File:  [local] / rpl / lapack / lapack / zlarrv.f
Revision 1.12: download - view: text, annotated - select for diffs - revision graph
Wed Aug 22 09:48:37 2012 UTC (11 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_9, rpl-4_1_10, HEAD
Cohérence

    1: *> \brief \b ZLARRV
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZLARRV + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlarrv.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlarrv.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlarrv.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLARRV( N, VL, VU, D, L, PIVMIN,
   22: *                          ISPLIT, M, DOL, DOU, MINRGP,
   23: *                          RTOL1, RTOL2, W, WERR, WGAP,
   24: *                          IBLOCK, INDEXW, GERS, Z, LDZ, ISUPPZ,
   25: *                          WORK, IWORK, INFO )
   26:    27: *       .. Scalar Arguments ..
   28: *       INTEGER            DOL, DOU, INFO, LDZ, M, N
   29: *       DOUBLE PRECISION   MINRGP, PIVMIN, RTOL1, RTOL2, VL, VU
   30: *       ..
   31: *       .. Array Arguments ..
   32: *       INTEGER            IBLOCK( * ), INDEXW( * ), ISPLIT( * ),
   33: *      $                   ISUPPZ( * ), IWORK( * )
   34: *       DOUBLE PRECISION   D( * ), GERS( * ), L( * ), W( * ), WERR( * ),
   35: *      $                   WGAP( * ), WORK( * )
   36: *       COMPLEX*16        Z( LDZ, * )
   37: *       ..
   38: *  
   39: *
   40: *> \par Purpose:
   41: *  =============
   42: *>
   43: *> \verbatim
   44: *>
   45: *> ZLARRV computes the eigenvectors of the tridiagonal matrix
   46: *> T = L D L**T given L, D and APPROXIMATIONS to the eigenvalues of L D L**T.
   47: *> The input eigenvalues should have been computed by DLARRE.
   48: *> \endverbatim
   49: *
   50: *  Arguments:
   51: *  ==========
   52: *
   53: *> \param[in] N
   54: *> \verbatim
   55: *>          N is INTEGER
   56: *>          The order of the matrix.  N >= 0.
   57: *> \endverbatim
   58: *>
   59: *> \param[in] VL
   60: *> \verbatim
   61: *>          VL is DOUBLE PRECISION
   62: *> \endverbatim
   63: *>
   64: *> \param[in] VU
   65: *> \verbatim
   66: *>          VU is DOUBLE PRECISION
   67: *>          Lower and upper bounds of the interval that contains the desired
   68: *>          eigenvalues. VL < VU. Needed to compute gaps on the left or right
   69: *>          end of the extremal eigenvalues in the desired RANGE.
   70: *> \endverbatim
   71: *>
   72: *> \param[in,out] D
   73: *> \verbatim
   74: *>          D is DOUBLE PRECISION array, dimension (N)
   75: *>          On entry, the N diagonal elements of the diagonal matrix D.
   76: *>          On exit, D may be overwritten.
   77: *> \endverbatim
   78: *>
   79: *> \param[in,out] L
   80: *> \verbatim
   81: *>          L is DOUBLE PRECISION array, dimension (N)
   82: *>          On entry, the (N-1) subdiagonal elements of the unit
   83: *>          bidiagonal matrix L are in elements 1 to N-1 of L
   84: *>          (if the matrix is not splitted.) At the end of each block
   85: *>          is stored the corresponding shift as given by DLARRE.
   86: *>          On exit, L is overwritten.
   87: *> \endverbatim
   88: *>
   89: *> \param[in] PIVMIN
   90: *> \verbatim
   91: *>          PIVMIN is DOUBLE PRECISION
   92: *>          The minimum pivot allowed in the Sturm sequence.
   93: *> \endverbatim
   94: *>
   95: *> \param[in] ISPLIT
   96: *> \verbatim
   97: *>          ISPLIT is INTEGER array, dimension (N)
   98: *>          The splitting points, at which T breaks up into blocks.
   99: *>          The first block consists of rows/columns 1 to
  100: *>          ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1
  101: *>          through ISPLIT( 2 ), etc.
  102: *> \endverbatim
  103: *>
  104: *> \param[in] M
  105: *> \verbatim
  106: *>          M is INTEGER
  107: *>          The total number of input eigenvalues.  0 <= M <= N.
  108: *> \endverbatim
  109: *>
  110: *> \param[in] DOL
  111: *> \verbatim
  112: *>          DOL is INTEGER
  113: *> \endverbatim
  114: *>
  115: *> \param[in] DOU
  116: *> \verbatim
  117: *>          DOU is INTEGER
  118: *>          If the user wants to compute only selected eigenvectors from all
  119: *>          the eigenvalues supplied, he can specify an index range DOL:DOU.
  120: *>          Or else the setting DOL=1, DOU=M should be applied.
  121: *>          Note that DOL and DOU refer to the order in which the eigenvalues
  122: *>          are stored in W.
  123: *>          If the user wants to compute only selected eigenpairs, then
  124: *>          the columns DOL-1 to DOU+1 of the eigenvector space Z contain the
  125: *>          computed eigenvectors. All other columns of Z are set to zero.
  126: *> \endverbatim
  127: *>
  128: *> \param[in] MINRGP
  129: *> \verbatim
  130: *>          MINRGP is DOUBLE PRECISION
  131: *> \endverbatim
  132: *>
  133: *> \param[in] RTOL1
  134: *> \verbatim
  135: *>          RTOL1 is DOUBLE PRECISION
  136: *> \endverbatim
  137: *>
  138: *> \param[in] RTOL2
  139: *> \verbatim
  140: *>          RTOL2 is DOUBLE PRECISION
  141: *>           Parameters for bisection.
  142: *>           An interval [LEFT,RIGHT] has converged if
  143: *>           RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
  144: *> \endverbatim
  145: *>
  146: *> \param[in,out] W
  147: *> \verbatim
  148: *>          W is DOUBLE PRECISION array, dimension (N)
  149: *>          The first M elements of W contain the APPROXIMATE eigenvalues for
  150: *>          which eigenvectors are to be computed.  The eigenvalues
  151: *>          should be grouped by split-off block and ordered from
  152: *>          smallest to largest within the block ( The output array
  153: *>          W from DLARRE is expected here ). Furthermore, they are with
  154: *>          respect to the shift of the corresponding root representation
  155: *>          for their block. On exit, W holds the eigenvalues of the
  156: *>          UNshifted matrix.
