File:  [local] / rpl / lapack / lapack / zlartg.f90
Revision 1.1: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:55:31 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Ajout de fichiers de lapack 3.11

    1: !> \brief \b ZLARTG generates a plane rotation with real cosine and complex sine.
    2: !
    3: !  =========== DOCUMENTATION ===========
    4: !
    5: ! Online html documentation available at
    6: !            http://www.netlib.org/lapack/explore-html/
    7: !
    8: !  Definition:
    9: !  ===========
   10: !
   11: !       SUBROUTINE ZLARTG( F, G, C, S, R )
   12: !
   13: !       .. Scalar Arguments ..
   14: !       REAL(wp)              C
   15: !       COMPLEX(wp)           F, G, R, S
   16: !       ..
   17: !
   18: !> \par Purpose:
   19: !  =============
   20: !>
   21: !> \verbatim
   22: !>
   23: !> ZLARTG generates a plane rotation so that
   24: !>
   25: !>    [  C         S  ] . [ F ]  =  [ R ]
   26: !>    [ -conjg(S)  C  ]   [ G ]     [ 0 ]
   27: !>
   28: !> where C is real and C**2 + |S|**2 = 1.
   29: !>
   30: !> The mathematical formulas used for C and S are
   31: !>
   32: !>    sgn(x) = {  x / |x|,   x != 0
   33: !>             {  1,         x  = 0
   34: !>
   35: !>    R = sgn(F) * sqrt(|F|**2 + |G|**2)
   36: !>
   37: !>    C = |F| / sqrt(|F|**2 + |G|**2)
   38: !>
   39: !>    S = sgn(F) * conjg(G) / sqrt(|F|**2 + |G|**2)
   40: !>
   41: !> Special conditions:
   42: !>    If G=0, then C=1 and S=0.
   43: !>    If F=0, then C=0 and S is chosen so that R is real.
   44: !>
   45: !> When F and G are real, the formulas simplify to C = F/R and
   46: !> S = G/R, and the returned values of C, S, and R should be
   47: !> identical to those returned by DLARTG.
   48: !>
   49: !> The algorithm used to compute these quantities incorporates scaling
   50: !> to avoid overflow or underflow in computing the square root of the
   51: !> sum of squares.
   52: !>
   53: !> This is the same routine ZROTG fom BLAS1, except that
   54: !> F and G are unchanged on return.
   55: !>
   56: !> Below, wp=>dp stands for double precision from LA_CONSTANTS module.
   57: !> \endverbatim
   58: !
   59: !  Arguments:
   60: !  ==========
   61: !
   62: !> \param[in] F
   63: !> \verbatim
   64: !>          F is COMPLEX(wp)
   65: !>          The first component of vector to be rotated.
   66: !> \endverbatim
   67: !>
   68: !> \param[in] G
   69: !> \verbatim
   70: !>          G is COMPLEX(wp)
   71: !>          The second component of vector to be rotated.
   72: !> \endverbatim
   73: !>
   74: !> \param[out] C
   75: !> \verbatim
   76: !>          C is REAL(wp)
   77: !>          The cosine of the rotation.
   78: !> \endverbatim
   79: !>
   80: !> \param[out] S
   81: !> \verbatim
   82: !>          S is COMPLEX(wp)
   83: !>          The sine of the rotation.
   84: !> \endverbatim
   85: !>
   86: !> \param[out] R
   87: !> \verbatim
   88: !>          R is COMPLEX(wp)
   89: !>          The nonzero component of the rotated vector.
   90: !> \endverbatim
   91: !
   92: !  Authors:
   93: !  ========
   94: !
   95: !> \author Weslley Pereira, University of Colorado Denver, USA
   96: !
   97: !> \date December 2021
   98: !
   99: !> \ingroup OTHERauxiliary
  100: !
