File:  [local] / rpl / lapack / lapack / zlarrv.f
Revision 1.22: download - view: text, annotated - select for diffs - revision graph
Tue May 29 07:18:29 2018 UTC (6 years ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_31, rpl-4_1_30, rpl-4_1_29, rpl-4_1_28, HEAD
Mise à jour de Lapack.

    1: *> \brief \b ZLARRV computes the eigenvectors of the tridiagonal matrix T = L D LT given L, D and the eigenvalues of L D LT.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZLARRV + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlarrv.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlarrv.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlarrv.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLARRV( N, VL, VU, D, L, PIVMIN,
   22: *                          ISPLIT, M, DOL, DOU, MINRGP,
   23: *                          RTOL1, RTOL2, W, WERR, WGAP,
   24: *                          IBLOCK, INDEXW, GERS, Z, LDZ, ISUPPZ,
   25: *                          WORK, IWORK, INFO )
   26: *
   27: *       .. Scalar Arguments ..
   28: *       INTEGER            DOL, DOU, INFO, LDZ, M, N
   29: *       DOUBLE PRECISION   MINRGP, PIVMIN, RTOL1, RTOL2, VL, VU
   30: *       ..
   31: *       .. Array Arguments ..
   32: *       INTEGER            IBLOCK( * ), INDEXW( * ), ISPLIT( * ),
   33: *      $                   ISUPPZ( * ), IWORK( * )
   34: *       DOUBLE PRECISION   D( * ), GERS( * ), L( * ), W( * ), WERR( * ),
   35: *      $                   WGAP( * ), WORK( * )
   36: *       COMPLEX*16        Z( LDZ, * )
   37: *       ..
   38: *
   39: *
   40: *> \par Purpose:
   41: *  =============
   42: *>
   43: *> \verbatim
   44: *>
   45: *> ZLARRV computes the eigenvectors of the tridiagonal matrix
   46: *> T = L D L**T given L, D and APPROXIMATIONS to the eigenvalues of L D L**T.
   47: *> The input eigenvalues should have been computed by DLARRE.
   48: *> \endverbatim
   49: *
   50: *  Arguments:
   51: *  ==========
   52: *
   53: *> \param[in] N
   54: *> \verbatim
   55: *>          N is INTEGER
   56: *>          The order of the matrix.  N >= 0.
   57: *> \endverbatim
   58: *>
   59: *> \param[in] VL
   60: *> \verbatim
   61: *>          VL is DOUBLE PRECISION
   62: *>          Lower bound of the interval that contains the desired
   63: *>          eigenvalues. VL < VU. Needed to compute gaps on the left or right
   64: *>          end of the extremal eigenvalues in the desired RANGE.
   65: *> \endverbatim
   66: *>
   67: *> \param[in] VU
   68: *> \verbatim
   69: *>          VU is DOUBLE PRECISION
   70: *>          Upper bound of the interval that contains the desired
   71: *>          eigenvalues. VL < VU. Needed to compute gaps on the left or right
   72: *>          end of the extremal eigenvalues in the desired RANGE.
   73: *> \endverbatim
   74: *>
   75: *> \param[in,out] D
   76: *> \verbatim
   77: *>          D is DOUBLE PRECISION array, dimension (N)
   78: *>          On entry, the N diagonal elements of the diagonal matrix D.
   79: *>          On exit, D may be overwritten.
   80: *> \endverbatim
   81: *>
   82: *> \param[in,out] L
   83: *> \verbatim
   84: *>          L is DOUBLE PRECISION array, dimension (N)
   85: *>          On entry, the (N-1) subdiagonal elements of the unit
   86: *>          bidiagonal matrix L are in elements 1 to N-1 of L
   87: *>          (if the matrix is not split.) At the end of each block
   88: *>          is stored the corresponding shift as given by DLARRE.
   89: *>          On exit, L is overwritten.
   90: *> \endverbatim
   91: *>
   92: *> \param[in] PIVMIN
   93: *> \verbatim
   94: *>          PIVMIN is DOUBLE PRECISION
   95: *>          The minimum pivot allowed in the Sturm sequence.
   96: *> \endverbatim
   97: *>
   98: *> \param[in] ISPLIT
   99: *> \verbatim
  100: *>          ISPLIT is INTEGER array, dimension (N)
  101: *>          The splitting points, at which T breaks up into blocks.
  102: *>          The first block consists of rows/columns 1 to
  103: *>          ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1
  104: *>          through ISPLIT( 2 ), etc.
  105: *> \endverbatim
  106: *>
  107: *> \param[in] M
  108: *> \verbatim
  109: *>          M is INTEGER
  110: *>          The total number of input eigenvalues.  0 <= M <= N.
  111: *> \endverbatim
  112: *>
  113: *> \param[in] DOL
  114: *> \verbatim
  115: *>          DOL is INTEGER
  116: *> \endverbatim
  117: *>
  118: *> \param[in] DOU
  119: *> \verbatim
  120: *>          DOU is INTEGER
  121: *>          If the user wants to compute only selected eigenvectors from all
  122: *>          the eigenvalues supplied, he can specify an index range DOL:DOU.
  123: *>          Or else the setting DOL=1, DOU=M should be applied.
  124: *>          Note that DOL and DOU refer to the order in which the eigenvalues
  125: *>          are stored in W.
  126: *>          If the user wants to compute only selected eigenpairs, then
  127: *>          the columns DOL-1 to DOU+1 of the eigenvector space Z contain the
  128: *>          computed eigenvectors. All other columns of Z are set to zero.
  129: *> \endverbatim
  130: *>
  131: *> \param[in] MINRGP
  132: *> \verbatim
  133: *>          MINRGP is DOUBLE PRECISION
  134: *> \endverbatim
  135: *>
  136: *> \param[in] RTOL1
  137: *> \verbatim
  138: *>          RTOL1 is DOUBLE PRECISION
  139: *> \endverbatim
  140: *>
  141: *> \param[in] RTOL2
  142: *> \verbatim
  143: *>          RTOL2 is DOUBLE PRECISION
  144: *>           Parameters for bisection.
  145: *>           An interval [LEFT,RIGHT] has converged if
  146: *>           RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
  147: *> \endverbatim
  148: *>
  149: *> \param[in,out] W
  150: *> \verbatim
  151: *>          W is DOUBLE PRECISION array, dimension (N)
  152: *>          The first M elements of W contain the APPROXIMATE eigenvalues for
  153: *>          which eigenvectors are to be computed.  The eigenvalues
  154: *>          should be grouped by split-off block and ordered from
  155: *>          smallest to largest within the block ( The output array
  156: *>          W from DLARRE is expected here ). Furthermore, they are with
  157: *>          respect to the shift of the corresponding root representation
  158: *>          for their block. On exit, W holds the eigenvalues of the
  159: *>          UNshifted matrix.