  157: *> \endverbatim
  158: *>
  159: *> \param[in,out] WERR
  160: *> \verbatim
  161: *>          WERR is DOUBLE PRECISION array, dimension (N)
  162: *>          The first M elements contain the semiwidth of the uncertainty
  163: *>          interval of the corresponding eigenvalue in W
  164: *> \endverbatim
  165: *>
  166: *> \param[in,out] WGAP
  167: *> \verbatim
  168: *>          WGAP is DOUBLE PRECISION array, dimension (N)
  169: *>          The separation from the right neighbor eigenvalue in W.
  170: *> \endverbatim
  171: *>
  172: *> \param[in] IBLOCK
  173: *> \verbatim
  174: *>          IBLOCK is INTEGER array, dimension (N)
  175: *>          The indices of the blocks (submatrices) associated with the
  176: *>          corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue
  177: *>          W(i) belongs to the first block from the top, =2 if W(i)
  178: *>          belongs to the second block, etc.
  179: *> \endverbatim
  180: *>
  181: *> \param[in] INDEXW
  182: *> \verbatim
  183: *>          INDEXW is INTEGER array, dimension (N)
  184: *>          The indices of the eigenvalues within each block (submatrix);
  185: *>          for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the
  186: *>          i-th eigenvalue W(i) is the 10-th eigenvalue in the second block.
  187: *> \endverbatim
  188: *>
  189: *> \param[in] GERS
  190: *> \verbatim
  191: *>          GERS is DOUBLE PRECISION array, dimension (2*N)
  192: *>          The N Gerschgorin intervals (the i-th Gerschgorin interval
  193: *>          is (GERS(2*i-1), GERS(2*i)). The Gerschgorin intervals should
  194: *>          be computed from the original UNshifted matrix.
  195: *> \endverbatim
  196: *>
  197: *> \param[out] Z
  198: *> \verbatim
  199: *>          Z is COMPLEX*16 array, dimension (LDZ, max(1,M) )
  200: *>          If INFO = 0, the first M columns of Z contain the
  201: *>          orthonormal eigenvectors of the matrix T
  202: *>          corresponding to the input eigenvalues, with the i-th
  203: *>          column of Z holding the eigenvector associated with W(i).
  204: *>          Note: the user must ensure that at least max(1,M) columns are
  205: *>          supplied in the array Z.
  206: *> \endverbatim
  207: *>
  208: *> \param[in] LDZ
  209: *> \verbatim
  210: *>          LDZ is INTEGER
  211: *>          The leading dimension of the array Z.  LDZ >= 1, and if
  212: *>          JOBZ = 'V', LDZ >= max(1,N).
  213: *> \endverbatim
  214: *>
  215: *> \param[out] ISUPPZ
  216: *> \verbatim
  217: *>          ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
  218: *>          The support of the eigenvectors in Z, i.e., the indices
  219: *>          indicating the nonzero elements in Z. The I-th eigenvector
  220: *>          is nonzero only in elements ISUPPZ( 2*I-1 ) through
  221: *>          ISUPPZ( 2*I ).
  222: *> \endverbatim
  223: *>
  224: *> \param[out] WORK
  225: *> \verbatim
  226: *>          WORK is DOUBLE PRECISION array, dimension (12*N)
  227: *> \endverbatim
  228: *>
  229: *> \param[out] IWORK
  230: *> \verbatim
  231: *>          IWORK is INTEGER array, dimension (7*N)
  232: *> \endverbatim
  233: *>
  234: *> \param[out] INFO
  235: *> \verbatim
  236: *>          INFO is INTEGER
  237: *>          = 0:  successful exit
  238: *>
  239: *>          > 0:  A problem occured in ZLARRV.
  240: *>          < 0:  One of the called subroutines signaled an internal problem.
  241: *>                Needs inspection of the corresponding parameter IINFO
  242: *>                for further information.
  243: *>
  244: *>          =-1:  Problem in DLARRB when refining a child's eigenvalues.
  245: *>          =-2:  Problem in DLARRF when computing the RRR of a child.
  246: *>                When a child is inside a tight cluster, it can be difficult
  247: *>                to find an RRR. A partial remedy from the user's point of
  248: *>                view is to make the parameter MINRGP smaller and recompile.
  249: *>                However, as the orthogonality of the computed vectors is
  250: *>                proportional to 1/MINRGP, the user should be aware that
  251: *>                he might be trading in precision when he decreases MINRGP.
  252: *>          =-3:  Problem in DLARRB when refining a single eigenvalue
  253: *>                after the Rayleigh correction was rejected.
  254: *>          = 5:  The Rayleigh Quotient Iteration failed to converge to
  255: *>                full accuracy in MAXITR steps.
  256: *> \endverbatim
  257: *
  258: *  Authors:
  259: *  ========
  260: *
  261: *> \author Univ. of Tennessee 
  262: *> \author Univ. of California Berkeley 
  263: *> \author Univ. of Colorado Denver 
  264: *> \author NAG Ltd. 
  265: *
  266: *> \date November 2011
  267: *
  268: *> \ingroup complex16OTHERauxiliary
  269: *
  270: *> \par Contributors:
  271: *  ==================
  272: *>
  273: *> Beresford Parlett, University of California, Berkeley, USA \n
  274: *> Jim Demmel, University of California, Berkeley, USA \n
  275: *> Inderjit Dhillon, University of Texas, Austin, USA \n
  276: *> Osni Marques, LBNL/NERSC, USA \n
  277: *> Christof Voemel, University of California, Berkeley, USA
  278: *
  279: *  =====================================================================
  280:       SUBROUTINE ZLARRV( N, VL, VU, D, L, PIVMIN,
  281:      $                   ISPLIT, M, DOL, DOU, MINRGP,
  282:      $                   RTOL1, RTOL2, W, WERR, WGAP,
  283:      $                   IBLOCK, INDEXW, GERS, Z, LDZ, ISUPPZ,
  284:      $                   WORK, IWORK, INFO )
  285: *
  286: *  -- LAPACK auxiliary routine (version 3.4.0) --
  287: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  288: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  289: *     November 2011
  290: *
  291: *     .. Scalar Arguments ..
  292:       INTEGER            DOL, DOU, INFO, LDZ, M, N
  293:       DOUBLE PRECISION   MINRGP, PIVMIN, RTOL1, RTOL2, VL, VU
  294: *     ..
  295: *     .. Array Arguments ..
  296:       INTEGER            IBLOCK( * ), INDEXW( * ), ISPLIT( * ),
  297:      $                   ISUPPZ( * ), IWORK( * )
  298:       DOUBLE PRECISION   D( * ), GERS( * ), L( * ), W( * ), WERR( * ),
  299:      $                   WGAP( * ), WORK( * )
  300:       COMPLEX*16        Z( LDZ, * )
  301: *     ..
