File:  [local] / rpl / lapack / lapack / zlarrv.f
Revision 1.24: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:31 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZLARRV computes the eigenvectors of the tridiagonal matrix T = L D LT given L, D and the eigenvalues of L D LT.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZLARRV + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlarrv.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlarrv.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlarrv.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLARRV( N, VL, VU, D, L, PIVMIN,
   22: *                          ISPLIT, M, DOL, DOU, MINRGP,
   23: *                          RTOL1, RTOL2, W, WERR, WGAP,
   24: *                          IBLOCK, INDEXW, GERS, Z, LDZ, ISUPPZ,
   25: *                          WORK, IWORK, INFO )
   26: *
   27: *       .. Scalar Arguments ..
   28: *       INTEGER            DOL, DOU, INFO, LDZ, M, N
   29: *       DOUBLE PRECISION   MINRGP, PIVMIN, RTOL1, RTOL2, VL, VU
   30: *       ..
   31: *       .. Array Arguments ..
   32: *       INTEGER            IBLOCK( * ), INDEXW( * ), ISPLIT( * ),
   33: *      $                   ISUPPZ( * ), IWORK( * )
   34: *       DOUBLE PRECISION   D( * ), GERS( * ), L( * ), W( * ), WERR( * ),
   35: *      $                   WGAP( * ), WORK( * )
   36: *       COMPLEX*16        Z( LDZ, * )
   37: *       ..
   38: *
   39: *
   40: *> \par Purpose:
   41: *  =============
   42: *>
   43: *> \verbatim
   44: *>
   45: *> ZLARRV computes the eigenvectors of the tridiagonal matrix
   46: *> T = L D L**T given L, D and APPROXIMATIONS to the eigenvalues of L D L**T.
   47: *> The input eigenvalues should have been computed by DLARRE.
   48: *> \endverbatim
   49: *
   50: *  Arguments:
   51: *  ==========
   52: *
   53: *> \param[in] N
   54: *> \verbatim
   55: *>          N is INTEGER
   56: *>          The order of the matrix.  N >= 0.
   57: *> \endverbatim
   58: *>
   59: *> \param[in] VL
   60: *> \verbatim
   61: *>          VL is DOUBLE PRECISION
   62: *>          Lower bound of the interval that contains the desired
   63: *>          eigenvalues. VL < VU. Needed to compute gaps on the left or right
   64: *>          end of the extremal eigenvalues in the desired RANGE.
   65: *> \endverbatim
   66: *>
   67: *> \param[in] VU
   68: *> \verbatim
   69: *>          VU is DOUBLE PRECISION
   70: *>          Upper bound of the interval that contains the desired
   71: *>          eigenvalues. VL < VU. Needed to compute gaps on the left or right
   72: *>          end of the extremal eigenvalues in the desired RANGE.
   73: *> \endverbatim
   74: *>
   75: *> \param[in,out] D
   76: *> \verbatim
   77: *>          D is DOUBLE PRECISION array, dimension (N)
   78: *>          On entry, the N diagonal elements of the diagonal matrix D.
   79: *>          On exit, D may be overwritten.
   80: *> \endverbatim
   81: *>
   82: *> \param[in,out] L
   83: *> \verbatim
   84: *>          L is DOUBLE PRECISION array, dimension (N)
   85: *>          On entry, the (N-1) subdiagonal elements of the unit
   86: *>          bidiagonal matrix L are in elements 1 to N-1 of L
   87: *>          (if the matrix is not split.) At the end of each block
   88: *>          is stored the corresponding shift as given by DLARRE.
   89: *>          On exit, L is overwritten.
   90: *> \endverbatim
   91: *>
   92: *> \param[in] PIVMIN
   93: *> \verbatim
   94: *>          PIVMIN is DOUBLE PRECISION
   95: *>          The minimum pivot allowed in the Sturm sequence.
   96: *> \endverbatim
   97: *>
   98: *> \param[in] ISPLIT
   99: *> \verbatim
  100: *>          ISPLIT is INTEGER array, dimension (N)
  101: *>          The splitting points, at which T breaks up into blocks.
  102: *>          The first block consists of rows/columns 1 to
  103: *>          ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1
  104: *>          through ISPLIT( 2 ), etc.
  105: *> \endverbatim
  106: *>
  107: *> \param[in] M
  108: *> \verbatim
  109: *>          M is INTEGER
  110: *>          The total number of input eigenvalues.  0 <= M <= N.
  111: *> \endverbatim
  112: *>
  113: *> \param[in] DOL
  114: *> \verbatim
  115: *>          DOL is INTEGER
  116: *> \endverbatim
  117: *>
  118: *> \param[in] DOU
  119: *> \verbatim
  120: *>          DOU is INTEGER
  121: *>          If the user wants to compute only selected eigenvectors from all
  122: *>          the eigenvalues supplied, he can specify an index range DOL:DOU.
  123: *>          Or else the setting DOL=1, DOU=M should be applied.
  124: *>          Note that DOL and DOU refer to the order in which the eigenvalues
  125: *>          are stored in W.
  126: *>          If the user wants to compute only selected eigenpairs, then
  127: *>          the columns DOL-1 to DOU+1 of the eigenvector space Z contain the
  128: *>          computed eigenvectors. All other columns of Z are set to zero.
  129: *> \endverbatim
  130: *>
  131: *> \param[in] MINRGP
  132: *> \verbatim
  133: *>          MINRGP is DOUBLE PRECISION
  134: *> \endverbatim
  135: *>
  136: *> \param[in] RTOL1
  137: *> \verbatim
  138: *>          RTOL1 is DOUBLE PRECISION
  139: *> \endverbatim
  140: *>
  141: *> \param[in] RTOL2
  142: *> \verbatim
  143: *>          RTOL2 is DOUBLE PRECISION
  144: *>           Parameters for bisection.
  145: *>           An interval [LEFT,RIGHT] has converged if
  146: *>           RIGHT-LEFT < MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
  147: *> \endverbatim
  148: *>
  149: *> \param[in,out] W
  150: *> \verbatim
  151: *>          W is DOUBLE PRECISION array, dimension (N)
  152: *>          The first M elements of W contain the APPROXIMATE eigenvalues for
  153: *>          which eigenvectors are to be computed.  The eigenvalues
  154: *>          should be grouped by split-off block and ordered from
  155: *>          smallest to largest within the block ( The output array
  156: *>          W from DLARRE is expected here ). Furthermore, they are with
  157: *>          respect to the shift of the corresponding root representation
  158: *>          for their block. On exit, W holds the eigenvalues of the
  159: *>          UNshifted matrix.