  160: *> \endverbatim
  161: *>
  162: *> \param[in,out] WERR
  163: *> \verbatim
  164: *>          WERR is DOUBLE PRECISION array, dimension (N)
  165: *>          The first M elements contain the semiwidth of the uncertainty
  166: *>          interval of the corresponding eigenvalue in W
  167: *> \endverbatim
  168: *>
  169: *> \param[in,out] WGAP
  170: *> \verbatim
  171: *>          WGAP is DOUBLE PRECISION array, dimension (N)
  172: *>          The separation from the right neighbor eigenvalue in W.
  173: *> \endverbatim
  174: *>
  175: *> \param[in] IBLOCK
  176: *> \verbatim
  177: *>          IBLOCK is INTEGER array, dimension (N)
  178: *>          The indices of the blocks (submatrices) associated with the
  179: *>          corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue
  180: *>          W(i) belongs to the first block from the top, =2 if W(i)
  181: *>          belongs to the second block, etc.
  182: *> \endverbatim
  183: *>
  184: *> \param[in] INDEXW
  185: *> \verbatim
  186: *>          INDEXW is INTEGER array, dimension (N)
  187: *>          The indices of the eigenvalues within each block (submatrix);
  188: *>          for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the
  189: *>          i-th eigenvalue W(i) is the 10-th eigenvalue in the second block.
  190: *> \endverbatim
  191: *>
  192: *> \param[in] GERS
  193: *> \verbatim
  194: *>          GERS is DOUBLE PRECISION array, dimension (2*N)
  195: *>          The N Gerschgorin intervals (the i-th Gerschgorin interval
  196: *>          is (GERS(2*i-1), GERS(2*i)). The Gerschgorin intervals should
  197: *>          be computed from the original UNshifted matrix.
  198: *> \endverbatim
  199: *>
  200: *> \param[out] Z
  201: *> \verbatim
  202: *>          Z is COMPLEX*16 array, dimension (LDZ, max(1,M) )
  203: *>          If INFO = 0, the first M columns of Z contain the
  204: *>          orthonormal eigenvectors of the matrix T
  205: *>          corresponding to the input eigenvalues, with the i-th
  206: *>          column of Z holding the eigenvector associated with W(i).
  207: *>          Note: the user must ensure that at least max(1,M) columns are
  208: *>          supplied in the array Z.
  209: *> \endverbatim
  210: *>
  211: *> \param[in] LDZ
  212: *> \verbatim
  213: *>          LDZ is INTEGER
  214: *>          The leading dimension of the array Z.  LDZ >= 1, and if
  215: *>          JOBZ = 'V', LDZ >= max(1,N).
  216: *> \endverbatim
  217: *>
  218: *> \param[out] ISUPPZ
  219: *> \verbatim
  220: *>          ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
  221: *>          The support of the eigenvectors in Z, i.e., the indices
  222: *>          indicating the nonzero elements in Z. The I-th eigenvector
  223: *>          is nonzero only in elements ISUPPZ( 2*I-1 ) through
  224: *>          ISUPPZ( 2*I ).
  225: *> \endverbatim
  226: *>
  227: *> \param[out] WORK
  228: *> \verbatim
  229: *>          WORK is DOUBLE PRECISION array, dimension (12*N)
  230: *> \endverbatim
  231: *>
  232: *> \param[out] IWORK
  233: *> \verbatim
  234: *>          IWORK is INTEGER array, dimension (7*N)
  235: *> \endverbatim
  236: *>
  237: *> \param[out] INFO
  238: *> \verbatim
  239: *>          INFO is INTEGER
  240: *>          = 0:  successful exit
  241: *>
  242: *>          > 0:  A problem occurred in ZLARRV.
  243: *>          < 0:  One of the called subroutines signaled an internal problem.
  244: *>                Needs inspection of the corresponding parameter IINFO
  245: *>                for further information.
  246: *>
  247: *>          =-1:  Problem in DLARRB when refining a child's eigenvalues.
  248: *>          =-2:  Problem in DLARRF when computing the RRR of a child.
  249: *>                When a child is inside a tight cluster, it can be difficult
  250: *>                to find an RRR. A partial remedy from the user's point of
  251: *>                view is to make the parameter MINRGP smaller and recompile.
  252: *>                However, as the orthogonality of the computed vectors is
  253: *>                proportional to 1/MINRGP, the user should be aware that
  254: *>                he might be trading in precision when he decreases MINRGP.
  255: *>          =-3:  Problem in DLARRB when refining a single eigenvalue
  256: *>                after the Rayleigh correction was rejected.
  257: *>          = 5:  The Rayleigh Quotient Iteration failed to converge to
  258: *>                full accuracy in MAXITR steps.
  259: *> \endverbatim
  260: *
  261: *  Authors:
  262: *  ========
  263: *
  264: *> \author Univ. of Tennessee
  265: *> \author Univ. of California Berkeley
  266: *> \author Univ. of Colorado Denver
  267: *> \author NAG Ltd.
  268: *
  269: *> \date June 2016
  270: *
  271: *> \ingroup complex16OTHERauxiliary
  272: *
  273: *> \par Contributors:
  274: *  ==================
  275: *>
  276: *> Beresford Parlett, University of California, Berkeley, USA \n
  277: *> Jim Demmel, University of California, Berkeley, USA \n
  278: *> Inderjit Dhillon, University of Texas, Austin, USA \n
  279: *> Osni Marques, LBNL/NERSC, USA \n
  280: *> Christof Voemel, University of California, Berkeley, USA
  281: *
  282: *  =====================================================================
  283:       SUBROUTINE ZLARRV( N, VL, VU, D, L, PIVMIN,
  284:      $                   ISPLIT, M, DOL, DOU, MINRGP,
  285:      $                   RTOL1, RTOL2, W, WERR, WGAP,
  286:      $                   IBLOCK, INDEXW, GERS, Z, LDZ, ISUPPZ,
  287:      $                   WORK, IWORK, INFO )
  288: *
  289: *  -- LAPACK auxiliary routine (version 3.7.1) --
  290: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  291: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  292: *     June 2016
  293: *
  294: *     .. Scalar Arguments ..
  295:       INTEGER            DOL, DOU, INFO, LDZ, M, N
  296:       DOUBLE PRECISION   MINRGP, PIVMIN, RTOL1, RTOL2, VL, VU
  297: *     ..
  298: *     .. Array Arguments ..
