A.  Referenced only if TYPE = 'B',
   70: *>          'Q' or 'Z'.
   71: *> \endverbatim
   72: *>
   73: *> \param[in] KU
   74: *> \verbatim
   75: *>          KU is INTEGER
   76: *>          The upper bandwidth of A.  Referenced only if TYPE = 'B',
   77: *>          'Q' or 'Z'.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] CFROM
   81: *> \verbatim
   82: *>          CFROM is DOUBLE PRECISION
   83: *> \endverbatim
   84: *>
   85: *> \param[in] CTO
   86: *> \verbatim
   87: *>          CTO is DOUBLE PRECISION
   88: *>
   89: *>          The matrix A is multiplied by CTO/CFROM. A(I,J) is computed
   90: *>          without over/underflow if the final result CTO*A(I,J)/CFROM
   91: *>          can be represented without over/underflow.  CFROM must be
   92: *>          nonzero.
   93: *> \endverbatim
   94: *>
   95: *> \param[in] M
   96: *> \verbatim
   97: *>          M is INTEGER
   98: *>          The number of rows of the matrix A.  M >= 0.
   99: *> \endverbatim
  100: *>
  101: *> \param[in] N
  102: *> \verbatim
  103: *>          N is INTEGER
  104: *>          The number of columns of the matrix A.  N >= 0.
  105: *> \endverbatim
  106: *>
  107: *> \param[in,out] A
  108: *> \verbatim
  109: *>          A is COMPLEX*16 array, dimension (LDA,N)
  110: *>          The matrix to be multiplied by CTO/CFROM.  See TYPE for the
  111: *>          storage type.
  112: *> \endverbatim
  113: *>
  114: *> \param[in] LDA
  115: *> \verbatim
  116: *>          LDA is INTEGER
  117: *>          The leading dimension of the array A.
  118: *>          If TYPE = 'G', 'L', 'U', 'H', LDA >= max(1,M);
  119: *>             TYPE = 'B', LDA >= KL+1;
  120: *>             TYPE = 'Q', LDA >= KU+1;
  121: *>             TYPE = 'Z', LDA >= 2*KL+KU+1.
  122: *> \endverbatim
  123: *>
  124: *> \param[out] INFO
  125: *> \verbatim
  126: *>          INFO is INTEGER
  127: *>          0  - successful exit
  128: *>          <0 - if INFO = -i, the i-th argument had an illegal value.
  129: *> \endverbatim
  130: *
  131: *  Authors:
  132: *  ========
  133: *
  134: *> \author Univ. of Tennessee 
  135: *> \author Univ. of California Berkeley 
  136: *> \author Univ. of Colorado Denver 
  137: *> \author NAG Ltd. 
  138: *
  139: *> \date June 2016
  140: *
  141: *> \ingroup complex16OTHERauxiliary
  142: *
  143: *  =====================================================================
  144:       SUBROUTINE ZLASCL( TYPE, KL, KU, CFROM, CTO, M, N, A, LDA, INFO )
  145: *
  146: *  -- LAPACK auxiliary routine (version 3.6.1) --
  147: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  148: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  149: *     June 2016
  150: *
  151: *     .. Scalar Arguments ..
  152:       CHARACTER          TYPE
  153:       INTEGER            INFO, KL, KU, LDA, M, N
  154:       DOUBLE PRECISION   CFROM, CTO
  155: *     ..
  156: *     .. Array Arguments ..
  157:       COMPLEX*16         A( LDA, * )
  158: *     ..
  159: *
  160: *  =====================================================================
  161: *
  162: *     .. Parameters ..
  163:       DOUBLE PRECISION   ZERO, ONE
  164:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  165: *     ..
  166: *     .. Local Scalars ..
  167:       LOGICAL            DONE
  168:       INTEGER            I, ITYPE, J, K1, K2, K3, K4
  169:       DOUBLE PRECISION   BIGNUM, CFROM1, CFROMC, CTO1, CTOC, MUL, SMLNUM
  170: *     ..
  171: *     .. External Functions ..
  172:       LOGICAL            LSAME, DISNAN
  173:       DOUBLE PRECISION   DLAMCH
  174:       EXTERNAL           LSAME, DLAMCH, DISNAN
  175: *     ..