  101: !> \par Further Details:
  102: !  =====================
  103: !>
  104: !> \verbatim
  105: !>
  106: !> Based on the algorithm from
  107: !>
  108: !>  Anderson E. (2017)
  109: !>  Algorithm 978: Safe Scaling in the Level 1 BLAS
  110: !>  ACM Trans Math Softw 44:1--28
  111: !>  https://doi.org/10.1145/3061665
  112: !>
  113: !> \endverbatim
  114: !
  115: subroutine ZLARTG( f, g, c, s, r )
  116:    use LA_CONSTANTS, &
  117:    only: wp=>dp, zero=>dzero, one=>done, two=>dtwo, czero=>zzero, &
  118:          safmin=>dsafmin, safmax=>dsafmax
  119: !
  120: !  -- LAPACK auxiliary routine --
  121: !  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  122: !  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  123: !     February 2021
  124: !
  125: !  .. Scalar Arguments ..
  126:    real(wp)           c
  127:    complex(wp)        f, g, r, s
  128: !  ..
  129: !  .. Local Scalars ..
  130:    real(wp) :: d, f1, f2, g1, g2, h2, u, v, w, rtmin, rtmax
  131:    complex(wp) :: fs, gs, t
  132: !  ..
  133: !  .. Intrinsic Functions ..
  134:    intrinsic :: abs, aimag, conjg, max, min, real, sqrt
  135: !  ..
  136: !  .. Statement Functions ..
  137:    real(wp) :: ABSSQ
  138: !  ..
  139: !  .. Statement Function definitions ..
  140:    ABSSQ( t ) = real( t )**2 + aimag( t )**2
  141: !  ..
  142: !  .. Constants ..
  143:    rtmin = sqrt( safmin )
  144: !  ..
  145: !  .. Executable Statements ..
  146: !
  147:    if( g == czero ) then
  148:       c = one
  149:       s = czero
  150:       r = f
  151:    else if( f == czero ) then
  152:       c = zero
  153:       if( real(g) == zero ) then
  154:          r = abs(aimag(g))
  155:          s = conjg( g ) / r
  156:       elseif( aimag(g) == zero ) then
  157:          r = abs(real(g))
  158:          s = conjg( g ) / r
  159:       else
  160:          g1 = max( abs(real(g)), abs(aimag(g)) )
  161:          rtmax = sqrt( safmax/2 )
  162:          if( g1 > rtmin .and. g1 < rtmax ) then
  163: !
  164: !        Use unscaled algorithm
  165: !
  166: !           The following two lines can be replaced by `d = abs( g )`.
  167: !           This algorithm do not use the intrinsic complex abs.
  168:             g2 = ABSSQ( g )
  169:             d = sqrt( g2 )
  170:             s = conjg( g ) / d
  171:             r = d
  172:          else
  173: !
  174: !        Use scaled algorithm
  175: !
  176:             u = min( safmax, max( safmin, g1 ) )
  177:             gs = g / u
  178: !           The following two lines can be replaced by `d = abs( gs )`.
  179: !           This algorithm do not use the intrinsic complex abs.
  180:             g2 = ABSSQ( gs )
  181:             d = sqrt( g2 )
  182:             s = conjg( gs ) / d
  183:             r = d*u
  184:          end if
  185:       end if
  186:    else
  187:       f1 = max( abs(real(f)), abs(aimag(f)) )
  188:       g1 = max( abs(real(g)), abs(aimag(g)) )
  189:       rtmax = sqrt( safmax/4 )
  190:       if( f1 > rtmin .and. f1 < rtmax .and. &
  191:           g1 > rtmin .and. g1 < rtmax ) then
  192: !
  193: !        Use unscaled algorithm
  194: !
  195:          f2 = ABSSQ( f )
  196:          g2 = ABSSQ( g )
  197:          h2 = f2 + g2
  198:          ! safmin <= f2 <= h2 <= safmax 
  199:          if( f2 >= h2 * safmin ) then
  200:             ! safmin <= f2/h2 <= 1, and h2/f2 is finite
  201:             c = sqrt( f2 / h2 )
  202:             r = f / c
  203:             rtmax = rtmax * 2
  204:             if( f2 > rtmin .and. h2 < rtmax ) then
  205:                ! safmin <= sqrt( f2*h2 ) <= safmax
  206:                s = conjg( g ) * ( f / sqrt( f2*h2 ) )
  207:             else
  208:                s = conjg( g ) * ( r / h2 )
  209:             end if
  210:          else
  211:             ! f2/h2 <= safmin may be subnormal, and h2/f2 may overflow.