  299:       INTEGER            IBLOCK( * ), INDEXW( * ), ISPLIT( * ),
  300:      $                   ISUPPZ( * ), IWORK( * )
  301:       DOUBLE PRECISION   D( * ), GERS( * ), L( * ), W( * ), WERR( * ),
  302:      $                   WGAP( * ), WORK( * )
  303:       COMPLEX*16        Z( LDZ, * )
  304: *     ..
  305: *
  306: *  =====================================================================
  307: *
  308: *     .. Parameters ..
  309:       INTEGER            MAXITR
  310:       PARAMETER          ( MAXITR = 10 )
  311:       COMPLEX*16         CZERO
  312:       PARAMETER          ( CZERO = ( 0.0D0, 0.0D0 ) )
  313:       DOUBLE PRECISION   ZERO, ONE, TWO, THREE, FOUR, HALF
  314:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0,
  315:      $                     TWO = 2.0D0, THREE = 3.0D0,
  316:      $                     FOUR = 4.0D0, HALF = 0.5D0)
  317: *     ..
  318: *     .. Local Scalars ..
  319:       LOGICAL            ESKIP, NEEDBS, STP2II, TRYRQC, USEDBS, USEDRQ
  320:       INTEGER            DONE, I, IBEGIN, IDONE, IEND, II, IINDC1,
  321:      $                   IINDC2, IINDR, IINDWK, IINFO, IM, IN, INDEIG,
  322:      $                   INDLD, INDLLD, INDWRK, ISUPMN, ISUPMX, ITER,
  323:      $                   ITMP1, J, JBLK, K, MINIWSIZE, MINWSIZE, NCLUS,
  324:      $                   NDEPTH, NEGCNT, NEWCLS, NEWFST, NEWFTT, NEWLST,
  325:      $                   NEWSIZ, OFFSET, OLDCLS, OLDFST, OLDIEN, OLDLST,
  326:      $                   OLDNCL, P, PARITY, Q, WBEGIN, WEND, WINDEX,
  327:      $                   WINDMN, WINDPL, ZFROM, ZTO, ZUSEDL, ZUSEDU,
  328:      $                   ZUSEDW
  329:       INTEGER            INDIN1, INDIN2
  330:       DOUBLE PRECISION   BSTRES, BSTW, EPS, FUDGE, GAP, GAPTOL, GL, GU,
  331:      $                   LAMBDA, LEFT, LGAP, MINGMA, NRMINV, RESID,
  332:      $                   RGAP, RIGHT, RQCORR, RQTOL, SAVGAP, SGNDEF,
  333:      $                   SIGMA, SPDIAM, SSIGMA, TAU, TMP, TOL, ZTZ
  334: *     ..
  335: *     .. External Functions ..
  336:       DOUBLE PRECISION   DLAMCH
  337:       EXTERNAL           DLAMCH
  338: *     ..
  339: *     .. External Subroutines ..
  340:       EXTERNAL           DCOPY, DLARRB, DLARRF, ZDSCAL, ZLAR1V,
  341:      $                   ZLASET
  342: *     ..
  343: *     .. Intrinsic Functions ..
  344:       INTRINSIC ABS, DBLE, MAX, MIN
  345:       INTRINSIC DCMPLX
  346: *     ..
  347: *     .. Executable Statements ..
  348: *     ..
  349: 
  350:       INFO = 0
  351: *
  352: *     Quick return if possible
  353: *
  354:       IF( N.LE.0 ) THEN
  355:          RETURN
  356:       END IF
  357: *
  358: *     The first N entries of WORK are reserved for the eigenvalues
  359:       INDLD = N+1
  360:       INDLLD= 2*N+1
  361:       INDIN1 = 3*N + 1
  362:       INDIN2 = 4*N + 1
  363:       INDWRK = 5*N + 1
  364:       MINWSIZE = 12 * N
  365: 
  366:       DO 5 I= 1,MINWSIZE
  367:          WORK( I ) = ZERO
  368:  5    CONTINUE
  369: 
  370: *     IWORK(IINDR+1:IINDR+N) hold the twist indices R for the
  371: *     factorization used to compute the FP vector
  372:       IINDR = 0
  373: *     IWORK(IINDC1+1:IINC2+N) are used to store the clusters of the current
  374: *     layer and the one above.
  375:       IINDC1 = N
  376:       IINDC2 = 2*N
  377:       IINDWK = 3*N + 1
  378: 
  379:       MINIWSIZE = 7 * N
  380:       DO 10 I= 1,MINIWSIZE
  381:          IWORK( I ) = 0
  382:  10   CONTINUE
  383: 
  384:       ZUSEDL = 1
  385:       IF(DOL.GT.1) THEN
  386: *        Set lower bound for use of Z
  387:          ZUSEDL = DOL-1
  388:       ENDIF
  389:       ZUSEDU = M
  390:       IF(DOU.LT.M) THEN
  391: *        Set lower bound for use of Z
  392:          ZUSEDU = DOU+1
  393:       ENDIF
  394: *     The width of the part of Z that is used
  395:       ZUSEDW = ZUSEDU - ZUSEDL + 1
  396: 
  397: 
  398:       CALL ZLASET( 'Full', N, ZUSEDW, CZERO, CZERO,
  399:      $                    Z(1,ZUSEDL), LDZ )
  400: 
  401:       EPS = DLAMCH( 'Precision' )
  402:       RQTOL = TWO * EPS
  403: *
  404: *     Set expert flags for standard code.
  405:       TRYRQC = .TRUE.
  406: 
  407:       IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
  408:       ELSE
  409: *        Only selected eigenpairs are computed. Since the other evalues
  410: *        are not refined by RQ iteration, bisection has to compute to full
  411: *        accuracy.
  412:          RTOL1 = FOUR * EPS
  413:          RTOL2 = FOUR * EPS
  414:       ENDIF
  415: 
  416: *     The entries WBEGIN:WEND in W, WERR, WGAP correspond to the
  417: *     desired eigenvalues. The support of the nonzero eigenvector
  418: *     entries is contained in the interval IBEGIN:IEND.
  419: *     Remark that if k eigenpairs are desired, then the eigenvectors
  420: *     are stored in k contiguous columns of Z.
  421: 
  422: *     DONE is the number of eigenvectors already computed
  423:       DONE = 0
  424:       IBEGIN = 1
  425:       WBEGIN = 1
  426:       DO 170 JBLK = 1, IBLOCK( M )
  427:          IEND = ISPLIT( JBLK )
  428:          SIGMA = L( IEND )
  429: *        Find the eigenvectors of the submatrix indexed IBEGIN
  430: *        through IEND.