  302: *
  303: *  =====================================================================
  304: *
  305: *     .. Parameters ..
  306:       INTEGER            MAXITR
  307:       PARAMETER          ( MAXITR = 10 )
  308:       COMPLEX*16         CZERO
  309:       PARAMETER          ( CZERO = ( 0.0D0, 0.0D0 ) )
  310:       DOUBLE PRECISION   ZERO, ONE, TWO, THREE, FOUR, HALF
  311:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0,
  312:      $                     TWO = 2.0D0, THREE = 3.0D0,
  313:      $                     FOUR = 4.0D0, HALF = 0.5D0)
  314: *     ..
  315: *     .. Local Scalars ..
  316:       LOGICAL            ESKIP, NEEDBS, STP2II, TRYRQC, USEDBS, USEDRQ
  317:       INTEGER            DONE, I, IBEGIN, IDONE, IEND, II, IINDC1,
  318:      $                   IINDC2, IINDR, IINDWK, IINFO, IM, IN, INDEIG,
  319:      $                   INDLD, INDLLD, INDWRK, ISUPMN, ISUPMX, ITER,
  320:      $                   ITMP1, J, JBLK, K, MINIWSIZE, MINWSIZE, NCLUS,
  321:      $                   NDEPTH, NEGCNT, NEWCLS, NEWFST, NEWFTT, NEWLST,
  322:      $                   NEWSIZ, OFFSET, OLDCLS, OLDFST, OLDIEN, OLDLST,
  323:      $                   OLDNCL, P, PARITY, Q, WBEGIN, WEND, WINDEX,
  324:      $                   WINDMN, WINDPL, ZFROM, ZTO, ZUSEDL, ZUSEDU,
  325:      $                   ZUSEDW
  326:       INTEGER            INDIN1, INDIN2
  327:       DOUBLE PRECISION   BSTRES, BSTW, EPS, FUDGE, GAP, GAPTOL, GL, GU,
  328:      $                   LAMBDA, LEFT, LGAP, MINGMA, NRMINV, RESID,
  329:      $                   RGAP, RIGHT, RQCORR, RQTOL, SAVGAP, SGNDEF,
  330:      $                   SIGMA, SPDIAM, SSIGMA, TAU, TMP, TOL, ZTZ
  331: *     ..
  332: *     .. External Functions ..
  333:       DOUBLE PRECISION   DLAMCH
  334:       EXTERNAL           DLAMCH
  335: *     ..
  336: *     .. External Subroutines ..
  337:       EXTERNAL           DCOPY, DLARRB, DLARRF, ZDSCAL, ZLAR1V,
  338:      $                   ZLASET
  339: *     ..
  340: *     .. Intrinsic Functions ..
  341:       INTRINSIC ABS, DBLE, MAX, MIN
  342:       INTRINSIC DCMPLX
  343: *     ..
  344: *     .. Executable Statements ..
  345: *     ..
  346: 
  347: *     The first N entries of WORK are reserved for the eigenvalues
  348:       INDLD = N+1
  349:       INDLLD= 2*N+1
  350:       INDIN1 = 3*N + 1
  351:       INDIN2 = 4*N + 1
  352:       INDWRK = 5*N + 1
  353:       MINWSIZE = 12 * N
  354: 
  355:       DO 5 I= 1,MINWSIZE
  356:          WORK( I ) = ZERO
  357:  5    CONTINUE
  358: 
  359: *     IWORK(IINDR+1:IINDR+N) hold the twist indices R for the
  360: *     factorization used to compute the FP vector
  361:       IINDR = 0
  362: *     IWORK(IINDC1+1:IINC2+N) are used to store the clusters of the current
  363: *     layer and the one above.
  364:       IINDC1 = N
  365:       IINDC2 = 2*N
  366:       IINDWK = 3*N + 1
  367: 
  368:       MINIWSIZE = 7 * N
  369:       DO 10 I= 1,MINIWSIZE
  370:          IWORK( I ) = 0
  371:  10   CONTINUE
  372: 
  373:       ZUSEDL = 1
  374:       IF(DOL.GT.1) THEN
  375: *        Set lower bound for use of Z
  376:          ZUSEDL = DOL-1
  377:       ENDIF
  378:       ZUSEDU = M
  379:       IF(DOU.LT.M) THEN
  380: *        Set lower bound for use of Z
  381:          ZUSEDU = DOU+1
  382:       ENDIF
  383: *     The width of the part of Z that is used
  384:       ZUSEDW = ZUSEDU - ZUSEDL + 1
  385: 
  386: 
  387:       CALL ZLASET( 'Full', N, ZUSEDW, CZERO, CZERO,
  388:      $                    Z(1,ZUSEDL), LDZ )
  389: 
  390:       EPS = DLAMCH( 'Precision' )
  391:       RQTOL = TWO * EPS
  392: *
  393: *     Set expert flags for standard code.
  394:       TRYRQC = .TRUE.
  395: 
  396:       IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
  397:       ELSE
  398: *        Only selected eigenpairs are computed. Since the other evalues
  399: *        are not refined by RQ iteration, bisection has to compute to full
  400: *        accuracy.
  401:          RTOL1 = FOUR * EPS
  402:          RTOL2 = FOUR * EPS
  403:       ENDIF
  404: 
  405: *     The entries WBEGIN:WEND in W, WERR, WGAP correspond to the
  406: *     desired eigenvalues. The support of the nonzero eigenvector
  407: *     entries is contained in the interval IBEGIN:IEND.
  408: *     Remark that if k eigenpairs are desired, then the eigenvectors
  409: *     are stored in k contiguous columns of Z.
  410: 
  411: *     DONE is the number of eigenvectors already computed
  412:       DONE = 0
  413:       IBEGIN = 1
  414:       WBEGIN = 1
  415:       DO 170 JBLK = 1, IBLOCK( M )
  416:          IEND = ISPLIT( JBLK )
  417:          SIGMA = L( IEND )
  418: *        Find the eigenvectors of the submatrix indexed IBEGIN
  419: *        through IEND.
