Annotation of rpl/lapack/lapack/zlartg.f, revision 1.4

1.1       bertrand    1:       SUBROUTINE ZLARTG( F, G, CS, SN, R )
                      2: *
                      3: *  -- LAPACK auxiliary routine (version 3.2) --
                      4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      6: *     November 2006
                      7: *
                      8: *     .. Scalar Arguments ..
                      9:       DOUBLE PRECISION   CS
                     10:       COMPLEX*16         F, G, R, SN
                     11: *     ..
                     12: *
                     13: *  Purpose
                     14: *  =======
                     15: *
                     16: *  ZLARTG generates a plane rotation so that
                     17: *
                     18: *     [  CS  SN  ]     [ F ]     [ R ]
                     19: *     [  __      ]  .  [   ]  =  [   ]   where CS**2 + |SN|**2 = 1.
                     20: *     [ -SN  CS  ]     [ G ]     [ 0 ]
                     21: *
                     22: *  This is a faster version of the BLAS1 routine ZROTG, except for
                     23: *  the following differences:
                     24: *     F and G are unchanged on return.
                     25: *     If G=0, then CS=1 and SN=0.
                     26: *     If F=0, then CS=0 and SN is chosen so that R is real.
                     27: *
                     28: *  Arguments
                     29: *  =========
                     30: *
                     31: *  F       (input) COMPLEX*16
                     32: *          The first component of vector to be rotated.
                     33: *
                     34: *  G       (input) COMPLEX*16
                     35: *          The second component of vector to be rotated.
                     36: *
                     37: *  CS      (output) DOUBLE PRECISION
                     38: *          The cosine of the rotation.
                     39: *
                     40: *  SN      (output) COMPLEX*16
                     41: *          The sine of the rotation.
                     42: *
                     43: *  R       (output) COMPLEX*16
                     44: *          The nonzero component of the rotated vector.
                     45: *
                     46: *  Further Details
                     47: *  ======= =======
                     48: *
                     49: *  3-5-96 - Modified with a new algorithm by W. Kahan and J. Demmel
                     50: *
                     51: *  This version has a few statements commented out for thread safety
                     52: *  (machine parameters are computed on each entry). 10 feb 03, SJH.
                     53: *
                     54: *  =====================================================================
                     55: *
                     56: *     .. Parameters ..
                     57:       DOUBLE PRECISION   TWO, ONE, ZERO
                     58:       PARAMETER          ( TWO = 2.0D+0, ONE = 1.0D+0, ZERO = 0.0D+0 )
                     59:       COMPLEX*16         CZERO
                     60:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ) )
                     61: *     ..
                     62: *     .. Local Scalars ..
                     63: *     LOGICAL            FIRST
                     64:       INTEGER            COUNT, I
                     65:       DOUBLE PRECISION   D, DI, DR, EPS, F2, F2S, G2, G2S, SAFMIN,
                     66:      $                   SAFMN2, SAFMX2, SCALE
                     67:       COMPLEX*16         FF, FS, GS
                     68: *     ..
                     69: *     .. External Functions ..
                     70:       DOUBLE PRECISION   DLAMCH, DLAPY2
                     71:       EXTERNAL           DLAMCH, DLAPY2
                     72: *     ..
                     73: *     .. Intrinsic Functions ..
                     74:       INTRINSIC          ABS, DBLE, DCMPLX, DCONJG, DIMAG, INT, LOG,
                     75:      $                   MAX, SQRT
                     76: *     ..
                     77: *     .. Statement Functions ..
                     78:       DOUBLE PRECISION   ABS1, ABSSQ
                     79: *     ..
                     80: *     .. Save statement ..
                     81: *     SAVE               FIRST, SAFMX2, SAFMIN, SAFMN2
                     82: *     ..
                     83: *     .. Data statements ..
                     84: *     DATA               FIRST / .TRUE. /
                     85: *     ..
                     86: *     .. Statement Function definitions ..
                     87:       ABS1( FF ) = MAX( ABS( DBLE( FF ) ), ABS( DIMAG( FF ) ) )
                     88:       ABSSQ( FF ) = DBLE( FF )**2 + DIMAG( FF )**2
                     89: *     ..
                     90: *     .. Executable Statements ..
                     91: *
                     92: *     IF( FIRST ) THEN
                     93:          SAFMIN = DLAMCH( 'S' )
                     94:          EPS = DLAMCH( 'E' )
                     95:          SAFMN2 = DLAMCH( 'B' )**INT( LOG( SAFMIN / EPS ) /
                     96:      $            LOG( DLAMCH( 'B' ) ) / TWO )
                     97:          SAFMX2 = ONE / SAFMN2
                     98: *        FIRST = .FALSE.