  431:          WEND = WBEGIN - 1
  432:  15      CONTINUE
  433:          IF( WEND.LT.M ) THEN
  434:             IF( IBLOCK( WEND+1 ).EQ.JBLK ) THEN
  435:                WEND = WEND + 1
  436:                GO TO 15
  437:             END IF
  438:          END IF
  439:          IF( WEND.LT.WBEGIN ) THEN
  440:             IBEGIN = IEND + 1
  441:             GO TO 170
  442:          ELSEIF( (WEND.LT.DOL).OR.(WBEGIN.GT.DOU) ) THEN
  443:             IBEGIN = IEND + 1
  444:             WBEGIN = WEND + 1
  445:             GO TO 170
  446:          END IF
  447: 
  448: *        Find local spectral diameter of the block
  449:          GL = GERS( 2*IBEGIN-1 )
  450:          GU = GERS( 2*IBEGIN )
  451:          DO 20 I = IBEGIN+1 , IEND
  452:             GL = MIN( GERS( 2*I-1 ), GL )
  453:             GU = MAX( GERS( 2*I ), GU )
  454:  20      CONTINUE
  455:          SPDIAM = GU - GL
  456: 
  457: *        OLDIEN is the last index of the previous block
  458:          OLDIEN = IBEGIN - 1
  459: *        Calculate the size of the current block
  460:          IN = IEND - IBEGIN + 1
  461: *        The number of eigenvalues in the current block
  462:          IM = WEND - WBEGIN + 1
  463: 
  464: *        This is for a 1x1 block
  465:          IF( IBEGIN.EQ.IEND ) THEN
  466:             DONE = DONE+1
  467:             Z( IBEGIN, WBEGIN ) = DCMPLX( ONE, ZERO )
  468:             ISUPPZ( 2*WBEGIN-1 ) = IBEGIN
  469:             ISUPPZ( 2*WBEGIN ) = IBEGIN
  470:             W( WBEGIN ) = W( WBEGIN ) + SIGMA
  471:             WORK( WBEGIN ) = W( WBEGIN )
  472:             IBEGIN = IEND + 1
  473:             WBEGIN = WBEGIN + 1
  474:             GO TO 170
  475:          END IF
  476: 
  477: *        The desired (shifted) eigenvalues are stored in W(WBEGIN:WEND)
  478: *        Note that these can be approximations, in this case, the corresp.
  479: *        entries of WERR give the size of the uncertainty interval.
  480: *        The eigenvalue approximations will be refined when necessary as
  481: *        high relative accuracy is required for the computation of the
  482: *        corresponding eigenvectors.
  483:          CALL DCOPY( IM, W( WBEGIN ), 1,
  484:      $                   WORK( WBEGIN ), 1 )
  485: 
  486: *        We store in W the eigenvalue approximations w.r.t. the original
  487: *        matrix T.
  488:          DO 30 I=1,IM
  489:             W(WBEGIN+I-1) = W(WBEGIN+I-1)+SIGMA
  490:  30      CONTINUE
  491: 
  492: 
  493: *        NDEPTH is the current depth of the representation tree
  494:          NDEPTH = 0
  495: *        PARITY is either 1 or 0
  496:          PARITY = 1
  497: *        NCLUS is the number of clusters for the next level of the
  498: *        representation tree, we start with NCLUS = 1 for the root
  499:          NCLUS = 1
  500:          IWORK( IINDC1+1 ) = 1
  501:          IWORK( IINDC1+2 ) = IM
  502: 
  503: *        IDONE is the number of eigenvectors already computed in the current
  504: *        block
  505:          IDONE = 0
  506: *        loop while( IDONE.LT.IM )
  507: *        generate the representation tree for the current block and
  508: *        compute the eigenvectors
  509:    40    CONTINUE
  510:          IF( IDONE.LT.IM ) THEN
  511: *           This is a crude protection against infinitely deep trees
  512:             IF( NDEPTH.GT.M ) THEN
  513:                INFO = -2
  514:                RETURN
  515:             ENDIF
  516: *           breadth first processing of the current level of the representation
  517: *           tree: OLDNCL = number of clusters on current level
  518:             OLDNCL = NCLUS
  519: *           reset NCLUS to count the number of child clusters
  520:             NCLUS = 0
  521: *
  522:             PARITY = 1 - PARITY
  523:             IF( PARITY.EQ.0 ) THEN
  524:                OLDCLS = IINDC1
  525:                NEWCLS = IINDC2
  526:             ELSE
  527:                OLDCLS = IINDC2
  528:                NEWCLS = IINDC1
  529:             END IF
  530: *           Process the clusters on the current level
  531:             DO 150 I = 1, OLDNCL
  532:                J = OLDCLS + 2*I
  533: *              OLDFST, OLDLST = first, last index of current cluster.
  534: *                               cluster indices start with 1 and are relative
  535: *                               to WBEGIN when accessing W, WGAP, WERR, Z
  536:                OLDFST = IWORK( J-1 )
  537:                OLDLST = IWORK( J )
  538:                IF( NDEPTH.GT.0 ) THEN
  539: *                 Retrieve relatively robust representation (RRR) of cluster
  540: *                 that has been computed at the previous level
  541: *                 The RRR is stored in Z and overwritten once the eigenvectors
  542: *                 have been computed or when the cluster is refined
  543: 
  544:                   IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
  545: *                    Get representation from location of the leftmost evalue
  546: *                    of the cluster
  547:                      J = WBEGIN + OLDFST - 1
  548:                   ELSE
  549:                      IF(WBEGIN+OLDFST-1.LT.DOL) THEN
  550: *                       Get representation from the left end of Z array
  551:                         J = DOL - 1
  552:                      ELSEIF(WBEGIN+OLDFST-1.GT.DOU) THEN
  553: *                       Get representation from the right end of Z array
  554:                         J = DOU
  555:                      ELSE
  556:                         J = WBEGIN + OLDFST - 1
  557:                      ENDIF
  558:                   ENDIF
  559:                   DO 45 K = 1, IN - 1
  560:                      D( IBEGIN+K-1 ) = DBLE( Z( IBEGIN+K-1,
  561:      $                                 J ) )
  562:                      L( IBEGIN+K-1 ) = DBLE( Z( IBEGIN+K-1,
  563:      $                                 J+1 ) )
  564:    45             CONTINUE
  565:                   D( IEND ) = DBLE( Z( IEND, J ) )
  566:                   SIGMA = DBLE( Z( IEND, J+1 ) )
  567: 
  568: *                 Set the corresponding entries in Z to zero
  569:                   CALL ZLASET( 'Full', IN, 2, CZERO, CZERO,
  570:      $                         Z( IBEGIN, J), LDZ )
  571:                END IF
  572: 
  573: *              Compute DL and DLL of current RRR
  574:                DO 50 J = IBEGIN, IEND-1
  575:                   TMP = D( J )*L( J )
  576:                   WORK( INDLD-1+J ) = TMP
  577:                   WORK( INDLLD-1+J ) = TMP*L( J )
  578:    50          CONTINUE
  579: 
  580:                IF( NDEPTH.GT.0 ) THEN
  581: *                 P and Q are index of the first and last eigenvalue to compute
  582: *                 within the current block
  583:                   P = INDEXW( WBEGIN-1+OLDFST )
  584:                   Q = INDEXW( WBEGIN-1+OLDLST )
  585: *                 Offset for the arrays WORK, WGAP and WERR, i.e., the P-OFFSET
  586: *                 through the Q-OFFSET elements of these arrays are to be used.