  420:          WEND = WBEGIN - 1
  421:  15      CONTINUE
  422:          IF( WEND.LT.M ) THEN
  423:             IF( IBLOCK( WEND+1 ).EQ.JBLK ) THEN
  424:                WEND = WEND + 1
  425:                GO TO 15
  426:             END IF
  427:          END IF
  428:          IF( WEND.LT.WBEGIN ) THEN
  429:             IBEGIN = IEND + 1
  430:             GO TO 170
  431:          ELSEIF( (WEND.LT.DOL).OR.(WBEGIN.GT.DOU) ) THEN
  432:             IBEGIN = IEND + 1
  433:             WBEGIN = WEND + 1
  434:             GO TO 170
  435:          END IF
  436: 
  437: *        Find local spectral diameter of the block
  438:          GL = GERS( 2*IBEGIN-1 )
  439:          GU = GERS( 2*IBEGIN )
  440:          DO 20 I = IBEGIN+1 , IEND
  441:             GL = MIN( GERS( 2*I-1 ), GL )
  442:             GU = MAX( GERS( 2*I ), GU )
  443:  20      CONTINUE
  444:          SPDIAM = GU - GL
  445: 
  446: *        OLDIEN is the last index of the previous block
  447:          OLDIEN = IBEGIN - 1
  448: *        Calculate the size of the current block
  449:          IN = IEND - IBEGIN + 1
  450: *        The number of eigenvalues in the current block
  451:          IM = WEND - WBEGIN + 1
  452: 
  453: *        This is for a 1x1 block
  454:          IF( IBEGIN.EQ.IEND ) THEN
  455:             DONE = DONE+1
  456:             Z( IBEGIN, WBEGIN ) = DCMPLX( ONE, ZERO )
  457:             ISUPPZ( 2*WBEGIN-1 ) = IBEGIN
  458:             ISUPPZ( 2*WBEGIN ) = IBEGIN
  459:             W( WBEGIN ) = W( WBEGIN ) + SIGMA
  460:             WORK( WBEGIN ) = W( WBEGIN )
  461:             IBEGIN = IEND + 1
  462:             WBEGIN = WBEGIN + 1
  463:             GO TO 170
  464:          END IF
  465: 
  466: *        The desired (shifted) eigenvalues are stored in W(WBEGIN:WEND)
  467: *        Note that these can be approximations, in this case, the corresp.
  468: *        entries of WERR give the size of the uncertainty interval.
  469: *        The eigenvalue approximations will be refined when necessary as
  470: *        high relative accuracy is required for the computation of the
  471: *        corresponding eigenvectors.
  472:          CALL DCOPY( IM, W( WBEGIN ), 1,
  473:      $                   WORK( WBEGIN ), 1 )
  474: 
  475: *        We store in W the eigenvalue approximations w.r.t. the original
  476: *        matrix T.
  477:          DO 30 I=1,IM
  478:             W(WBEGIN+I-1) = W(WBEGIN+I-1)+SIGMA
  479:  30      CONTINUE
  480: 
  481: 
  482: *        NDEPTH is the current depth of the representation tree
  483:          NDEPTH = 0
  484: *        PARITY is either 1 or 0
  485:          PARITY = 1
  486: *        NCLUS is the number of clusters for the next level of the
  487: *        representation tree, we start with NCLUS = 1 for the root
  488:          NCLUS = 1
  489:          IWORK( IINDC1+1 ) = 1
  490:          IWORK( IINDC1+2 ) = IM
  491: 
  492: *        IDONE is the number of eigenvectors already computed in the current
  493: *        block
  494:          IDONE = 0
  495: *        loop while( IDONE.LT.IM )
  496: *        generate the representation tree for the current block and
  497: *        compute the eigenvectors
  498:    40    CONTINUE
  499:          IF( IDONE.LT.IM ) THEN
  500: *           This is a crude protection against infinitely deep trees
  501:             IF( NDEPTH.GT.M ) THEN
  502:                INFO = -2
  503:                RETURN
  504:             ENDIF
  505: *           breadth first processing of the current level of the representation
  506: *           tree: OLDNCL = number of clusters on current level
  507:             OLDNCL = NCLUS
  508: *           reset NCLUS to count the number of child clusters
  509:             NCLUS = 0
  510: *
  511:             PARITY = 1 - PARITY
  512:             IF( PARITY.EQ.0 ) THEN
  513:                OLDCLS = IINDC1
  514:                NEWCLS = IINDC2
  515:             ELSE
  516:                OLDCLS = IINDC2
  517:                NEWCLS = IINDC1
  518:             END IF
  519: *           Process the clusters on the current level
  520:             DO 150 I = 1, OLDNCL
  521:                J = OLDCLS + 2*I
  522: *              OLDFST, OLDLST = first, last index of current cluster.
  523: *                               cluster indices start with 1 and are relative
  524: *                               to WBEGIN when accessing W, WGAP, WERR, Z
  525:                OLDFST = IWORK( J-1 )
  526:                OLDLST = IWORK( J )
  527:                IF( NDEPTH.GT.0 ) THEN
  528: *                 Retrieve relatively robust representation (RRR) of cluster
  529: *                 that has been computed at the previous level
  530: *                 The RRR is stored in Z and overwritten once the eigenvectors
  531: *                 have been computed or when the cluster is refined
  532: 
  533:                   IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
  534: *                    Get representation from location of the leftmost evalue
  535: *                    of the cluster
  536:                      J = WBEGIN + OLDFST - 1
  537:                   ELSE
  538:                      IF(WBEGIN+OLDFST-1.LT.DOL) THEN
  539: *                       Get representation from the left end of Z array
  540:                         J = DOL - 1
  541:                      ELSEIF(WBEGIN+OLDFST-1.GT.DOU) THEN
  542: *                       Get representation from the right end of Z array
  543:                         J = DOU
  544:                      ELSE
  545:                         J = WBEGIN + OLDFST - 1
  546:                      ENDIF
  547:                   ENDIF
  548:                   DO 45 K = 1, IN - 1
  549:                      D( IBEGIN+K-1 ) = DBLE( Z( IBEGIN+K-1,
  550:      $                                 J ) )
  551:                      L( IBEGIN+K-1 ) = DBLE( Z( IBEGIN+K-1,
  552:      $                                 J+1 ) )
  553:    45             CONTINUE
  554:                   D( IEND ) = DBLE( Z( IEND, J ) )
  555:                   SIGMA = DBLE( Z( IEND, J+1 ) )
  556: 
  557: *                 Set the corresponding entries in Z to zero
  558:                   CALL ZLASET( 'Full', IN, 2, CZERO, CZERO,
  559:      $                         Z( IBEGIN, J), LDZ )
  560:                END IF
  561: 
  562: *              Compute DL and DLL of current RRR
  563:                DO 50 J = IBEGIN, IEND-1
  564:                   TMP = D( J )*L( J )
  565:                   WORK( INDLD-1+J ) = TMP
  566:                   WORK( INDLLD-1+J ) = TMP*L( J )
  567:    50          CONTINUE
  568: 
  569:                IF( NDEPTH.GT.0 ) THEN
  570: *                 P and Q are index of the first and last eigenvalue to compute
  571: *                 within the current block
  572:                   P = INDEXW( WBEGIN-1+OLDFST )
  573:                   Q = INDEXW( WBEGIN-1+OLDLST )
  574: *                 Offset for the arrays WORK, WGAP and WERR, i.e., the P-OFFSET
  575: *                 through the Q-OFFSET elements of these arrays are to be used.