  176: *     .. Intrinsic Functions ..
  177:       INTRINSIC          ABS, MAX, MIN
  178: *     ..
  179: *     .. External Subroutines ..
  180:       EXTERNAL           XERBLA
  181: *     ..
  182: *     .. Executable Statements ..
  183: *
  184: *     Test the input arguments
  185: *
  186:       INFO = 0
  187: *
  188:       IF( LSAME( TYPE, 'G' ) ) THEN
  189:          ITYPE = 0
  190:       ELSE IF( LSAME( TYPE, 'L' ) ) THEN
  191:          ITYPE = 1
  192:       ELSE IF( LSAME( TYPE, 'U' ) ) THEN
  193:          ITYPE = 2
  194:       ELSE IF( LSAME( TYPE, 'H' ) ) THEN
  195:          ITYPE = 3
  196:       ELSE IF( LSAME( TYPE, 'B' ) ) THEN
  197:          ITYPE = 4
  198:       ELSE IF( LSAME( TYPE, 'Q' ) ) THEN
  199:          ITYPE = 5
  200:       ELSE IF( LSAME( TYPE, 'Z' ) ) THEN
  201:          ITYPE = 6
  202:       ELSE
  203:          ITYPE = -1
  204:       END IF
  205: *
  206:       IF( ITYPE.EQ.-1 ) THEN
  207:          INFO = -1
  208:       ELSE IF( CFROM.EQ.ZERO .OR. DISNAN(CFROM) ) THEN
  209:          INFO = -4
  210:       ELSE IF( DISNAN(CTO) ) THEN
  211:          INFO = -5
  212:       ELSE IF( M.LT.0 ) THEN
  213:          INFO = -6
  214:       ELSE IF( N.LT.0 .OR. ( ITYPE.EQ.4 .AND. N.NE.M ) .OR.
  215:      $         ( ITYPE.EQ.5 .AND. N.NE.M ) ) THEN
  216:          INFO = -7
  217:       ELSE IF( ITYPE.LE.3 .AND. LDA.LT.MAX( 1, M ) ) THEN
  218:          INFO = -9
  219:       ELSE IF( ITYPE.GE.4 ) THEN
  220:          IF( KL.LT.0 .OR. KL.GT.MAX( M-1, 0 ) ) THEN
  221:             INFO = -2
  222:          ELSE IF( KU.LT.0 .OR. KU.GT.MAX( N-1, 0 ) .OR.
  223:      $            ( ( ITYPE.EQ.4 .OR. ITYPE.EQ.5 ) .AND. KL.NE.KU ) )
  224:      $             THEN
  225:             INFO = -3
  226:          ELSE IF( ( ITYPE.EQ.4 .AND. LDA.LT.KL+1 ) .OR.
  227:      $            ( ITYPE.EQ.5 .AND. LDA.LT.KU+1 ) .OR.
  228:      $            ( ITYPE.EQ.6 .AND. LDA.LT.2*KL+KU+1 ) ) THEN
  229:             INFO = -9
  230:          END IF
  231:       END IF
  232: *
  233:       IF( INFO.NE.0 ) THEN
  234:          CALL XERBLA( 'ZLASCL', -INFO )
  235:          RETURN
  236:       END IF
  237: *
  238: *     Quick return if possible
  239: *
  240:       IF( N.EQ.0 .OR. M.EQ.0 )
  241:      $   RETURN
  242: *
  243: *     Get machine parameters
  244: *
  245:       SMLNUM = DLAMCH( 'S' )
  246:       BIGNUM = ONE / SMLNUM
  247: *
  248:       CFROMC = CFROM
  249:       CTOC = CTO
  250: *
  251:    10 CONTINUE
  252:       CFROM1 = CFROMC*SMLNUM
  253:       IF( CFROM1.EQ.CFROMC ) THEN
  254: !        CFROMC is an inf.  Multiply by a correctly signed zero for
  255: !        finite CTOC, or a NaN if CTOC is infinite.
  256:          MUL = CTOC / CFROMC
  257:          DONE = .TRUE.