  587: *                  OFFSET = P-OLDFST
  588:                   OFFSET = INDEXW( WBEGIN ) - 1
  589: *                 perform limited bisection (if necessary) to get approximate
  590: *                 eigenvalues to the precision needed.
  591:                   CALL DLARRB( IN, D( IBEGIN ),
  592:      $                         WORK(INDLLD+IBEGIN-1),
  593:      $                         P, Q, RTOL1, RTOL2, OFFSET,
  594:      $                         WORK(WBEGIN),WGAP(WBEGIN),WERR(WBEGIN),
  595:      $                         WORK( INDWRK ), IWORK( IINDWK ),
  596:      $                         PIVMIN, SPDIAM, IN, IINFO )
  597:                   IF( IINFO.NE.0 ) THEN
  598:                      INFO = -1
  599:                      RETURN
  600:                   ENDIF
  601: *                 We also recompute the extremal gaps. W holds all eigenvalues
  602: *                 of the unshifted matrix and must be used for computation
  603: *                 of WGAP, the entries of WORK might stem from RRRs with
  604: *                 different shifts. The gaps from WBEGIN-1+OLDFST to
  605: *                 WBEGIN-1+OLDLST are correctly computed in DLARRB.
  606: *                 However, we only allow the gaps to become greater since
  607: *                 this is what should happen when we decrease WERR
  608:                   IF( OLDFST.GT.1) THEN
  609:                      WGAP( WBEGIN+OLDFST-2 ) =
  610:      $             MAX(WGAP(WBEGIN+OLDFST-2),
  611:      $                 W(WBEGIN+OLDFST-1)-WERR(WBEGIN+OLDFST-1)
  612:      $                 - W(WBEGIN+OLDFST-2)-WERR(WBEGIN+OLDFST-2) )
  613:                   ENDIF
  614:                   IF( WBEGIN + OLDLST -1 .LT. WEND ) THEN
  615:                      WGAP( WBEGIN+OLDLST-1 ) =
  616:      $               MAX(WGAP(WBEGIN+OLDLST-1),
  617:      $                   W(WBEGIN+OLDLST)-WERR(WBEGIN+OLDLST)
  618:      $                   - W(WBEGIN+OLDLST-1)-WERR(WBEGIN+OLDLST-1) )
  619:                   ENDIF
  620: *                 Each time the eigenvalues in WORK get refined, we store
  621: *                 the newly found approximation with all shifts applied in W
  622:                   DO 53 J=OLDFST,OLDLST
  623:                      W(WBEGIN+J-1) = WORK(WBEGIN+J-1)+SIGMA
  624:  53               CONTINUE
  625:                END IF
  626: 
  627: *              Process the current node.
  628:                NEWFST = OLDFST
  629:                DO 140 J = OLDFST, OLDLST
  630:                   IF( J.EQ.OLDLST ) THEN
  631: *                    we are at the right end of the cluster, this is also the
  632: *                    boundary of the child cluster
  633:                      NEWLST = J
  634:                   ELSE IF ( WGAP( WBEGIN + J -1).GE.
  635:      $                    MINRGP* ABS( WORK(WBEGIN + J -1) ) ) THEN
  636: *                    the right relative gap is big enough, the child cluster
  637: *                    (NEWFST,..,NEWLST) is well separated from the following
  638:                      NEWLST = J
  639:                    ELSE
  640: *                    inside a child cluster, the relative gap is not
  641: *                    big enough.
  642:                      GOTO 140
  643:                   END IF
  644: 
  645: *                 Compute size of child cluster found
  646:                   NEWSIZ = NEWLST - NEWFST + 1
  647: 
  648: *                 NEWFTT is the place in Z where the new RRR or the computed
  649: *                 eigenvector is to be stored
  650:                   IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
  651: *                    Store representation at location of the leftmost evalue
  652: *                    of the cluster
  653:                      NEWFTT = WBEGIN + NEWFST - 1
  654:                   ELSE
  655:                      IF(WBEGIN+NEWFST-1.LT.DOL) THEN
  656: *                       Store representation at the left end of Z array
  657:                         NEWFTT = DOL - 1
  658:                      ELSEIF(WBEGIN+NEWFST-1.GT.DOU) THEN
  659: *                       Store representation at the right end of Z array
  660:                         NEWFTT = DOU
  661:                      ELSE
  662:                         NEWFTT = WBEGIN + NEWFST - 1
  663:                      ENDIF
  664:                   ENDIF
  665: 
  666:                   IF( NEWSIZ.GT.1) THEN
  667: *
  668: *                    Current child is not a singleton but a cluster.
  669: *                    Compute and store new representation of child.
  670: *
  671: *
  672: *                    Compute left and right cluster gap.
  673: *
  674: *                    LGAP and RGAP are not computed from WORK because
  675: *                    the eigenvalue approximations may stem from RRRs
  676: *                    different shifts. However, W hold all eigenvalues
  677: *                    of the unshifted matrix. Still, the entries in WGAP
  678: *                    have to be computed from WORK since the entries
  679: *                    in W might be of the same order so that gaps are not
  680: *                    exhibited correctly for very close eigenvalues.