  160: *> \endverbatim
  161: *>
  162: *> \param[in,out] WERR
  163: *> \verbatim
  164: *>          WERR is DOUBLE PRECISION array, dimension (N)
  165: *>          The first M elements contain the semiwidth of the uncertainty
  166: *>          interval of the corresponding eigenvalue in W
  167: *> \endverbatim
  168: *>
  169: *> \param[in,out] WGAP
  170: *> \verbatim
  171: *>          WGAP is DOUBLE PRECISION array, dimension (N)
  172: *>          The separation from the right neighbor eigenvalue in W.
  173: *> \endverbatim
  174: *>
  175: *> \param[in] IBLOCK
  176: *> \verbatim
  177: *>          IBLOCK is INTEGER array, dimension (N)
  178: *>          The indices of the blocks (submatrices) associated with the
  179: *>          corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue
  180: *>          W(i) belongs to the first block from the top, =2 if W(i)
  181: *>          belongs to the second block, etc.
  182: *> \endverbatim
  183: *>
  184: *> \param[in] INDEXW
  185: *> \verbatim
  186: *>          INDEXW is INTEGER array, dimension (N)
  187: *>          The indices of the eigenvalues within each block (submatrix);
  188: *>          for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the
  189: *>          i-th eigenvalue W(i) is the 10-th eigenvalue in the second block.
  190: *> \endverbatim
  191: *>
  192: *> \param[in] GERS
  193: *> \verbatim
  194: *>          GERS is DOUBLE PRECISION array, dimension (2*N)
  195: *>          The N Gerschgorin intervals (the i-th Gerschgorin interval
  196: *>          is (GERS(2*i-1), GERS(2*i)). The Gerschgorin intervals should
  197: *>          be computed from the original UNshifted matrix.
  198: *> \endverbatim
  199: *>
  200: *> \param[out] Z
  201: *> \verbatim
  202: *>          Z is COMPLEX*16 array, dimension (LDZ, max(1,M) )
  203: *>          If INFO = 0, the first M columns of Z contain the
  204: *>          orthonormal eigenvectors of the matrix T
  205: *>          corresponding to the input eigenvalues, with the i-th
  206: *>          column of Z holding the eigenvector associated with W(i).
  207: *>          Note: the user must ensure that at least max(1,M) columns are
  208: *>          supplied in the array Z.
  209: *> \endverbatim
  210: *>
  211: *> \param[in] LDZ
  212: *> \verbatim
  213: *>          LDZ is INTEGER
  214: *>          The leading dimension of the array Z.  LDZ >= 1, and if
  215: *>          JOBZ = 'V', LDZ >= max(1,N).
  216: *> \endverbatim
  217: *>
  218: *> \param[out] ISUPPZ
  219: *> \verbatim
  220: *>          ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
  221: *>          The support of the eigenvectors in Z, i.e., the indices
  222: *>          indicating the nonzero elements in Z. The I-th eigenvector
  223: *>          is nonzero only in elements ISUPPZ( 2*I-1 ) through
  224: *>          ISUPPZ( 2*I ).
  225: *> \endverbatim
  226: *>
  227: *> \param[out] WORK
  228: *> \verbatim
  229: *>          WORK is DOUBLE PRECISION array, dimension (12*N)
  230: *> \endverbatim
  231: *>
  232: *> \param[out] IWORK
  233: *> \verbatim
  234: *>          IWORK is INTEGER array, dimension (7*N)
  235: *> \endverbatim
  236: *>
  237: *> \param[out] INFO
  238: *> \verbatim
  239: *>          INFO is INTEGER
  240: *>          = 0:  successful exit
  241: *>
  242: *>          > 0:  A problem occurred in ZLARRV.
  243: *>          < 0:  One of the called subroutines signaled an internal problem.
  244: *>                Needs inspection of the corresponding parameter IINFO
  245: *>                for further information.
  246: *>
  247: *>          =-1:  Problem in DLARRB when refining a child's eigenvalues.
  248: *>          =-2:  Problem in DLARRF when computing the RRR of a child.
  249: *>                When a child is inside a tight cluster, it can be difficult
  250: *>                to find an RRR. A partial remedy from the user's point of
  251: *>                view is to make the parameter MINRGP smaller and recompile.
  252: *>                However, as the orthogonality of the computed vectors is
  253: *>                proportional to 1/MINRGP, the user should be aware that
  254: *>                he might be trading in precision when he decreases MINRGP.
  255: *>          =-3:  Problem in DLARRB when refining a single eigenvalue
  256: *>                after the Rayleigh correction was rejected.
  257: *>          = 5:  The Rayleigh Quotient Iteration failed to converge to
  258: *>                full accuracy in MAXITR steps.
  259: *> \endverbatim
  260: *
  261: *  Authors:
  262: *  ========
  263: *
  264: *> \author Univ. of Tennessee
  265: *> \author Univ. of California Berkeley
  266: *> \author Univ. of Colorado Denver
  267: *> \author NAG Ltd.
  268: *
  269: *> \ingroup complex16OTHERauxiliary
  270: *
  271: *> \par Contributors:
  272: *  ==================
  273: *>
  274: *> Beresford Parlett, University of California, Berkeley, USA \n
  275: *> Jim Demmel, University of California, Berkeley, USA \n
  276: *> Inderjit Dhillon, University of Texas, Austin, USA \n
  277: *> Osni Marques, LBNL/NERSC, USA \n
  278: *> Christof Voemel, University of California, Berkeley, USA
  279: *
  280: *  =====================================================================
  281:       SUBROUTINE ZLARRV( N, VL, VU, D, L, PIVMIN,
  282:      $                   ISPLIT, M, DOL, DOU, MINRGP,
  283:      $                   RTOL1, RTOL2, W, WERR, WGAP,
  284:      $                   IBLOCK, INDEXW, GERS, Z, LDZ, ISUPPZ,
  285:      $                   WORK, IWORK, INFO )
  286: *
  287: *  -- LAPACK auxiliary routine --
  288: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  289: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  290: *
  291: *     .. Scalar Arguments ..
  292:       INTEGER            DOL, DOU, INFO, LDZ, M, N
  293:       DOUBLE PRECISION   MINRGP, PIVMIN, RTOL1, RTOL2, VL, VU
  294: *     ..
  295: *     .. Array Arguments ..
  296:       INTEGER            IBLOCK( * ), INDEXW( * ), ISPLIT( * ),
  297:      $                   ISUPPZ( * ), IWORK( * )
  298:       DOUBLE PRECISION   D( * ), GERS( * ), L( * ), W( * ), WERR( * ),
  299:      $                   WGAP( * ), WORK( * )
  300:       COMPLEX*16        Z( LDZ, * )
  301: *     ..
