Annotation of rpl/lapack/lapack/zlarrv.f, revision 1.2

1.1       bertrand    1:       SUBROUTINE ZLARRV( N, VL, VU, D, L, PIVMIN,
                      2:      $                   ISPLIT, M, DOL, DOU, MINRGP,
                      3:      $                   RTOL1, RTOL2, W, WERR, WGAP,
                      4:      $                   IBLOCK, INDEXW, GERS, Z, LDZ, ISUPPZ,
                      5:      $                   WORK, IWORK, INFO )
                      6: *
                      7: *  -- LAPACK auxiliary routine (version 3.2) --
                      8: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      9: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                     10: *     November 2006
                     11: *
                     12: *     .. Scalar Arguments ..
                     13:       INTEGER            DOL, DOU, INFO, LDZ, M, N
                     14:       DOUBLE PRECISION   MINRGP, PIVMIN, RTOL1, RTOL2, VL, VU
                     15: *     ..
                     16: *     .. Array Arguments ..
                     17:       INTEGER            IBLOCK( * ), INDEXW( * ), ISPLIT( * ),
                     18:      $                   ISUPPZ( * ), IWORK( * )
                     19:       DOUBLE PRECISION   D( * ), GERS( * ), L( * ), W( * ), WERR( * ),
                     20:      $                   WGAP( * ), WORK( * )
                     21:       COMPLEX*16        Z( LDZ, * )
                     22: *     ..
                     23: *
                     24: *  Purpose
                     25: *  =======
                     26: *
                     27: *  ZLARRV computes the eigenvectors of the tridiagonal matrix
                     28: *  T = L D L^T given L, D and APPROXIMATIONS to the eigenvalues of L D L^T.
                     29: *  The input eigenvalues should have been computed by DLARRE.
                     30: *
                     31: *  Arguments
                     32: *  =========
                     33: *
                     34: *  N       (input) INTEGER
                     35: *          The order of the matrix.  N >= 0.
                     36: *
                     37: *  VL      (input) DOUBLE PRECISION
                     38: *  VU      (input) DOUBLE PRECISION
                     39: *          Lower and upper bounds of the interval that contains the desired
                     40: *          eigenvalues. VL < VU. Needed to compute gaps on the left or right
                     41: *          end of the extremal eigenvalues in the desired RANGE.
                     42: *
                     43: *  D       (input/output) DOUBLE PRECISION array, dimension (N)
                     44: *          On entry, the N diagonal elements of the diagonal matrix D.
                     45: *          On exit, D may be overwritten.
                     46: *
                     47: *  L       (input/output) DOUBLE PRECISION array, dimension (N)
                     48: *          On entry, the (N-1) subdiagonal elements of the unit
                     49: *          bidiagonal matrix L are in elements 1 to N-1 of L
                     50: *          (if the matrix is not splitted.) At the end of each block
                     51: *          is stored the corresponding shift as given by DLARRE.
                     52: *          On exit, L is overwritten.
                     53: *
                     54: *  PIVMIN  (in) DOUBLE PRECISION
                     55: *          The minimum pivot allowed in the Sturm sequence.
                     56: *
                     57: *  ISPLIT  (input) INTEGER array, dimension (N)
                     58: *          The splitting points, at which T breaks up into blocks.
                     59: *          The first block consists of rows/columns 1 to
                     60: *          ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1
                     61: *          through ISPLIT( 2 ), etc.
                     62: *
                     63: *  M       (input) INTEGER
                     64: *          The total number of input eigenvalues.  0 <= M <= N.
                     65: *
                     66: *  DOL     (input) INTEGER
                     67: *  DOU     (input) INTEGER
                     68: *          If the user wants to compute only selected eigenvectors from all
                     69: *          the eigenvalues supplied, he can specify an index range DOL:DOU.
                     70: *          Or else the setting DOL=1, DOU=M should be applied.
                     71: *          Note that DOL and DOU refer to the order in which the eigenvalues
                     72: *          are stored in W.
                     73: *          If the user wants to compute only selected eigenpairs, then
                     74: *          the columns DOL-1 to DOU+1 of the eigenvector space Z contain the
                     75: *          computed eigenvectors. All other columns of Z are set to zero.