  681:                      IF( NEWFST.EQ.1 ) THEN
  682:                         LGAP = MAX( ZERO,
  683:      $                       W(WBEGIN)-WERR(WBEGIN) - VL )
  684:                     ELSE
  685:                         LGAP = WGAP( WBEGIN+NEWFST-2 )
  686:                      ENDIF
  687:                      RGAP = WGAP( WBEGIN+NEWLST-1 )
  688: *
  689: *                    Compute left- and rightmost eigenvalue of child
  690: *                    to high precision in order to shift as close
  691: *                    as possible and obtain as large relative gaps
  692: *                    as possible
  693: *
  694:                      DO 55 K =1,2
  695:                         IF(K.EQ.1) THEN
  696:                            P = INDEXW( WBEGIN-1+NEWFST )
  697:                         ELSE
  698:                            P = INDEXW( WBEGIN-1+NEWLST )
  699:                         ENDIF
  700:                         OFFSET = INDEXW( WBEGIN ) - 1
  701:                         CALL DLARRB( IN, D(IBEGIN),
  702:      $                       WORK( INDLLD+IBEGIN-1 ),P,P,
  703:      $                       RQTOL, RQTOL, OFFSET,
  704:      $                       WORK(WBEGIN),WGAP(WBEGIN),
  705:      $                       WERR(WBEGIN),WORK( INDWRK ),
  706:      $                       IWORK( IINDWK ), PIVMIN, SPDIAM,
  707:      $                       IN, IINFO )
  708:  55                  CONTINUE
  709: *
  710:                      IF((WBEGIN+NEWLST-1.LT.DOL).OR.
  711:      $                  (WBEGIN+NEWFST-1.GT.DOU)) THEN
  712: *                       if the cluster contains no desired eigenvalues
  713: *                       skip the computation of that branch of the rep. tree
  714: *
  715: *                       We could skip before the refinement of the extremal
  716: *                       eigenvalues of the child, but then the representation
  717: *                       tree could be different from the one when nothing is
  718: *                       skipped. For this reason we skip at this place.
  719:                         IDONE = IDONE + NEWLST - NEWFST + 1
  720:                         GOTO 139
  721:                      ENDIF
  722: *
  723: *                    Compute RRR of child cluster.
  724: *                    Note that the new RRR is stored in Z
  725: *
  726: *                    DLARRF needs LWORK = 2*N
  727:                      CALL DLARRF( IN, D( IBEGIN ), L( IBEGIN ),
  728:      $                         WORK(INDLD+IBEGIN-1),
  729:      $                         NEWFST, NEWLST, WORK(WBEGIN),
  730:      $                         WGAP(WBEGIN), WERR(WBEGIN),
  731:      $                         SPDIAM, LGAP, RGAP, PIVMIN, TAU,
  732:      $                         WORK( INDIN1 ), WORK( INDIN2 ),
  733:      $                         WORK( INDWRK ), IINFO )
  734: *                    In the complex case, DLARRF cannot write
  735: *                    the new RRR directly into Z and needs an intermediate
  736: *                    workspace
  737:                      DO 56 K = 1, IN-1
  738:                         Z( IBEGIN+K-1, NEWFTT ) =
  739:      $                     DCMPLX( WORK( INDIN1+K-1 ), ZERO )
  740:                         Z( IBEGIN+K-1, NEWFTT+1 ) =
  741:      $                     DCMPLX( WORK( INDIN2+K-1 ), ZERO )
  742:    56                CONTINUE
  743:                      Z( IEND, NEWFTT ) =
  744:      $                  DCMPLX( WORK( INDIN1+IN-1 ), ZERO )
  745:                      IF( IINFO.EQ.0 ) THEN
  746: *                       a new RRR for the cluster was found by DLARRF
  747: *                       update shift and store it
  748:                         SSIGMA = SIGMA + TAU
  749:                         Z( IEND, NEWFTT+1 ) = DCMPLX( SSIGMA, ZERO )
  750: *                       WORK() are the midpoints and WERR() the semi-width
  751: *                       Note that the entries in W are unchanged.
  752:                         DO 116 K = NEWFST, NEWLST
  753:                            FUDGE =
  754:      $                          THREE*EPS*ABS(WORK(WBEGIN+K-1))
  755:                            WORK( WBEGIN + K - 1 ) =
  756:      $                          WORK( WBEGIN + K - 1) - TAU
  757:                            FUDGE = FUDGE +
  758:      $                          FOUR*EPS*ABS(WORK(WBEGIN+K-1))
  759: *                          Fudge errors
  760:                            WERR( WBEGIN + K - 1 ) =
  761:      $                          WERR( WBEGIN + K - 1 ) + FUDGE
  762: *                          Gaps are not fudged. Provided that WERR is small
  763: *                          when eigenvalues are close, a zero gap indicates
  764: *                          that a new representation is needed for resolving
  765: *                          the cluster. A fudge could lead to a wrong decision
  766: *                          of judging eigenvalues 'separated' which in
  767: *                          reality are not. This could have a negative impact
  768: *                          on the orthogonality of the computed eigenvectors.
  769:  116                    CONTINUE
  770: 
  771:                         NCLUS = NCLUS + 1
  772:                         K = NEWCLS + 2*NCLUS
  773:                         IWORK( K-1 ) = NEWFST
  774:                         IWORK( K ) = NEWLST
  775:                      ELSE
  776:                         INFO = -2
  777:                         RETURN
  778:                      ENDIF
  779:                   ELSE
  780: *
  781: *                    Compute eigenvector of singleton
  782: *
  783:                      ITER = 0
  784: *
  785:                      TOL = FOUR * LOG(DBLE(IN)) * EPS
  786: *
  787:                      K = NEWFST
  788:                      WINDEX = WBEGIN + K - 1
  789:                      WINDMN = MAX(WINDEX - 1,1)
  790:                      WINDPL = MIN(WINDEX + 1,M)
  791:                      LAMBDA = WORK( WINDEX )
  792:                      DONE = DONE + 1
  793: *                    Check if eigenvector computation is to be skipped
  794:                      IF((WINDEX.LT.DOL).OR.
  795:      $                  (WINDEX.GT.DOU)) THEN
  796:                         ESKIP = .TRUE.
  797:                         GOTO 125
  798:                      ELSE
  799:                         ESKIP = .FALSE.
  800:                      ENDIF
  801:                      LEFT = WORK( WINDEX ) - WERR( WINDEX )
  802:                      RIGHT = WORK( WINDEX ) + WERR( WINDEX )
  803:                      INDEIG = INDEXW( WINDEX )
  804: *                    Note that since we compute the eigenpairs for a child,
  805: *                    all eigenvalue approximations are w.r.t the same shift.
  806: *                    In this case, the entries in WORK should be used for
  807: *                    computing the gaps since they exhibit even very small
  808: *                    differences in the eigenvalues, as opposed to the
  809: *                    entries in W which might "look" the same.
  810: 
  811:                      IF( K .EQ. 1) THEN
  812: *                       In the case RANGE='I' and with not much initial
  813: *                       accuracy in LAMBDA and VL, the formula
  814: *                       LGAP = MAX( ZERO, (SIGMA - VL) + LAMBDA )
  815: *                       can lead to an overestimation of the left gap and
  816: *                       thus to inadequately early RQI 'convergence'.