  302: *
  303: *  =====================================================================
  304: *
  305: *     .. Parameters ..
  306:       INTEGER            MAXITR
  307:       PARAMETER          ( MAXITR = 10 )
  308:       COMPLEX*16         CZERO
  309:       PARAMETER          ( CZERO = ( 0.0D0, 0.0D0 ) )
  310:       DOUBLE PRECISION   ZERO, ONE, TWO, THREE, FOUR, HALF
  311:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0,
  312:      $                     TWO = 2.0D0, THREE = 3.0D0,
  313:      $                     FOUR = 4.0D0, HALF = 0.5D0)
  314: *     ..
  315: *     .. Local Scalars ..
  316:       LOGICAL            ESKIP, NEEDBS, STP2II, TRYRQC, USEDBS, USEDRQ
  317:       INTEGER            DONE, I, IBEGIN, IDONE, IEND, II, IINDC1,
  318:      $                   IINDC2, IINDR, IINDWK, IINFO, IM, IN, INDEIG,
  319:      $                   INDLD, INDLLD, INDWRK, ISUPMN, ISUPMX, ITER,
  320:      $                   ITMP1, J, JBLK, K, MINIWSIZE, MINWSIZE, NCLUS,
  321:      $                   NDEPTH, NEGCNT, NEWCLS, NEWFST, NEWFTT, NEWLST,
  322:      $                   NEWSIZ, OFFSET, OLDCLS, OLDFST, OLDIEN, OLDLST,
  323:      $                   OLDNCL, P, PARITY, Q, WBEGIN, WEND, WINDEX,
  324:      $                   WINDMN, WINDPL, ZFROM, ZTO, ZUSEDL, ZUSEDU,
  325:      $                   ZUSEDW
  326:       INTEGER            INDIN1, INDIN2
  327:       DOUBLE PRECISION   BSTRES, BSTW, EPS, FUDGE, GAP, GAPTOL, GL, GU,
  328:      $                   LAMBDA, LEFT, LGAP, MINGMA, NRMINV, RESID,
  329:      $                   RGAP, RIGHT, RQCORR, RQTOL, SAVGAP, SGNDEF,
  330:      $                   SIGMA, SPDIAM, SSIGMA, TAU, TMP, TOL, ZTZ
  331: *     ..
  332: *     .. External Functions ..
  333:       DOUBLE PRECISION   DLAMCH
  334:       EXTERNAL           DLAMCH
  335: *     ..
  336: *     .. External Subroutines ..
  337:       EXTERNAL           DCOPY, DLARRB, DLARRF, ZDSCAL, ZLAR1V,
  338:      $                   ZLASET
  339: *     ..
  340: *     .. Intrinsic Functions ..
  341:       INTRINSIC ABS, DBLE, MAX, MIN
  342:       INTRINSIC DCMPLX
  343: *     ..
  344: *     .. Executable Statements ..
  345: *     ..
  346: 
  347:       INFO = 0
  348: *
  349: *     Quick return if possible
  350: *
  351:       IF( (N.LE.0).OR.(M.LE.0) ) THEN
  352:          RETURN
  353:       END IF
  354: *
  355: *     The first N entries of WORK are reserved for the eigenvalues
  356:       INDLD = N+1
  357:       INDLLD= 2*N+1
  358:       INDIN1 = 3*N + 1
  359:       INDIN2 = 4*N + 1
  360:       INDWRK = 5*N + 1
  361:       MINWSIZE = 12 * N
  362: 
  363:       DO 5 I= 1,MINWSIZE
  364:          WORK( I ) = ZERO
  365:  5    CONTINUE
  366: 
  367: *     IWORK(IINDR+1:IINDR+N) hold the twist indices R for the
  368: *     factorization used to compute the FP vector
  369:       IINDR = 0
  370: *     IWORK(IINDC1+1:IINC2+N) are used to store the clusters of the current
  371: *     layer and the one above.
  372:       IINDC1 = N
  373:       IINDC2 = 2*N
  374:       IINDWK = 3*N + 1
  375: 
  376:       MINIWSIZE = 7 * N
  377:       DO 10 I= 1,MINIWSIZE
  378:          IWORK( I ) = 0
  379:  10   CONTINUE
  380: 
  381:       ZUSEDL = 1
  382:       IF(DOL.GT.1) THEN
  383: *        Set lower bound for use of Z
  384:          ZUSEDL = DOL-1
  385:       ENDIF
  386:       ZUSEDU = M
  387:       IF(DOU.LT.M) THEN
  388: *        Set lower bound for use of Z
  389:          ZUSEDU = DOU+1
  390:       ENDIF
  391: *     The width of the part of Z that is used
  392:       ZUSEDW = ZUSEDU - ZUSEDL + 1
  393: 
  394: 
  395:       CALL ZLASET( 'Full', N, ZUSEDW, CZERO, CZERO,
  396:      $                    Z(1,ZUSEDL), LDZ )
  397: 
  398:       EPS = DLAMCH( 'Precision' )
  399:       RQTOL = TWO * EPS
  400: *
  401: *     Set expert flags for standard code.
  402:       TRYRQC = .TRUE.
  403: 
  404:       IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
  405:       ELSE
  406: *        Only selected eigenpairs are computed. Since the other evalues
  407: *        are not refined by RQ iteration, bisection has to compute to full
  408: *        accuracy.
  409:          RTOL1 = FOUR * EPS
  410:          RTOL2 = FOUR * EPS
  411:       ENDIF
  412: 
  413: *     The entries WBEGIN:WEND in W, WERR, WGAP correspond to the
  414: *     desired eigenvalues. The support of the nonzero eigenvector
  415: *     entries is contained in the interval IBEGIN:IEND.
  416: *     Remark that if k eigenpairs are desired, then the eigenvectors
  417: *     are stored in k contiguous columns of Z.
  418: 
  419: *     DONE is the number of eigenvectors already computed
  420:       DONE = 0
  421:       IBEGIN = 1
  422:       WBEGIN = 1
  423:       DO 170 JBLK = 1, IBLOCK( M )
  424:          IEND = ISPLIT( JBLK )
  425:          SIGMA = L( IEND )
  426: *        Find the eigenvectors of the submatrix indexed IBEGIN
  427: *        through IEND.