  212:             ! Moreover,
  213:             !  safmin <= f2*f2 * safmax < f2 * h2 < h2*h2 * safmin <= safmax,
  214:             !  sqrt(safmin) <= sqrt(f2 * h2) <= sqrt(safmax).
  215:             ! Also,
  216:             !  g2 >> f2, which means that h2 = g2.
  217:             d = sqrt( f2 * h2 )
  218:             c = f2 / d
  219:             if( c >= safmin ) then
  220:                r = f / c
  221:             else
  222:                ! f2 / sqrt(f2 * h2) < safmin, then
  223:                !  sqrt(safmin) <= f2 * sqrt(safmax) <= h2 / sqrt(f2 * h2) <= h2 * (safmin / f2) <= h2 <= safmax
  224:                r = f * ( h2 / d )
  225:             end if
  226:             s = conjg( g ) * ( f / d )
  227:          end if
  228:       else
  229: !
  230: !        Use scaled algorithm
  231: !
  232:          u = min( safmax, max( safmin, f1, g1 ) )
  233:          gs = g / u
  234:          g2 = ABSSQ( gs )
  235:          if( f1 / u < rtmin ) then
  236: !
  237: !           f is not well-scaled when scaled by g1.
  238: !           Use a different scaling for f.
  239: !
  240:             v = min( safmax, max( safmin, f1 ) )
  241:             w = v / u
  242:             fs = f / v
  243:             f2 = ABSSQ( fs )
  244:             h2 = f2*w**2 + g2
  245:          else
  246: !
  247: !           Otherwise use the same scaling for f and g.
  248: !
  249:             w = one
  250:             fs = f / u
  251:             f2 = ABSSQ( fs )
  252:             h2 = f2 + g2
  253:          end if
  254:          ! safmin <= f2 <= h2 <= safmax 
  255:          if( f2 >= h2 * safmin ) then
  256:             ! safmin <= f2/h2 <= 1, and h2/f2 is finite
  257:             c = sqrt( f2 / h2 )
  258:             r = fs / c
  259:             rtmax = rtmax * 2
  260:             if( f2 > rtmin .and. h2 < rtmax ) then
  261:                ! safmin <= sqrt( f2*h2 ) <= safmax
  262:                s = conjg( gs ) * ( fs / sqrt( f2*h2 ) )
  263:             else
  264:                s = conjg( gs ) * ( r / h2 )
  265:             end if
  266:          else
  267:             ! f2/h2 <= safmin may be subnormal, and h2/f2 may overflow.
  268:             ! Moreover,
  269:             !  safmin <= f2*f2 * safmax < f2 * h2 < h2*h2 * safmin <= safmax,
  270:             !  sqrt(safmin) <= sqrt(f2 * h2) <= sqrt(safmax).
  271:             ! Also,
  272:             !  g2 >> f2, which means that h2 = g2.
  273:             d = sqrt( f2 * h2 )
  274:             c = f2 / d
  275:             if( c >= safmin ) then
  276:                r = fs / c
  277:             else
  278:                ! f2 / sqrt(f2 * h2) < safmin, then
  279:                !  sqrt(safmin) <= f2 * sqrt(safmax) <= h2 / sqrt(f2 * h2) <= h2 * (safmin / f2) <= h2 <= safmax
  280:                r = fs * ( h2 / d )
  281:             end if
  282:             s = conjg( gs ) * ( fs / d )
  283:          end if
  284:          ! Rescale c and r
  285:          c = c * w
  286:          r = r * u
  287:       end if
  288:    end if
  289:    return
  290: end subroutine

CVSweb interface <joel.bertrand@systella.fr>