                     99: *     END IF
                    100:       SCALE = MAX( ABS1( F ), ABS1( G ) )
                    101:       FS = F
                    102:       GS = G
                    103:       COUNT = 0
                    104:       IF( SCALE.GE.SAFMX2 ) THEN
                    105:    10    CONTINUE
                    106:          COUNT = COUNT + 1
                    107:          FS = FS*SAFMN2
                    108:          GS = GS*SAFMN2
                    109:          SCALE = SCALE*SAFMN2
                    110:          IF( SCALE.GE.SAFMX2 )
                    111:      $      GO TO 10
                    112:       ELSE IF( SCALE.LE.SAFMN2 ) THEN
                    113:          IF( G.EQ.CZERO ) THEN
                    114:             CS = ONE
                    115:             SN = CZERO
                    116:             R = F
                    117:             RETURN
                    118:          END IF
                    119:    20    CONTINUE
                    120:          COUNT = COUNT - 1
                    121:          FS = FS*SAFMX2
                    122:          GS = GS*SAFMX2
                    123:          SCALE = SCALE*SAFMX2
                    124:          IF( SCALE.LE.SAFMN2 )
                    125:      $      GO TO 20
                    126:       END IF
                    127:       F2 = ABSSQ( FS )
                    128:       G2 = ABSSQ( GS )
                    129:       IF( F2.LE.MAX( G2, ONE )*SAFMIN ) THEN
                    130: *
                    131: *        This is a rare case: F is very small.
                    132: *
                    133:          IF( F.EQ.CZERO ) THEN
                    134:             CS = ZERO
                    135:             R = DLAPY2( DBLE( G ), DIMAG( G ) )
                    136: *           Do complex/real division explicitly with two real divisions
                    137:             D = DLAPY2( DBLE( GS ), DIMAG( GS ) )
                    138:             SN = DCMPLX( DBLE( GS ) / D, -DIMAG( GS ) / D )
                    139:             RETURN
                    140:          END IF
                    141:          F2S = DLAPY2( DBLE( FS ), DIMAG( FS ) )
                    142: *        G2 and G2S are accurate
                    143: *        G2 is at least SAFMIN, and G2S is at least SAFMN2
                    144:          G2S = SQRT( G2 )
                    145: *        Error in CS from underflow in F2S is at most
                    146: *        UNFL / SAFMN2 .lt. sqrt(UNFL*EPS) .lt. EPS
                    147: *        If MAX(G2,ONE)=G2, then F2 .lt. G2*SAFMIN,
                    148: *        and so CS .lt. sqrt(SAFMIN)
                    149: *        If MAX(G2,ONE)=ONE, then F2 .lt. SAFMIN
                    150: *        and so CS .lt. sqrt(SAFMIN)/SAFMN2 = sqrt(EPS)
                    151: *        Therefore, CS = F2S/G2S / sqrt( 1 + (F2S/G2S)**2 ) = F2S/G2S
                    152:          CS = F2S / G2S
                    153: *        Make sure abs(FF) = 1
                    154: *        Do complex/real division explicitly with 2 real divisions
                    155:          IF( ABS1( F ).GT.ONE ) THEN
                    156:             D = DLAPY2( DBLE( F ), DIMAG( F ) )
                    157:             FF = DCMPLX( DBLE( F ) / D, DIMAG( F ) / D )
                    158:          ELSE
                    159:             DR = SAFMX2*DBLE( F )
                    160:             DI = SAFMX2*DIMAG( F )
                    161:             D = DLAPY2( DR, DI )
                    162:             FF = DCMPLX( DR / D, DI / D )
                    163:          END IF
                    164:          SN = FF*DCMPLX( DBLE( GS ) / G2S, -DIMAG( GS ) / G2S )
                    165:          R = CS*F + SN*G
                    166:       ELSE
                    167: *
                    168: *        This is the most common case.
                    169: *        Neither F2 nor F2/G2 are less than SAFMIN
                    170: *        F2S cannot overflow, and it is accurate
                    171: *
                    172:          F2S = SQRT( ONE+G2 / F2 )
                    173: *        Do the F2S(real)*FS(complex) multiply with two real multiplies
                    174:          R = DCMPLX( F2S*DBLE( FS ), F2S*DIMAG( FS ) )
                    175:          CS = ONE / F2S
                    176:          D = F2 + G2
                    177: *        Do complex/real division explicitly with two real divisions
                    178:          SN = DCMPLX( DBLE( R ) / D, DIMAG( R ) / D )
                    179:          SN = SN*DCONJG( GS )
                    180:          IF( COUNT.NE.0 ) THEN
                    181:             IF( COUNT.GT.0 ) THEN
                    182:                DO 30 I = 1, COUNT
                    183:                   R = R*SAFMX2
                    184:    30          CONTINUE
                    185:             ELSE
                    186:                DO 40 I = 1, -COUNT
                    187:                   R = R*SAFMN2
                    188:    40          CONTINUE
                    189:             END IF
                    190:          END IF
                    191:       END IF
                    192:       RETURN
                    193: *
                    194: *     End of ZLARTG
                    195: *
                    196:       END

CVSweb interface <joel.bertrand@systella.fr>