  428:          WEND = WBEGIN - 1
  429:  15      CONTINUE
  430:          IF( WEND.LT.M ) THEN
  431:             IF( IBLOCK( WEND+1 ).EQ.JBLK ) THEN
  432:                WEND = WEND + 1
  433:                GO TO 15
  434:             END IF
  435:          END IF
  436:          IF( WEND.LT.WBEGIN ) THEN
  437:             IBEGIN = IEND + 1
  438:             GO TO 170
  439:          ELSEIF( (WEND.LT.DOL).OR.(WBEGIN.GT.DOU) ) THEN
  440:             IBEGIN = IEND + 1
  441:             WBEGIN = WEND + 1
  442:             GO TO 170
  443:          END IF
  444: 
  445: *        Find local spectral diameter of the block
  446:          GL = GERS( 2*IBEGIN-1 )
  447:          GU = GERS( 2*IBEGIN )
  448:          DO 20 I = IBEGIN+1 , IEND
  449:             GL = MIN( GERS( 2*I-1 ), GL )
  450:             GU = MAX( GERS( 2*I ), GU )
  451:  20      CONTINUE
  452:          SPDIAM = GU - GL
  453: 
  454: *        OLDIEN is the last index of the previous block
  455:          OLDIEN = IBEGIN - 1
  456: *        Calculate the size of the current block
  457:          IN = IEND - IBEGIN + 1
  458: *        The number of eigenvalues in the current block
  459:          IM = WEND - WBEGIN + 1
  460: 
  461: *        This is for a 1x1 block
  462:          IF( IBEGIN.EQ.IEND ) THEN
  463:             DONE = DONE+1
  464:             Z( IBEGIN, WBEGIN ) = DCMPLX( ONE, ZERO )
  465:             ISUPPZ( 2*WBEGIN-1 ) = IBEGIN
  466:             ISUPPZ( 2*WBEGIN ) = IBEGIN
  467:             W( WBEGIN ) = W( WBEGIN ) + SIGMA
  468:             WORK( WBEGIN ) = W( WBEGIN )
  469:             IBEGIN = IEND + 1
  470:             WBEGIN = WBEGIN + 1
  471:             GO TO 170
  472:          END IF
  473: 
  474: *        The desired (shifted) eigenvalues are stored in W(WBEGIN:WEND)
  475: *        Note that these can be approximations, in this case, the corresp.
  476: *        entries of WERR give the size of the uncertainty interval.
  477: *        The eigenvalue approximations will be refined when necessary as
  478: *        high relative accuracy is required for the computation of the
  479: *        corresponding eigenvectors.
  480:          CALL DCOPY( IM, W( WBEGIN ), 1,
  481:      $                   WORK( WBEGIN ), 1 )
  482: 
  483: *        We store in W the eigenvalue approximations w.r.t. the original
  484: *        matrix T.
  485:          DO 30 I=1,IM
  486:             W(WBEGIN+I-1) = W(WBEGIN+I-1)+SIGMA
  487:  30      CONTINUE
  488: 
  489: 
  490: *        NDEPTH is the current depth of the representation tree
  491:          NDEPTH = 0
  492: *        PARITY is either 1 or 0
  493:          PARITY = 1
  494: *        NCLUS is the number of clusters for the next level of the
  495: *        representation tree, we start with NCLUS = 1 for the root
  496:          NCLUS = 1
  497:          IWORK( IINDC1+1 ) = 1
  498:          IWORK( IINDC1+2 ) = IM
  499: 
  500: *        IDONE is the number of eigenvectors already computed in the current
  501: *        block
  502:          IDONE = 0
  503: *        loop while( IDONE.LT.IM )
  504: *        generate the representation tree for the current block and
  505: *        compute the eigenvectors
  506:    40    CONTINUE
  507:          IF( IDONE.LT.IM ) THEN
  508: *           This is a crude protection against infinitely deep trees
  509:             IF( NDEPTH.GT.M ) THEN
  510:                INFO = -2
  511:                RETURN
  512:             ENDIF
  513: *           breadth first processing of the current level of the representation
  514: *           tree: OLDNCL = number of clusters on current level
  515:             OLDNCL = NCLUS
  516: *           reset NCLUS to count the number of child clusters
  517:             NCLUS = 0
  518: *
  519:             PARITY = 1 - PARITY
  520:             IF( PARITY.EQ.0 ) THEN
  521:                OLDCLS = IINDC1
  522:                NEWCLS = IINDC2
  523:             ELSE
  524:                OLDCLS = IINDC2
  525:                NEWCLS = IINDC1
  526:             END IF
  527: *           Process the clusters on the current level
  528:             DO 150 I = 1, OLDNCL
  529:                J = OLDCLS + 2*I
  530: *              OLDFST, OLDLST = first, last index of current cluster.
  531: *                               cluster indices start with 1 and are relative
  532: *                               to WBEGIN when accessing W, WGAP, WERR, Z
  533:                OLDFST = IWORK( J-1 )
  534:                OLDLST = IWORK( J )
  535:                IF( NDEPTH.GT.0 ) THEN
  536: *                 Retrieve relatively robust representation (RRR) of cluster
  537: *                 that has been computed at the previous level
  538: *                 The RRR is stored in Z and overwritten once the eigenvectors
  539: *                 have been computed or when the cluster is refined
  540: 
  541:                   IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
  542: *                    Get representation from location of the leftmost evalue
  543: *                    of the cluster
  544:                      J = WBEGIN + OLDFST - 1
  545:                   ELSE
  546:                      IF(WBEGIN+OLDFST-1.LT.DOL) THEN
  547: *                       Get representation from the left end of Z array
  548:                         J = DOL - 1
  549:                      ELSEIF(WBEGIN+OLDFST-1.GT.DOU) THEN
  550: *                       Get representation from the right end of Z array
  551:                         J = DOU
  552:                      ELSE
  553:                         J = WBEGIN + OLDFST - 1
  554:                      ENDIF
  555:                   ENDIF
  556:                   DO 45 K = 1, IN - 1
  557:                      D( IBEGIN+K-1 ) = DBLE( Z( IBEGIN+K-1,
  558:      $                                 J ) )
  559:                      L( IBEGIN+K-1 ) = DBLE( Z( IBEGIN+K-1,
  560:      $                                 J+1 ) )
  561:    45             CONTINUE
  562:                   D( IEND ) = DBLE( Z( IEND, J ) )
  563:                   SIGMA = DBLE( Z( IEND, J+1 ) )
  564: 
  565: *                 Set the corresponding entries in Z to zero
  566:                   CALL ZLASET( 'Full', IN, 2, CZERO, CZERO,
  567:      $                         Z( IBEGIN, J), LDZ )
  568:                END IF
  569: 
  570: *              Compute DL and DLL of current RRR
  571:                DO 50 J = IBEGIN, IEND-1
  572:                   TMP = D( J )*L( J )
  573:                   WORK( INDLD-1+J ) = TMP
  574:                   WORK( INDLLD-1+J ) = TMP*L( J )
  575:    50          CONTINUE
  576: 
  577:                IF( NDEPTH.GT.0 ) THEN
  578: *                 P and Q are index of the first and last eigenvalue to compute
  579: *                 within the current block
  580:                   P = INDEXW( WBEGIN-1+OLDFST )
  581:                   Q = INDEXW( WBEGIN-1+OLDLST )
  582: *                 Offset for the arrays WORK, WGAP and WERR, i.e., the P-OFFSET
  583: *                 through the Q-OFFSET elements of these arrays are to be used.