  817: *                       Prevent this by forcing a small left gap.
  818:                         LGAP = EPS*MAX(ABS(LEFT),ABS(RIGHT))
  819:                      ELSE
  820:                         LGAP = WGAP(WINDMN)
  821:                      ENDIF
  822:                      IF( K .EQ. IM) THEN
  823: *                       In the case RANGE='I' and with not much initial
  824: *                       accuracy in LAMBDA and VU, the formula
  825: *                       can lead to an overestimation of the right gap and
  826: *                       thus to inadequately early RQI 'convergence'.
  827: *                       Prevent this by forcing a small right gap.
  828:                         RGAP = EPS*MAX(ABS(LEFT),ABS(RIGHT))
  829:                      ELSE
  830:                         RGAP = WGAP(WINDEX)
  831:                      ENDIF
  832:                      GAP = MIN( LGAP, RGAP )
  833:                      IF(( K .EQ. 1).OR.(K .EQ. IM)) THEN
  834: *                       The eigenvector support can become wrong
  835: *                       because significant entries could be cut off due to a
  836: *                       large GAPTOL parameter in LAR1V. Prevent this.
  837:                         GAPTOL = ZERO
  838:                      ELSE
  839:                         GAPTOL = GAP * EPS
  840:                      ENDIF
  841:                      ISUPMN = IN
  842:                      ISUPMX = 1
  843: *                    Update WGAP so that it holds the minimum gap
  844: *                    to the left or the right. This is crucial in the
  845: *                    case where bisection is used to ensure that the
  846: *                    eigenvalue is refined up to the required precision.
  847: *                    The correct value is restored afterwards.
  848:                      SAVGAP = WGAP(WINDEX)
  849:                      WGAP(WINDEX) = GAP
  850: *                    We want to use the Rayleigh Quotient Correction
  851: *                    as often as possible since it converges quadratically
  852: *                    when we are close enough to the desired eigenvalue.
  853: *                    However, the Rayleigh Quotient can have the wrong sign
  854: *                    and lead us away from the desired eigenvalue. In this
  855: *                    case, the best we can do is to use bisection.
  856:                      USEDBS = .FALSE.
  857:                      USEDRQ = .FALSE.
  858: *                    Bisection is initially turned off unless it is forced
  859:                      NEEDBS =  .NOT.TRYRQC
  860:  120                 CONTINUE
  861: *                    Check if bisection should be used to refine eigenvalue
  862:                      IF(NEEDBS) THEN
  863: *                       Take the bisection as new iterate
  864:                         USEDBS = .TRUE.
  865:                         ITMP1 = IWORK( IINDR+WINDEX )
  866:                         OFFSET = INDEXW( WBEGIN ) - 1
  867:                         CALL DLARRB( IN, D(IBEGIN),
  868:      $                       WORK(INDLLD+IBEGIN-1),INDEIG,INDEIG,
  869:      $                       ZERO, TWO*EPS, OFFSET,
  870:      $                       WORK(WBEGIN),WGAP(WBEGIN),
  871:      $                       WERR(WBEGIN),WORK( INDWRK ),
  872:      $                       IWORK( IINDWK ), PIVMIN, SPDIAM,
  873:      $                       ITMP1, IINFO )
  874:                         IF( IINFO.NE.0 ) THEN
  875:                            INFO = -3
  876:                            RETURN
  877:                         ENDIF
  878:                         LAMBDA = WORK( WINDEX )
  879: *                       Reset twist index from inaccurate LAMBDA to
  880: *                       force computation of true MINGMA
  881:                         IWORK( IINDR+WINDEX ) = 0
  882:                      ENDIF
  883: *                    Given LAMBDA, compute the eigenvector.
  884:                      CALL ZLAR1V( IN, 1, IN, LAMBDA, D( IBEGIN ),
  885:      $                    L( IBEGIN ), WORK(INDLD+IBEGIN-1),
  886:      $                    WORK(INDLLD+IBEGIN-1),
  887:      $                    PIVMIN, GAPTOL, Z( IBEGIN, WINDEX ),
  888:      $                    .NOT.USEDBS, NEGCNT, ZTZ, MINGMA,
  889:      $                    IWORK( IINDR+WINDEX ), ISUPPZ( 2*WINDEX-1 ),
  890:      $                    NRMINV, RESID, RQCORR, WORK( INDWRK ) )
  891:                      IF(ITER .EQ. 0) THEN
  892:                         BSTRES = RESID
  893:                         BSTW = LAMBDA
  894:                      ELSEIF(RESID.LT.BSTRES) THEN
  895:                         BSTRES = RESID
  896:                         BSTW = LAMBDA
  897:                      ENDIF
  898:                      ISUPMN = MIN(ISUPMN,ISUPPZ( 2*WINDEX-1 ))
  899:                      ISUPMX = MAX(ISUPMX,ISUPPZ( 2*WINDEX ))
  900:                      ITER = ITER + 1
  901: 
  902: *                    sin alpha <= |resid|/gap
  903: *                    Note that both the residual and the gap are
  904: *                    proportional to the matrix, so ||T|| doesn't play
  905: *                    a role in the quotient
  906: 
  907: *
  908: *                    Convergence test for Rayleigh-Quotient iteration
  909: *                    (omitted when Bisection has been used)
  910: *
  911:                      IF( RESID.GT.TOL*GAP .AND. ABS( RQCORR ).GT.
  912:      $                    RQTOL*ABS( LAMBDA ) .AND. .NOT. USEDBS)
  913:      $                    THEN
  914: *                       We need to check that the RQCORR update doesn't
  915: *                       move the eigenvalue away from the desired one and
  916: *                       towards a neighbor. -> protection with bisection
  917:                         IF(INDEIG.LE.NEGCNT) THEN
  918: *                          The wanted eigenvalue lies to the left
  919:                            SGNDEF = -ONE
  920:                         ELSE
  921: *                          The wanted eigenvalue lies to the right
  922:                            SGNDEF = ONE
  923:                         ENDIF
  924: *                       We only use the RQCORR if it improves the
  925: *                       the iterate reasonably.
  926:                         IF( ( RQCORR*SGNDEF.GE.ZERO )
  927:      $                       .AND.( LAMBDA + RQCORR.LE. RIGHT)
  928:      $                       .AND.( LAMBDA + RQCORR.GE. LEFT)
  929:      $                       ) THEN
  930:                            USEDRQ = .TRUE.