  576: *                  OFFSET = P-OLDFST
  577:                   OFFSET = INDEXW( WBEGIN ) - 1
  578: *                 perform limited bisection (if necessary) to get approximate
  579: *                 eigenvalues to the precision needed.
  580:                   CALL DLARRB( IN, D( IBEGIN ),
  581:      $                         WORK(INDLLD+IBEGIN-1),
  582:      $                         P, Q, RTOL1, RTOL2, OFFSET,
  583:      $                         WORK(WBEGIN),WGAP(WBEGIN),WERR(WBEGIN),
  584:      $                         WORK( INDWRK ), IWORK( IINDWK ),
  585:      $                         PIVMIN, SPDIAM, IN, IINFO )
  586:                   IF( IINFO.NE.0 ) THEN
  587:                      INFO = -1
  588:                      RETURN
  589:                   ENDIF
  590: *                 We also recompute the extremal gaps. W holds all eigenvalues
  591: *                 of the unshifted matrix and must be used for computation
  592: *                 of WGAP, the entries of WORK might stem from RRRs with
  593: *                 different shifts. The gaps from WBEGIN-1+OLDFST to
  594: *                 WBEGIN-1+OLDLST are correctly computed in DLARRB.
  595: *                 However, we only allow the gaps to become greater since
  596: *                 this is what should happen when we decrease WERR
  597:                   IF( OLDFST.GT.1) THEN
  598:                      WGAP( WBEGIN+OLDFST-2 ) =
  599:      $             MAX(WGAP(WBEGIN+OLDFST-2),
  600:      $                 W(WBEGIN+OLDFST-1)-WERR(WBEGIN+OLDFST-1)
  601:      $                 - W(WBEGIN+OLDFST-2)-WERR(WBEGIN+OLDFST-2) )
  602:                   ENDIF
  603:                   IF( WBEGIN + OLDLST -1 .LT. WEND ) THEN
  604:                      WGAP( WBEGIN+OLDLST-1 ) =
  605:      $               MAX(WGAP(WBEGIN+OLDLST-1),
  606:      $                   W(WBEGIN+OLDLST)-WERR(WBEGIN+OLDLST)
  607:      $                   - W(WBEGIN+OLDLST-1)-WERR(WBEGIN+OLDLST-1) )
  608:                   ENDIF
  609: *                 Each time the eigenvalues in WORK get refined, we store
  610: *                 the newly found approximation with all shifts applied in W
  611:                   DO 53 J=OLDFST,OLDLST
  612:                      W(WBEGIN+J-1) = WORK(WBEGIN+J-1)+SIGMA
  613:  53               CONTINUE
  614:                END IF
  615: 
  616: *              Process the current node.
  617:                NEWFST = OLDFST
  618:                DO 140 J = OLDFST, OLDLST
  619:                   IF( J.EQ.OLDLST ) THEN
  620: *                    we are at the right end of the cluster, this is also the
  621: *                    boundary of the child cluster
  622:                      NEWLST = J
  623:                   ELSE IF ( WGAP( WBEGIN + J -1).GE.
  624:      $                    MINRGP* ABS( WORK(WBEGIN + J -1) ) ) THEN
  625: *                    the right relative gap is big enough, the child cluster
  626: *                    (NEWFST,..,NEWLST) is well separated from the following
  627:                      NEWLST = J
  628:                    ELSE
  629: *                    inside a child cluster, the relative gap is not
  630: *                    big enough.
  631:                      GOTO 140
  632:                   END IF
  633: 
  634: *                 Compute size of child cluster found
  635:                   NEWSIZ = NEWLST - NEWFST + 1
  636: 
  637: *                 NEWFTT is the place in Z where the new RRR or the computed
  638: *                 eigenvector is to be stored
  639:                   IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
  640: *                    Store representation at location of the leftmost evalue
  641: *                    of the cluster
  642:                      NEWFTT = WBEGIN + NEWFST - 1
  643:                   ELSE
  644:                      IF(WBEGIN+NEWFST-1.LT.DOL) THEN
  645: *                       Store representation at the left end of Z array
  646:                         NEWFTT = DOL - 1
  647:                      ELSEIF(WBEGIN+NEWFST-1.GT.DOU) THEN
  648: *                       Store representation at the right end of Z array
  649:                         NEWFTT = DOU
  650:                      ELSE
  651:                         NEWFTT = WBEGIN + NEWFST - 1
  652:                      ENDIF
  653:                   ENDIF
  654: 
  655:                   IF( NEWSIZ.GT.1) THEN
  656: *
  657: *                    Current child is not a singleton but a cluster.
  658: *                    Compute and store new representation of child.
  659: *
  660: *
  661: *                    Compute left and right cluster gap.
  662: *
  663: *                    LGAP and RGAP are not computed from WORK because
  664: *                    the eigenvalue approximations may stem from RRRs
  665: *                    different shifts. However, W hold all eigenvalues
  666: *                    of the unshifted matrix. Still, the entries in WGAP
  667: *                    have to be computed from WORK since the entries
  668: *                    in W might be of the same order so that gaps are not
  669: *                    exhibited correctly for very close eigenvalues.