  584: *                  OFFSET = P-OLDFST
  585:                   OFFSET = INDEXW( WBEGIN ) - 1
  586: *                 perform limited bisection (if necessary) to get approximate
  587: *                 eigenvalues to the precision needed.
  588:                   CALL DLARRB( IN, D( IBEGIN ),
  589:      $                         WORK(INDLLD+IBEGIN-1),
  590:      $                         P, Q, RTOL1, RTOL2, OFFSET,
  591:      $                         WORK(WBEGIN),WGAP(WBEGIN),WERR(WBEGIN),
  592:      $                         WORK( INDWRK ), IWORK( IINDWK ),
  593:      $                         PIVMIN, SPDIAM, IN, IINFO )
  594:                   IF( IINFO.NE.0 ) THEN
  595:                      INFO = -1
  596:                      RETURN
  597:                   ENDIF
  598: *                 We also recompute the extremal gaps. W holds all eigenvalues
  599: *                 of the unshifted matrix and must be used for computation
  600: *                 of WGAP, the entries of WORK might stem from RRRs with
  601: *                 different shifts. The gaps from WBEGIN-1+OLDFST to
  602: *                 WBEGIN-1+OLDLST are correctly computed in DLARRB.
  603: *                 However, we only allow the gaps to become greater since
  604: *                 this is what should happen when we decrease WERR
  605:                   IF( OLDFST.GT.1) THEN
  606:                      WGAP( WBEGIN+OLDFST-2 ) =
  607:      $             MAX(WGAP(WBEGIN+OLDFST-2),
  608:      $                 W(WBEGIN+OLDFST-1)-WERR(WBEGIN+OLDFST-1)
  609:      $                 - W(WBEGIN+OLDFST-2)-WERR(WBEGIN+OLDFST-2) )
  610:                   ENDIF
  611:                   IF( WBEGIN + OLDLST -1 .LT. WEND ) THEN
  612:                      WGAP( WBEGIN+OLDLST-1 ) =
  613:      $               MAX(WGAP(WBEGIN+OLDLST-1),
  614:      $                   W(WBEGIN+OLDLST)-WERR(WBEGIN+OLDLST)
  615:      $                   - W(WBEGIN+OLDLST-1)-WERR(WBEGIN+OLDLST-1) )
  616:                   ENDIF
  617: *                 Each time the eigenvalues in WORK get refined, we store
  618: *                 the newly found approximation with all shifts applied in W
  619:                   DO 53 J=OLDFST,OLDLST
  620:                      W(WBEGIN+J-1) = WORK(WBEGIN+J-1)+SIGMA
  621:  53               CONTINUE
  622:                END IF
  623: 
  624: *              Process the current node.
  625:                NEWFST = OLDFST
  626:                DO 140 J = OLDFST, OLDLST
  627:                   IF( J.EQ.OLDLST ) THEN
  628: *                    we are at the right end of the cluster, this is also the
  629: *                    boundary of the child cluster
  630:                      NEWLST = J
  631:                   ELSE IF ( WGAP( WBEGIN + J -1).GE.
  632:      $                    MINRGP* ABS( WORK(WBEGIN + J -1) ) ) THEN
  633: *                    the right relative gap is big enough, the child cluster
  634: *                    (NEWFST,..,NEWLST) is well separated from the following
  635:                      NEWLST = J
  636:                    ELSE
  637: *                    inside a child cluster, the relative gap is not
  638: *                    big enough.
  639:                      GOTO 140
  640:                   END IF
  641: 
  642: *                 Compute size of child cluster found
  643:                   NEWSIZ = NEWLST - NEWFST + 1
  644: 
  645: *                 NEWFTT is the place in Z where the new RRR or the computed
  646: *                 eigenvector is to be stored
  647:                   IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
  648: *                    Store representation at location of the leftmost evalue
  649: *                    of the cluster
  650:                      NEWFTT = WBEGIN + NEWFST - 1
  651:                   ELSE
  652:                      IF(WBEGIN+NEWFST-1.LT.DOL) THEN
  653: *                       Store representation at the left end of Z array
  654:                         NEWFTT = DOL - 1
  655:                      ELSEIF(WBEGIN+NEWFST-1.GT.DOU) THEN
  656: *                       Store representation at the right end of Z array
  657:                         NEWFTT = DOU
  658:                      ELSE
  659:                         NEWFTT = WBEGIN + NEWFST - 1
  660:                      ENDIF
  661:                   ENDIF
  662: 
  663:                   IF( NEWSIZ.GT.1) THEN
  664: *
  665: *                    Current child is not a singleton but a cluster.
  666: *                    Compute and store new representation of child.
  667: *
  668: *
  669: *                    Compute left and right cluster gap.
  670: *
  671: *                    LGAP and RGAP are not computed from WORK because
  672: *                    the eigenvalue approximations may stem from RRRs
  673: *                    different shifts. However, W hold all eigenvalues
  674: *                    of the unshifted matrix. Still, the entries in WGAP
  675: *                    have to be computed from WORK since the entries
  676: *                    in W might be of the same order so that gaps are not
  677: *                    exhibited correctly for very close eigenvalues.