  258:          CTO1 = CTOC
  259:       ELSE
  260:          CTO1 = CTOC / BIGNUM
  261:          IF( CTO1.EQ.CTOC ) THEN
  262: !           CTOC is either 0 or an inf.  In both cases, CTOC itself
  263: !           serves as the correct multiplication factor.
  264:             MUL = CTOC
  265:             DONE = .TRUE.
  266:             CFROMC = ONE
  267:          ELSE IF( ABS( CFROM1 ).GT.ABS( CTOC ) .AND. CTOC.NE.ZERO ) THEN
  268:             MUL = SMLNUM
  269:             DONE = .FALSE.
  270:             CFROMC = CFROM1
  271:          ELSE IF( ABS( CTO1 ).GT.ABS( CFROMC ) ) THEN
  272:             MUL = BIGNUM
  273:             DONE = .FALSE.
  274:             CTOC = CTO1
  275:          ELSE
  276:             MUL = CTOC / CFROMC
  277:             DONE = .TRUE.
  278:          END IF
  279:       END IF
  280: *
  281:       IF( ITYPE.EQ.0 ) THEN
  282: *
  283: *        Full matrix
  284: *
  285:          DO 30 J = 1, N
  286:             DO 20 I = 1, M
  287:                A( I, J ) = A( I, J )*MUL
  288:    20       CONTINUE
  289:    30    CONTINUE
  290: *
  291:       ELSE IF( ITYPE.EQ.1 ) THEN
  292: *
  293: *        Lower triangular matrix
  294: *
  295:          DO 50 J = 1, N
  296:             DO 40 I = J, M
  297:                A( I, J ) = A( I, J )*MUL
  298:    40       CONTINUE
  299:    50    CONTINUE
  300: *
  301:       ELSE IF( ITYPE.EQ.2 ) THEN
  302: *
  303: *        Upper triangular matrix
  304: *
  305:          DO 70 J = 1, N
  306:             DO 60 I = 1, MIN( J, M )
  307:                A( I, J ) = A( I, J )*MUL
  308:    60       CONTINUE
  309:    70    CONTINUE
  310: *
  311:       ELSE IF( ITYPE.EQ.3 ) THEN
  312: *
  313: *        Upper Hessenberg matrix
  314: *
  315:          DO 90 J = 1, N
  316:             DO 80 I = 1, MIN( J+1, M )
  317:                A( I, J ) = A( I, J )*MUL
  318:    80       CONTINUE
  319:    90    CONTINUE
  320: *
  321:       ELSE IF( ITYPE.EQ.4 ) THEN
  322: *
  323: *        Lower half of a symmetric band matrix
  324: *
  325:          K3 = KL + 1
  326:          K4 = N + 1
  327:          DO 110 J = 1, N
  328:             DO 100 I = 1, MIN( K3, K4-J )
  329:                A( I, J ) = A( I, J )*MUL
  330:   100       CONTINUE
  331:   110    CONTINUE
  332: *
  333:       ELSE IF( ITYPE.EQ.5 ) THEN
  334: *
  335: *        Upper half of a symmetric band matrix
  336: *
  337:          K1 = KU + 2
  338:          K3 = KU + 1
  339:          DO 130 J = 1, N
  340:             DO 120 I = MAX( K1-J, 1 ), K3
  341:                A( I, J ) = A( I, J )*MUL
  342:   120       CONTINUE
  343:   130    CONTINUE
  344: *
  345:       ELSE IF( ITYPE.EQ.6 ) THEN
  346: *
  347: *        Band matrix
  348: *
  349:          K1 = KL + KU + 2
  350:          K2 = KL + 1
  351:          K3 = 2*KL + KU + 1
  352:          K4 = KL + KU + 1 + M
  353:          DO 150 J = 1, N
  354:             DO 140 I = MAX( K1-J, K2 ), MIN( K3, K4-J )
  355:                A( I, J ) = A( I, J )*MUL
  356:   140       CONTINUE
  357:   150    CONTINUE
  358: *
  359:       END IF
  360: *
  361:       IF( .NOT.DONE )
  362:      $   GO TO 10
  363: *
  364:       RETURN
  365: *
  366: *     End of ZLASCL
  367: *
  368:       END

CVSweb interface <joel.bertrand@systella.fr>