  670:                      IF( NEWFST.EQ.1 ) THEN
  671:                         LGAP = MAX( ZERO,
  672:      $                       W(WBEGIN)-WERR(WBEGIN) - VL )
  673:                     ELSE
  674:                         LGAP = WGAP( WBEGIN+NEWFST-2 )
  675:                      ENDIF
  676:                      RGAP = WGAP( WBEGIN+NEWLST-1 )
  677: *
  678: *                    Compute left- and rightmost eigenvalue of child
  679: *                    to high precision in order to shift as close
  680: *                    as possible and obtain as large relative gaps
  681: *                    as possible
  682: *
  683:                      DO 55 K =1,2
  684:                         IF(K.EQ.1) THEN
  685:                            P = INDEXW( WBEGIN-1+NEWFST )
  686:                         ELSE
  687:                            P = INDEXW( WBEGIN-1+NEWLST )
  688:                         ENDIF
  689:                         OFFSET = INDEXW( WBEGIN ) - 1
  690:                         CALL DLARRB( IN, D(IBEGIN),
  691:      $                       WORK( INDLLD+IBEGIN-1 ),P,P,
  692:      $                       RQTOL, RQTOL, OFFSET,
  693:      $                       WORK(WBEGIN),WGAP(WBEGIN),
  694:      $                       WERR(WBEGIN),WORK( INDWRK ),
  695:      $                       IWORK( IINDWK ), PIVMIN, SPDIAM,
  696:      $                       IN, IINFO )
  697:  55                  CONTINUE
  698: *
  699:                      IF((WBEGIN+NEWLST-1.LT.DOL).OR.
  700:      $                  (WBEGIN+NEWFST-1.GT.DOU)) THEN
  701: *                       if the cluster contains no desired eigenvalues
  702: *                       skip the computation of that branch of the rep. tree
  703: *
  704: *                       We could skip before the refinement of the extremal
  705: *                       eigenvalues of the child, but then the representation
  706: *                       tree could be different from the one when nothing is
  707: *                       skipped. For this reason we skip at this place.
  708:                         IDONE = IDONE + NEWLST - NEWFST + 1
  709:                         GOTO 139
  710:                      ENDIF
  711: *
  712: *                    Compute RRR of child cluster.
  713: *                    Note that the new RRR is stored in Z
  714: *
  715: *                    DLARRF needs LWORK = 2*N
  716:                      CALL DLARRF( IN, D( IBEGIN ), L( IBEGIN ),
  717:      $                         WORK(INDLD+IBEGIN-1),
  718:      $                         NEWFST, NEWLST, WORK(WBEGIN),
  719:      $                         WGAP(WBEGIN), WERR(WBEGIN),
  720:      $                         SPDIAM, LGAP, RGAP, PIVMIN, TAU,
  721:      $                         WORK( INDIN1 ), WORK( INDIN2 ),
  722:      $                         WORK( INDWRK ), IINFO )
  723: *                    In the complex case, DLARRF cannot write
  724: *                    the new RRR directly into Z and needs an intermediate
  725: *                    workspace
  726:                      DO 56 K = 1, IN-1
  727:                         Z( IBEGIN+K-1, NEWFTT ) =
  728:      $                     DCMPLX( WORK( INDIN1+K-1 ), ZERO )
  729:                         Z( IBEGIN+K-1, NEWFTT+1 ) =
  730:      $                     DCMPLX( WORK( INDIN2+K-1 ), ZERO )
  731:    56                CONTINUE
  732:                      Z( IEND, NEWFTT ) =
  733:      $                  DCMPLX( WORK( INDIN1+IN-1 ), ZERO )
  734:                      IF( IINFO.EQ.0 ) THEN
  735: *                       a new RRR for the cluster was found by DLARRF
  736: *                       update shift and store it
  737:                         SSIGMA = SIGMA + TAU
  738:                         Z( IEND, NEWFTT+1 ) = DCMPLX( SSIGMA, ZERO )
  739: *                       WORK() are the midpoints and WERR() the semi-width
  740: *                       Note that the entries in W are unchanged.
  741:                         DO 116 K = NEWFST, NEWLST
  742:                            FUDGE =
  743:      $                          THREE*EPS*ABS(WORK(WBEGIN+K-1))
  744:                            WORK( WBEGIN + K - 1 ) =
  745:      $                          WORK( WBEGIN + K - 1) - TAU
  746:                            FUDGE = FUDGE +
  747:      $                          FOUR*EPS*ABS(WORK(WBEGIN+K-1))
  748: *                          Fudge errors
  749:                            WERR( WBEGIN + K - 1 ) =
  750:      $                          WERR( WBEGIN + K - 1 ) + FUDGE
  751: *                          Gaps are not fudged. Provided that WERR is small
  752: *                          when eigenvalues are close, a zero gap indicates
  753: *                          that a new representation is needed for resolving
  754: *                          the cluster. A fudge could lead to a wrong decision
  755: *                          of judging eigenvalues 'separated' which in
  756: *                          reality are not. This could have a negative impact
  757: *                          on the orthogonality of the computed eigenvectors.
  758:  116                    CONTINUE
  759: 
  760:                         NCLUS = NCLUS + 1
  761:                         K = NEWCLS + 2*NCLUS
  762:                         IWORK( K-1 ) = NEWFST
  763:                         IWORK( K ) = NEWLST
  764:                      ELSE
  765:                         INFO = -2
  766:                         RETURN
  767:                      ENDIF
  768:                   ELSE
  769: *
  770: *                    Compute eigenvector of singleton
  771: *
  772:                      ITER = 0
  773: *
  774:                      TOL = FOUR * LOG(DBLE(IN)) * EPS
  775: *
  776:                      K = NEWFST
  777:                      WINDEX = WBEGIN + K - 1
  778:                      WINDMN = MAX(WINDEX - 1,1)
  779:                      WINDPL = MIN(WINDEX + 1,M)
  780:                      LAMBDA = WORK( WINDEX )
  781:                      DONE = DONE + 1
  782: *                    Check if eigenvector computation is to be skipped
  783:                      IF((WINDEX.LT.DOL).OR.
  784:      $                  (WINDEX.GT.DOU)) THEN
  785:                         ESKIP = .TRUE.
  786:                         GOTO 125
  787:                      ELSE
  788:                         ESKIP = .FALSE.
  789:                      ENDIF
  790:                      LEFT = WORK( WINDEX ) - WERR( WINDEX )
  791:                      RIGHT = WORK( WINDEX ) + WERR( WINDEX )
  792:                      INDEIG = INDEXW( WINDEX )
  793: *                    Note that since we compute the eigenpairs for a child,
  794: *                    all eigenvalue approximations are w.r.t the same shift.
  795: *                    In this case, the entries in WORK should be used for
  796: *                    computing the gaps since they exhibit even very small
  797: *                    differences in the eigenvalues, as opposed to the
  798: *                    entries in W which might "look" the same.
  799: 
  800:                      IF( K .EQ. 1) THEN
  801: *                       In the case RANGE='I' and with not much initial
  802: *                       accuracy in LAMBDA and VL, the formula
  803: *                       LGAP = MAX( ZERO, (SIGMA - VL) + LAMBDA )
  804: *                       can lead to an overestimation of the left gap and
  805: *                       thus to inadequately early RQI 'convergence'.