  678:                      IF( NEWFST.EQ.1 ) THEN
  679:                         LGAP = MAX( ZERO,
  680:      $                       W(WBEGIN)-WERR(WBEGIN) - VL )
  681:                     ELSE
  682:                         LGAP = WGAP( WBEGIN+NEWFST-2 )
  683:                      ENDIF
  684:                      RGAP = WGAP( WBEGIN+NEWLST-1 )
  685: *
  686: *                    Compute left- and rightmost eigenvalue of child
  687: *                    to high precision in order to shift as close
  688: *                    as possible and obtain as large relative gaps
  689: *                    as possible
  690: *
  691:                      DO 55 K =1,2
  692:                         IF(K.EQ.1) THEN
  693:                            P = INDEXW( WBEGIN-1+NEWFST )
  694:                         ELSE
  695:                            P = INDEXW( WBEGIN-1+NEWLST )
  696:                         ENDIF
  697:                         OFFSET = INDEXW( WBEGIN ) - 1
  698:                         CALL DLARRB( IN, D(IBEGIN),
  699:      $                       WORK( INDLLD+IBEGIN-1 ),P,P,
  700:      $                       RQTOL, RQTOL, OFFSET,
  701:      $                       WORK(WBEGIN),WGAP(WBEGIN),
  702:      $                       WERR(WBEGIN),WORK( INDWRK ),
  703:      $                       IWORK( IINDWK ), PIVMIN, SPDIAM,
  704:      $                       IN, IINFO )
  705:  55                  CONTINUE
  706: *
  707:                      IF((WBEGIN+NEWLST-1.LT.DOL).OR.
  708:      $                  (WBEGIN+NEWFST-1.GT.DOU)) THEN
  709: *                       if the cluster contains no desired eigenvalues
  710: *                       skip the computation of that branch of the rep. tree
  711: *
  712: *                       We could skip before the refinement of the extremal
  713: *                       eigenvalues of the child, but then the representation
  714: *                       tree could be different from the one when nothing is
  715: *                       skipped. For this reason we skip at this place.
  716:                         IDONE = IDONE + NEWLST - NEWFST + 1
  717:                         GOTO 139
  718:                      ENDIF
  719: *
  720: *                    Compute RRR of child cluster.
  721: *                    Note that the new RRR is stored in Z
  722: *
  723: *                    DLARRF needs LWORK = 2*N
  724:                      CALL DLARRF( IN, D( IBEGIN ), L( IBEGIN ),
  725:      $                         WORK(INDLD+IBEGIN-1),
  726:      $                         NEWFST, NEWLST, WORK(WBEGIN),
  727:      $                         WGAP(WBEGIN), WERR(WBEGIN),
  728:      $                         SPDIAM, LGAP, RGAP, PIVMIN, TAU,
  729:      $                         WORK( INDIN1 ), WORK( INDIN2 ),
  730:      $                         WORK( INDWRK ), IINFO )
  731: *                    In the complex case, DLARRF cannot write
  732: *                    the new RRR directly into Z and needs an intermediate
  733: *                    workspace
  734:                      DO 56 K = 1, IN-1
  735:                         Z( IBEGIN+K-1, NEWFTT ) =
  736:      $                     DCMPLX( WORK( INDIN1+K-1 ), ZERO )
  737:                         Z( IBEGIN+K-1, NEWFTT+1 ) =
  738:      $                     DCMPLX( WORK( INDIN2+K-1 ), ZERO )
  739:    56                CONTINUE
  740:                      Z( IEND, NEWFTT ) =
  741:      $                  DCMPLX( WORK( INDIN1+IN-1 ), ZERO )
  742:                      IF( IINFO.EQ.0 ) THEN
  743: *                       a new RRR for the cluster was found by DLARRF
  744: *                       update shift and store it
  745:                         SSIGMA = SIGMA + TAU
  746:                         Z( IEND, NEWFTT+1 ) = DCMPLX( SSIGMA, ZERO )
  747: *                       WORK() are the midpoints and WERR() the semi-width
  748: *                       Note that the entries in W are unchanged.
  749:                         DO 116 K = NEWFST, NEWLST
  750:                            FUDGE =
  751:      $                          THREE*EPS*ABS(WORK(WBEGIN+K-1))
  752:                            WORK( WBEGIN + K - 1 ) =
  753:      $                          WORK( WBEGIN + K - 1) - TAU
  754:                            FUDGE = FUDGE +
  755:      $                          FOUR*EPS*ABS(WORK(WBEGIN+K-1))
  756: *                          Fudge errors
  757:                            WERR( WBEGIN + K - 1 ) =
  758:      $                          WERR( WBEGIN + K - 1 ) + FUDGE
  759: *                          Gaps are not fudged. Provided that WERR is small
  760: *                          when eigenvalues are close, a zero gap indicates
  761: *                          that a new representation is needed for resolving
  762: *                          the cluster. A fudge could lead to a wrong decision
  763: *                          of judging eigenvalues 'separated' which in
  764: *                          reality are not. This could have a negative impact
  765: *                          on the orthogonality of the computed eigenvectors.
  766:  116                    CONTINUE
  767: 
  768:                         NCLUS = NCLUS + 1
  769:                         K = NEWCLS + 2*NCLUS
  770:                         IWORK( K-1 ) = NEWFST
  771:                         IWORK( K ) = NEWLST
  772:                      ELSE
  773:                         INFO = -2
  774:                         RETURN
  775:                      ENDIF
  776:                   ELSE
  777: *
  778: *                    Compute eigenvector of singleton
  779: *
  780:                      ITER = 0
  781: *
  782:                      TOL = FOUR * LOG(DBLE(IN)) * EPS
  783: *
  784:                      K = NEWFST
  785:                      WINDEX = WBEGIN + K - 1
  786:                      WINDMN = MAX(WINDEX - 1,1)
  787:                      WINDPL = MIN(WINDEX + 1,M)
  788:                      LAMBDA = WORK( WINDEX )
  789:                      DONE = DONE + 1
  790: *                    Check if eigenvector computation is to be skipped
  791:                      IF((WINDEX.LT.DOL).OR.
  792:      $                  (WINDEX.GT.DOU)) THEN
  793:                         ESKIP = .TRUE.
  794:                         GOTO 125
  795:                      ELSE
  796:                         ESKIP = .FALSE.
  797:                      ENDIF
  798:                      LEFT = WORK( WINDEX ) - WERR( WINDEX )
  799:                      RIGHT = WORK( WINDEX ) + WERR( WINDEX )
  800:                      INDEIG = INDEXW( WINDEX )
  801: *                    Note that since we compute the eigenpairs for a child,
  802: *                    all eigenvalue approximations are w.r.t the same shift.
  803: *                    In this case, the entries in WORK should be used for
  804: *                    computing the gaps since they exhibit even very small
  805: *                    differences in the eigenvalues, as opposed to the
  806: *                    entries in W which might "look" the same.
  807: 
  808:                      IF( K .EQ. 1) THEN
  809: *                       In the case RANGE='I' and with not much initial
  810: *                       accuracy in LAMBDA and VL, the formula
  811: *                       LGAP = MAX( ZERO, (SIGMA - VL) + LAMBDA )
  812: *                       can lead to an overestimation of the left gap and
  813: *                       thus to inadequately early RQI 'convergence'.