  931: *                          Store new midpoint of bisection interval in WORK
  932:                            IF(SGNDEF.EQ.ONE) THEN
  933: *                             The current LAMBDA is on the left of the true
  934: *                             eigenvalue
  935:                               LEFT = LAMBDA
  936: *                             We prefer to assume that the error estimate
  937: *                             is correct. We could make the interval not
  938: *                             as a bracket but to be modified if the RQCORR
  939: *                             chooses to. In this case, the RIGHT side should
  940: *                             be modified as follows:
  941: *                              RIGHT = MAX(RIGHT, LAMBDA + RQCORR)
  942:                            ELSE
  943: *                             The current LAMBDA is on the right of the true
  944: *                             eigenvalue
  945:                               RIGHT = LAMBDA
  946: *                             See comment about assuming the error estimate is
  947: *                             correct above.
  948: *                              LEFT = MIN(LEFT, LAMBDA + RQCORR)
  949:                            ENDIF
  950:                            WORK( WINDEX ) =
  951:      $                       HALF * (RIGHT + LEFT)
  952: *                          Take RQCORR since it has the correct sign and
  953: *                          improves the iterate reasonably
  954:                            LAMBDA = LAMBDA + RQCORR
  955: *                          Update width of error interval
  956:                            WERR( WINDEX ) =
  957:      $                             HALF * (RIGHT-LEFT)
  958:                         ELSE
  959:                            NEEDBS = .TRUE.
  960:                         ENDIF
  961:                         IF(RIGHT-LEFT.LT.RQTOL*ABS(LAMBDA)) THEN
  962: *                             The eigenvalue is computed to bisection accuracy
  963: *                             compute eigenvector and stop
  964:                            USEDBS = .TRUE.
  965:                            GOTO 120
  966:                         ELSEIF( ITER.LT.MAXITR ) THEN
  967:                            GOTO 120
  968:                         ELSEIF( ITER.EQ.MAXITR ) THEN
  969:                            NEEDBS = .TRUE.
  970:                            GOTO 120
  971:                         ELSE
  972:                            INFO = 5
  973:                            RETURN
  974:                         END IF
  975:                      ELSE
  976:                         STP2II = .FALSE.
  977:         IF(USEDRQ .AND. USEDBS .AND.
  978:      $                     BSTRES.LE.RESID) THEN
  979:                            LAMBDA = BSTW
  980:                            STP2II = .TRUE.
  981:                         ENDIF
  982:                         IF (STP2II) THEN
  983: *                          improve error angle by second step
  984:                            CALL ZLAR1V( IN, 1, IN, LAMBDA,
  985:      $                          D( IBEGIN ), L( IBEGIN ),
  986:      $                          WORK(INDLD+IBEGIN-1),
  987:      $                          WORK(INDLLD+IBEGIN-1),
  988:      $                          PIVMIN, GAPTOL, Z( IBEGIN, WINDEX ),
  989:      $                          .NOT.USEDBS, NEGCNT, ZTZ, MINGMA,
  990:      $                          IWORK( IINDR+WINDEX ),
  991:      $                          ISUPPZ( 2*WINDEX-1 ),
  992:      $                          NRMINV, RESID, RQCORR, WORK( INDWRK ) )
  993:                         ENDIF
  994:                         WORK( WINDEX ) = LAMBDA
  995:                      END IF
  996: *
  997: *                    Compute FP-vector support w.r.t. whole matrix
  998: *
  999:                      ISUPPZ( 2*WINDEX-1 ) = ISUPPZ( 2*WINDEX-1 )+OLDIEN
 1000:                      ISUPPZ( 2*WINDEX ) = ISUPPZ( 2*WINDEX )+OLDIEN
 1001:                      ZFROM = ISUPPZ( 2*WINDEX-1 )
 1002:                      ZTO = ISUPPZ( 2*WINDEX )
 1003:                      ISUPMN = ISUPMN + OLDIEN
 1004:                      ISUPMX = ISUPMX + OLDIEN
 1005: *                    Ensure vector is ok if support in the RQI has changed
 1006:                      IF(ISUPMN.LT.ZFROM) THEN
 1007:                         DO 122 II = ISUPMN,ZFROM-1
 1008:                            Z( II, WINDEX ) = ZERO
 1009:  122                    CONTINUE
 1010:                      ENDIF
 1011:                      IF(ISUPMX.GT.ZTO) THEN
 1012:                         DO 123 II = ZTO+1,ISUPMX
 1013:                            Z( II, WINDEX ) = ZERO
 1014:  123                    CONTINUE
 1015:                      ENDIF
 1016:                      CALL ZDSCAL( ZTO-ZFROM+1, NRMINV,
 1017:      $                       Z( ZFROM, WINDEX ), 1 )
 1018:  125                 CONTINUE
 1019: *                    Update W
 1020:                      W( WINDEX ) = LAMBDA+SIGMA
 1021: *                    Recompute the gaps on the left and right
 1022: *                    But only allow them to become larger and not
 1023: *                    smaller (which can only happen through "bad"
 1024: *                    cancellation and doesn't reflect the theory
 1025: *                    where the initial gaps are underestimated due
 1026: *                    to WERR being too crude.)
 1027:                      IF(.NOT.ESKIP) THEN
 1028:                         IF( K.GT.1) THEN
 1029:                            WGAP( WINDMN ) = MAX( WGAP(WINDMN),
 1030:      $                          W(WINDEX)-WERR(WINDEX)
 1031:      $                          - W(WINDMN)-WERR(WINDMN) )
 1032:                         ENDIF
 1033:                         IF( WINDEX.LT.WEND ) THEN
 1034:                            WGAP( WINDEX ) = MAX( SAVGAP,
 1035:      $                          W( WINDPL )-WERR( WINDPL )
 1036:      $                          - W( WINDEX )-WERR( WINDEX) )
 1037:                         ENDIF
 1038:                      ENDIF
 1039:                      IDONE = IDONE + 1
 1040:                   ENDIF
 1041: *                 here ends the code for the current child
 1042: *
 1043:  139              CONTINUE
 1044: *                 Proceed to any remaining child nodes
 1045:                   NEWFST = J + 1
 1046:  140           CONTINUE
 1047:  150        CONTINUE
 1048:             NDEPTH = NDEPTH + 1
 1049:             GO TO 40
 1050:          END IF
 1051:          IBEGIN = IEND + 1
 1052:          WBEGIN = WEND + 1
 1053:  170  CONTINUE
 1054: *
 1055: 
 1056:       RETURN
 1057: *
 1058: *     End of ZLARRV
 1059: *
 1060:       END

CVSweb interface <joel.bertrand@systella.fr>