  806: *                       Prevent this by forcing a small left gap.
  807:                         LGAP = EPS*MAX(ABS(LEFT),ABS(RIGHT))
  808:                      ELSE
  809:                         LGAP = WGAP(WINDMN)
  810:                      ENDIF
  811:                      IF( K .EQ. IM) THEN
  812: *                       In the case RANGE='I' and with not much initial
  813: *                       accuracy in LAMBDA and VU, the formula
  814: *                       can lead to an overestimation of the right gap and
  815: *                       thus to inadequately early RQI 'convergence'.
  816: *                       Prevent this by forcing a small right gap.
  817:                         RGAP = EPS*MAX(ABS(LEFT),ABS(RIGHT))
  818:                      ELSE
  819:                         RGAP = WGAP(WINDEX)
  820:                      ENDIF
  821:                      GAP = MIN( LGAP, RGAP )
  822:                      IF(( K .EQ. 1).OR.(K .EQ. IM)) THEN
  823: *                       The eigenvector support can become wrong
  824: *                       because significant entries could be cut off due to a
  825: *                       large GAPTOL parameter in LAR1V. Prevent this.
  826:                         GAPTOL = ZERO
  827:                      ELSE
  828:                         GAPTOL = GAP * EPS
  829:                      ENDIF
  830:                      ISUPMN = IN
  831:                      ISUPMX = 1
  832: *                    Update WGAP so that it holds the minimum gap
  833: *                    to the left or the right. This is crucial in the
  834: *                    case where bisection is used to ensure that the
  835: *                    eigenvalue is refined up to the required precision.
  836: *                    The correct value is restored afterwards.
  837:                      SAVGAP = WGAP(WINDEX)
  838:                      WGAP(WINDEX) = GAP
  839: *                    We want to use the Rayleigh Quotient Correction
  840: *                    as often as possible since it converges quadratically
  841: *                    when we are close enough to the desired eigenvalue.
  842: *                    However, the Rayleigh Quotient can have the wrong sign
  843: *                    and lead us away from the desired eigenvalue. In this
  844: *                    case, the best we can do is to use bisection.
  845:                      USEDBS = .FALSE.
  846:                      USEDRQ = .FALSE.
  847: *                    Bisection is initially turned off unless it is forced
  848:                      NEEDBS =  .NOT.TRYRQC
  849:  120                 CONTINUE
  850: *                    Check if bisection should be used to refine eigenvalue
  851:                      IF(NEEDBS) THEN
  852: *                       Take the bisection as new iterate
  853:                         USEDBS = .TRUE.
  854:                         ITMP1 = IWORK( IINDR+WINDEX )
  855:                         OFFSET = INDEXW( WBEGIN ) - 1
  856:                         CALL DLARRB( IN, D(IBEGIN),
  857:      $                       WORK(INDLLD+IBEGIN-1),INDEIG,INDEIG,
  858:      $                       ZERO, TWO*EPS, OFFSET,
  859:      $                       WORK(WBEGIN),WGAP(WBEGIN),
  860:      $                       WERR(WBEGIN),WORK( INDWRK ),
  861:      $                       IWORK( IINDWK ), PIVMIN, SPDIAM,
  862:      $                       ITMP1, IINFO )
  863:                         IF( IINFO.NE.0 ) THEN
  864:                            INFO = -3
  865:                            RETURN
  866:                         ENDIF
  867:                         LAMBDA = WORK( WINDEX )
  868: *                       Reset twist index from inaccurate LAMBDA to
  869: *                       force computation of true MINGMA
  870:                         IWORK( IINDR+WINDEX ) = 0
  871:                      ENDIF
  872: *                    Given LAMBDA, compute the eigenvector.
  873:                      CALL ZLAR1V( IN, 1, IN, LAMBDA, D( IBEGIN ),
  874:      $                    L( IBEGIN ), WORK(INDLD+IBEGIN-1),
  875:      $                    WORK(INDLLD+IBEGIN-1),
  876:      $                    PIVMIN, GAPTOL, Z( IBEGIN, WINDEX ),
  877:      $                    .NOT.USEDBS, NEGCNT, ZTZ, MINGMA,
  878:      $                    IWORK( IINDR+WINDEX ), ISUPPZ( 2*WINDEX-1 ),
  879:      $                    NRMINV, RESID, RQCORR, WORK( INDWRK ) )
  880:                      IF(ITER .EQ. 0) THEN
  881:                         BSTRES = RESID
  882:                         BSTW = LAMBDA
  883:                      ELSEIF(RESID.LT.BSTRES) THEN
  884:                         BSTRES = RESID
  885:                         BSTW = LAMBDA
  886:                      ENDIF
  887:                      ISUPMN = MIN(ISUPMN,ISUPPZ( 2*WINDEX-1 ))
  888:                      ISUPMX = MAX(ISUPMX,ISUPPZ( 2*WINDEX ))
  889:                      ITER = ITER + 1
  890: 
  891: *                    sin alpha <= |resid|/gap
  892: *                    Note that both the residual and the gap are
  893: *                    proportional to the matrix, so ||T|| doesn't play
  894: *                    a role in the quotient
  895: 
  896: *
  897: *                    Convergence test for Rayleigh-Quotient iteration
  898: *                    (omitted when Bisection has been used)
  899: *
  900:                      IF( RESID.GT.TOL*GAP .AND. ABS( RQCORR ).GT.
  901:      $                    RQTOL*ABS( LAMBDA ) .AND. .NOT. USEDBS)
  902:      $                    THEN
  903: *                       We need to check that the RQCORR update doesn't
  904: *                       move the eigenvalue away from the desired one and
  905: *                       towards a neighbor. -> protection with bisection
  906:                         IF(INDEIG.LE.NEGCNT) THEN
  907: *                          The wanted eigenvalue lies to the left
  908:                            SGNDEF = -ONE
  909:                         ELSE
  910: *                          The wanted eigenvalue lies to the right
  911:                            SGNDEF = ONE
  912:                         ENDIF
  913: *                       We only use the RQCORR if it improves the
  914: *                       the iterate reasonably.
  915:                         IF( ( RQCORR*SGNDEF.GE.ZERO )
  916:      $                       .AND.( LAMBDA + RQCORR.LE. RIGHT)
  917:      $                       .AND.( LAMBDA + RQCORR.GE. LEFT)
  918:      $                       ) THEN
  919:                            USEDRQ = .TRUE.