  814: *                       Prevent this by forcing a small left gap.
  815:                         LGAP = EPS*MAX(ABS(LEFT),ABS(RIGHT))
  816:                      ELSE
  817:                         LGAP = WGAP(WINDMN)
  818:                      ENDIF
  819:                      IF( K .EQ. IM) THEN
  820: *                       In the case RANGE='I' and with not much initial
  821: *                       accuracy in LAMBDA and VU, the formula
  822: *                       can lead to an overestimation of the right gap and
  823: *                       thus to inadequately early RQI 'convergence'.
  824: *                       Prevent this by forcing a small right gap.
  825:                         RGAP = EPS*MAX(ABS(LEFT),ABS(RIGHT))
  826:                      ELSE
  827:                         RGAP = WGAP(WINDEX)
  828:                      ENDIF
  829:                      GAP = MIN( LGAP, RGAP )
  830:                      IF(( K .EQ. 1).OR.(K .EQ. IM)) THEN
  831: *                       The eigenvector support can become wrong
  832: *                       because significant entries could be cut off due to a
  833: *                       large GAPTOL parameter in LAR1V. Prevent this.
  834:                         GAPTOL = ZERO
  835:                      ELSE
  836:                         GAPTOL = GAP * EPS
  837:                      ENDIF
  838:                      ISUPMN = IN
  839:                      ISUPMX = 1
  840: *                    Update WGAP so that it holds the minimum gap
  841: *                    to the left or the right. This is crucial in the
  842: *                    case where bisection is used to ensure that the
  843: *                    eigenvalue is refined up to the required precision.
  844: *                    The correct value is restored afterwards.
  845:                      SAVGAP = WGAP(WINDEX)
  846:                      WGAP(WINDEX) = GAP
  847: *                    We want to use the Rayleigh Quotient Correction
  848: *                    as often as possible since it converges quadratically
  849: *                    when we are close enough to the desired eigenvalue.
  850: *                    However, the Rayleigh Quotient can have the wrong sign
  851: *                    and lead us away from the desired eigenvalue. In this
  852: *                    case, the best we can do is to use bisection.
  853:                      USEDBS = .FALSE.
  854:                      USEDRQ = .FALSE.
  855: *                    Bisection is initially turned off unless it is forced
  856:                      NEEDBS =  .NOT.TRYRQC
  857:  120                 CONTINUE
  858: *                    Check if bisection should be used to refine eigenvalue
  859:                      IF(NEEDBS) THEN
  860: *                       Take the bisection as new iterate
  861:                         USEDBS = .TRUE.
  862:                         ITMP1 = IWORK( IINDR+WINDEX )
  863:                         OFFSET = INDEXW( WBEGIN ) - 1
  864:                         CALL DLARRB( IN, D(IBEGIN),
  865:      $                       WORK(INDLLD+IBEGIN-1),INDEIG,INDEIG,
  866:      $                       ZERO, TWO*EPS, OFFSET,
  867:      $                       WORK(WBEGIN),WGAP(WBEGIN),
  868:      $                       WERR(WBEGIN),WORK( INDWRK ),
  869:      $                       IWORK( IINDWK ), PIVMIN, SPDIAM,
  870:      $                       ITMP1, IINFO )
  871:                         IF( IINFO.NE.0 ) THEN
  872:                            INFO = -3
  873:                            RETURN
  874:                         ENDIF
  875:                         LAMBDA = WORK( WINDEX )
  876: *                       Reset twist index from inaccurate LAMBDA to
  877: *                       force computation of true MINGMA
  878:                         IWORK( IINDR+WINDEX ) = 0
  879:                      ENDIF
  880: *                    Given LAMBDA, compute the eigenvector.
  881:                      CALL ZLAR1V( IN, 1, IN, LAMBDA, D( IBEGIN ),
  882:      $                    L( IBEGIN ), WORK(INDLD+IBEGIN-1),
  883:      $                    WORK(INDLLD+IBEGIN-1),
  884:      $                    PIVMIN, GAPTOL, Z( IBEGIN, WINDEX ),
  885:      $                    .NOT.USEDBS, NEGCNT, ZTZ, MINGMA,
  886:      $                    IWORK( IINDR+WINDEX ), ISUPPZ( 2*WINDEX-1 ),
  887:      $                    NRMINV, RESID, RQCORR, WORK( INDWRK ) )
  888:                      IF(ITER .EQ. 0) THEN
  889:                         BSTRES = RESID
  890:                         BSTW = LAMBDA
  891:                      ELSEIF(RESID.LT.BSTRES) THEN
  892:                         BSTRES = RESID
  893:                         BSTW = LAMBDA
  894:                      ENDIF
  895:                      ISUPMN = MIN(ISUPMN,ISUPPZ( 2*WINDEX-1 ))
  896:                      ISUPMX = MAX(ISUPMX,ISUPPZ( 2*WINDEX ))
  897:                      ITER = ITER + 1
  898: 
  899: *                    sin alpha <= |resid|/gap
  900: *                    Note that both the residual and the gap are
  901: *                    proportional to the matrix, so ||T|| doesn't play
  902: *                    a role in the quotient
  903: 
  904: *
  905: *                    Convergence test for Rayleigh-Quotient iteration
  906: *                    (omitted when Bisection has been used)
  907: *
  908:                      IF( RESID.GT.TOL*GAP .AND. ABS( RQCORR ).GT.
  909:      $                    RQTOL*ABS( LAMBDA ) .AND. .NOT. USEDBS)
  910:      $                    THEN
  911: *                       We need to check that the RQCORR update doesn't
  912: *                       move the eigenvalue away from the desired one and
  913: *                       towards a neighbor. -> protection with bisection
  914:                         IF(INDEIG.LE.NEGCNT) THEN
  915: *                          The wanted eigenvalue lies to the left
  916:                            SGNDEF = -ONE
  917:                         ELSE
  918: *                          The wanted eigenvalue lies to the right
  919:                            SGNDEF = ONE
  920:                         ENDIF
  921: *                       We only use the RQCORR if it improves the
  922: *                       the iterate reasonably.
  923:                         IF( ( RQCORR*SGNDEF.GE.ZERO )
  924:      $                       .AND.( LAMBDA + RQCORR.LE. RIGHT)
  925:      $                       .AND.( LAMBDA + RQCORR.GE. LEFT)
  926:      $                       ) THEN
  927:                            USEDRQ = .TRUE.
  928: *                          Store new midpoint of bisection interval in WORK
  929:                            IF(SGNDEF.EQ.ONE) THEN
  930: *                             The current LAMBDA is on the left of the true
  931: *                             eigenvalue
  932:                               LEFT = LAMBDA
  933: *                             We prefer to assume that the error estimate
  934: *                             is correct. We could make the interval not
  935: *                             as a bracket but to be modified if the RQCORR
  936: *                             chooses to. In this case, the RIGHT side should
  937: *                             be modified as follows:
  938: *                              RIGHT = MAX(RIGHT, LAMBDA + RQCORR)
  939:                            ELSE
  940: *                             The current LAMBDA is on the right of the true
  941: *                             eigenvalue
  942:                               RIGHT = LAMBDA
  943: *                             See comment about assuming the error estimate is
  944: *                             correct above.
  945: *                              LEFT = MIN(LEFT, LAMBDA + RQCORR)
  946:                            ENDIF
  947:                            WORK( WINDEX ) =
  948:      $                       HALF * (RIGHT + LEFT)
  949: *                          Take RQCORR since it has the correct sign and
  950: *                          improves the iterate reasonably
  951:                            LAMBDA = LAMBDA + RQCORR
  952: *                          Update width of error interval
  953:                            WERR( WINDEX ) =
  954:      $                             HALF * (RIGHT-LEFT)
  955:                         ELSE
  956:                            NEEDBS = .TRUE.
  957:                         ENDIF
  958:                         IF(RIGHT-LEFT.LT.RQTOL*ABS(LAMBDA)) THEN
  959: *                             The eigenvalue is computed to bisection accuracy
  960: *                             compute eigenvector and stop
  961:                            USEDBS = .TRUE.
  962:                            GOTO 120
  963:                         ELSEIF( ITER.LT.MAXITR ) THEN
  964:                            GOTO 120
  965:                         ELSEIF( ITER.EQ.MAXITR ) THEN
  966:                            NEEDBS = .TRUE.
  967:                            GOTO 120
  968:                         ELSE
  969:                            INFO = 5
  970:                            RETURN
  971:                         END IF
  972:                      ELSE
  973:                         STP2II = .FALSE.
  974:         IF(USEDRQ .AND. USEDBS .AND.
  975:      $                     BSTRES.LE.RESID) THEN
  976:                            LAMBDA = BSTW
  977:                            STP2II = .TRUE.
  978:                         ENDIF
  979:                         IF (STP2II) THEN
  980: *                          improve error angle by second step
  981:                            CALL ZLAR1V( IN, 1, IN, LAMBDA,
  982:      $                          D( IBEGIN ), L( IBEGIN ),
  983:      $                          WORK(INDLD+IBEGIN-1),
  984:      $                          WORK(INDLLD+IBEGIN-1),
  985:      $                          PIVMIN, GAPTOL, Z( IBEGIN, WINDEX ),
  986:      $                          .NOT.USEDBS, NEGCNT, ZTZ, MINGMA,
  987:      $                          IWORK( IINDR+WINDEX ),
  988:      $                          ISUPPZ( 2*WINDEX-1 ),
  989:      $                          NRMINV, RESID, RQCORR, WORK( INDWRK ) )
  990:                         ENDIF
  991:                         WORK( WINDEX ) = LAMBDA
  992:                      END IF
  993: *
  994: *                    Compute FP-vector support w.r.t. whole matrix
  995: *
  996:                      ISUPPZ( 2*WINDEX-1 ) = ISUPPZ( 2*WINDEX-1 )+OLDIEN
  997:                      ISUPPZ( 2*WINDEX ) = ISUPPZ( 2*WINDEX )+OLDIEN
  998:                      ZFROM = ISUPPZ( 2*WINDEX-1 )
  999:                      ZTO = ISUPPZ( 2*WINDEX )
 1000:                      ISUPMN = ISUPMN + OLDIEN
 1001:                      ISUPMX = ISUPMX + OLDIEN
 1002: *                    Ensure vector is ok if support in the RQI has changed
 1003:                      IF(ISUPMN.LT.ZFROM) THEN
 1004:                         DO 122 II = ISUPMN,ZFROM-1
 1005:                            Z( II, WINDEX ) = ZERO
 1006:  122                    CONTINUE
 1007:                      ENDIF
 1008:                      IF(ISUPMX.GT.ZTO) THEN
 1009:                         DO 123 II = ZTO+1,ISUPMX
 1010:                            Z( II, WINDEX ) = ZERO
 1011:  123                    CONTINUE
 1012:                      ENDIF
 1013:                      CALL ZDSCAL( ZTO-ZFROM+1, NRMINV,
 1014:      $                       Z( ZFROM, WINDEX ), 1 )
 1015:  125                 CONTINUE
 1016: *                    Update W
 1017:                      W( WINDEX ) = LAMBDA+SIGMA
 1018: *                    Recompute the gaps on the left and right
 1019: *                    But only allow them to become larger and not
 1020: *                    smaller (which can only happen through "bad"
 1021: *                    cancellation and doesn't reflect the theory
 1022: *                    where the initial gaps are underestimated due
 1023: *                    to WERR being too crude.)
 1024:                      IF(.NOT.ESKIP) THEN
 1025:                         IF( K.GT.1) THEN
 1026:                            WGAP( WINDMN ) = MAX( WGAP(WINDMN),
 1027:      $                          W(WINDEX)-WERR(WINDEX)
 1028:      $                          - W(WINDMN)-WERR(WINDMN) )
 1029:                         ENDIF
 1030:                         IF( WINDEX.LT.WEND ) THEN
 1031:                            WGAP( WINDEX ) = MAX( SAVGAP,
 1032:      $                          W( WINDPL )-WERR( WINDPL )
 1033:      $                          - W( WINDEX )-WERR( WINDEX) )
 1034:                         ENDIF
 1035:                      ENDIF
 1036:                      IDONE = IDONE + 1
 1037:                   ENDIF
 1038: *                 here ends the code for the current child
 1039: *
 1040:  139              CONTINUE
 1041: *                 Proceed to any remaining child nodes
 1042:                   NEWFST = J + 1
 1043:  140           CONTINUE
 1044:  150        CONTINUE
 1045:             NDEPTH = NDEPTH + 1
 1046:             GO TO 40
 1047:          END IF
 1048:          IBEGIN = IEND + 1
 1049:          WBEGIN = WEND + 1
 1050:  170  CONTINUE
 1051: *
 1052: 
 1053:       RETURN
 1054: *
 1055: *     End of ZLARRV
 1056: *
 1057:       END

CVSweb interface <joel.bertrand@systella.fr>