  920: *                          Store new midpoint of bisection interval in WORK
  921:                            IF(SGNDEF.EQ.ONE) THEN
  922: *                             The current LAMBDA is on the left of the true
  923: *                             eigenvalue
  924:                               LEFT = LAMBDA
  925: *                             We prefer to assume that the error estimate
  926: *                             is correct. We could make the interval not
  927: *                             as a bracket but to be modified if the RQCORR
  928: *                             chooses to. In this case, the RIGHT side should
  929: *                             be modified as follows:
  930: *                              RIGHT = MAX(RIGHT, LAMBDA + RQCORR)
  931:                            ELSE
  932: *                             The current LAMBDA is on the right of the true
  933: *                             eigenvalue
  934:                               RIGHT = LAMBDA
  935: *                             See comment about assuming the error estimate is
  936: *                             correct above.
  937: *                              LEFT = MIN(LEFT, LAMBDA + RQCORR)
  938:                            ENDIF
  939:                            WORK( WINDEX ) =
  940:      $                       HALF * (RIGHT + LEFT)
  941: *                          Take RQCORR since it has the correct sign and
  942: *                          improves the iterate reasonably
  943:                            LAMBDA = LAMBDA + RQCORR
  944: *                          Update width of error interval
  945:                            WERR( WINDEX ) =
  946:      $                             HALF * (RIGHT-LEFT)
  947:                         ELSE
  948:                            NEEDBS = .TRUE.
  949:                         ENDIF
  950:                         IF(RIGHT-LEFT.LT.RQTOL*ABS(LAMBDA)) THEN
  951: *                             The eigenvalue is computed to bisection accuracy
  952: *                             compute eigenvector and stop
  953:                            USEDBS = .TRUE.
  954:                            GOTO 120
  955:                         ELSEIF( ITER.LT.MAXITR ) THEN
  956:                            GOTO 120
  957:                         ELSEIF( ITER.EQ.MAXITR ) THEN
  958:                            NEEDBS = .TRUE.
  959:                            GOTO 120
  960:                         ELSE
  961:                            INFO = 5
  962:                            RETURN
  963:                         END IF
  964:                      ELSE
  965:                         STP2II = .FALSE.
  966:         IF(USEDRQ .AND. USEDBS .AND.
  967:      $                     BSTRES.LE.RESID) THEN
  968:                            LAMBDA = BSTW
  969:                            STP2II = .TRUE.
  970:                         ENDIF
  971:                         IF (STP2II) THEN
  972: *                          improve error angle by second step
  973:                            CALL ZLAR1V( IN, 1, IN, LAMBDA,
  974:      $                          D( IBEGIN ), L( IBEGIN ),
  975:      $                          WORK(INDLD+IBEGIN-1),
  976:      $                          WORK(INDLLD+IBEGIN-1),
  977:      $                          PIVMIN, GAPTOL, Z( IBEGIN, WINDEX ),
  978:      $                          .NOT.USEDBS, NEGCNT, ZTZ, MINGMA,
  979:      $                          IWORK( IINDR+WINDEX ),
  980:      $                          ISUPPZ( 2*WINDEX-1 ),
  981:      $                          NRMINV, RESID, RQCORR, WORK( INDWRK ) )
  982:                         ENDIF
  983:                         WORK( WINDEX ) = LAMBDA
  984:                      END IF
  985: *
  986: *                    Compute FP-vector support w.r.t. whole matrix
  987: *
  988:                      ISUPPZ( 2*WINDEX-1 ) = ISUPPZ( 2*WINDEX-1 )+OLDIEN
  989:                      ISUPPZ( 2*WINDEX ) = ISUPPZ( 2*WINDEX )+OLDIEN
  990:                      ZFROM = ISUPPZ( 2*WINDEX-1 )
  991:                      ZTO = ISUPPZ( 2*WINDEX )
  992:                      ISUPMN = ISUPMN + OLDIEN
  993:                      ISUPMX = ISUPMX + OLDIEN
  994: *                    Ensure vector is ok if support in the RQI has changed
  995:                      IF(ISUPMN.LT.ZFROM) THEN
  996:                         DO 122 II = ISUPMN,ZFROM-1
  997:                            Z( II, WINDEX ) = ZERO
  998:  122                    CONTINUE
  999:                      ENDIF
 1000:                      IF(ISUPMX.GT.ZTO) THEN
 1001:                         DO 123 II = ZTO+1,ISUPMX
 1002:                            Z( II, WINDEX ) = ZERO
 1003:  123                    CONTINUE
 1004:                      ENDIF
 1005:                      CALL ZDSCAL( ZTO-ZFROM+1, NRMINV,
 1006:      $                       Z( ZFROM, WINDEX ), 1 )
 1007:  125                 CONTINUE
 1008: *                    Update W
 1009:                      W( WINDEX ) = LAMBDA+SIGMA
 1010: *                    Recompute the gaps on the left and right
 1011: *                    But only allow them to become larger and not
 1012: *                    smaller (which can only happen through "bad"
 1013: *                    cancellation and doesn't reflect the theory
 1014: *                    where the initial gaps are underestimated due
 1015: *                    to WERR being too crude.)
 1016:                      IF(.NOT.ESKIP) THEN
 1017:                         IF( K.GT.1) THEN
 1018:                            WGAP( WINDMN ) = MAX( WGAP(WINDMN),
 1019:      $                          W(WINDEX)-WERR(WINDEX)
 1020:      $                          - W(WINDMN)-WERR(WINDMN) )
 1021:                         ENDIF
 1022:                         IF( WINDEX.LT.WEND ) THEN
 1023:                            WGAP( WINDEX ) = MAX( SAVGAP,
 1024:      $                          W( WINDPL )-WERR( WINDPL )
 1025:      $                          - W( WINDEX )-WERR( WINDEX) )
 1026:                         ENDIF
 1027:                      ENDIF
 1028:                      IDONE = IDONE + 1
 1029:                   ENDIF
 1030: *                 here ends the code for the current child
 1031: *
 1032:  139              CONTINUE
 1033: *                 Proceed to any remaining child nodes
 1034:                   NEWFST = J + 1
 1035:  140           CONTINUE
 1036:  150        CONTINUE
 1037:             NDEPTH = NDEPTH + 1
 1038:             GO TO 40
 1039:          END IF
 1040:          IBEGIN = IEND + 1
 1041:          WBEGIN = WEND + 1
 1042:  170  CONTINUE
 1043: *
 1044: 
 1045:       RETURN
 1046: *
 1047: *     End of ZLARRV
 1048: *
 1049:       END

CVSweb interface <joel.bertrand@systella.fr>