                     76: *
                     77: *  MINRGP  (input) DOUBLE PRECISION
                     78: *
                     79: *  RTOL1   (input) DOUBLE PRECISION
                     80: *  RTOL2   (input) DOUBLE PRECISION
                     81: *           Parameters for bisection.
                     82: *           An interval [LEFT,RIGHT] has converged if
                     83: *           RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
                     84: *
                     85: *  W       (input/output) DOUBLE PRECISION array, dimension (N)
                     86: *          The first M elements of W contain the APPROXIMATE eigenvalues for
                     87: *          which eigenvectors are to be computed.  The eigenvalues
                     88: *          should be grouped by split-off block and ordered from
                     89: *          smallest to largest within the block ( The output array
                     90: *          W from DLARRE is expected here ). Furthermore, they are with
                     91: *          respect to the shift of the corresponding root representation
                     92: *          for their block. On exit, W holds the eigenvalues of the
                     93: *          UNshifted matrix.
                     94: *
                     95: *  WERR    (input/output) DOUBLE PRECISION array, dimension (N)
                     96: *          The first M elements contain the semiwidth of the uncertainty
                     97: *          interval of the corresponding eigenvalue in W
                     98: *
                     99: *  WGAP    (input/output) DOUBLE PRECISION array, dimension (N)
                    100: *          The separation from the right neighbor eigenvalue in W.
                    101: *
                    102: *  IBLOCK  (input) INTEGER array, dimension (N)
                    103: *          The indices of the blocks (submatrices) associated with the
                    104: *          corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue
                    105: *          W(i) belongs to the first block from the top, =2 if W(i)
                    106: *          belongs to the second block, etc.
                    107: *
                    108: *  INDEXW  (input) INTEGER array, dimension (N)
                    109: *          The indices of the eigenvalues within each block (submatrix);
                    110: *          for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the
                    111: *          i-th eigenvalue W(i) is the 10-th eigenvalue in the second block.
                    112: *
                    113: *  GERS    (input) DOUBLE PRECISION array, dimension (2*N)
                    114: *          The N Gerschgorin intervals (the i-th Gerschgorin interval
                    115: *          is (GERS(2*i-1), GERS(2*i)). The Gerschgorin intervals should
                    116: *          be computed from the original UNshifted matrix.
                    117: *
                    118: *  Z       (output) COMPLEX*16       array, dimension (LDZ, max(1,M) )
                    119: *          If INFO = 0, the first M columns of Z contain the
                    120: *          orthonormal eigenvectors of the matrix T
                    121: *          corresponding to the input eigenvalues, with the i-th
                    122: *          column of Z holding the eigenvector associated with W(i).
                    123: *          Note: the user must ensure that at least max(1,M) columns are
                    124: *          supplied in the array Z.
                    125: *
                    126: *  LDZ     (input) INTEGER
                    127: *          The leading dimension of the array Z.  LDZ >= 1, and if
                    128: *          JOBZ = 'V', LDZ >= max(1,N).
                    129: *
                    130: *  ISUPPZ  (output) INTEGER array, dimension ( 2*max(1,M) )
                    131: *          The support of the eigenvectors in Z, i.e., the indices
                    132: *          indicating the nonzero elements in Z. The I-th eigenvector
                    133: *          is nonzero only in elements ISUPPZ( 2*I-1 ) through
                    134: *          ISUPPZ( 2*I ).
                    135: *
                    136: *  WORK    (workspace) DOUBLE PRECISION array, dimension (12*N)
                    137: *
                    138: *  IWORK   (workspace) INTEGER array, dimension (7*N)
                    139: *
                    140: *  INFO    (output) INTEGER
                    141: *          = 0:  successful exit
                    142: *
                    143: *          > 0:  A problem occured in ZLARRV.
                    144: *          < 0:  One of the called subroutines signaled an internal problem.
                    145: *                Needs inspection of the corresponding parameter IINFO
                    146: *                for further information.
                    147: *
                    148: *          =-1:  Problem in DLARRB when refining a child's eigenvalues.
                    149: *          =-2:  Problem in DLARRF when computing the RRR of a child.
                    150: *                When a child is inside a tight cluster, it can be difficult
                    151: *                to find an RRR. A partial remedy from the user's point of
                    152: *                view is to make the parameter MINRGP smaller and recompile.
                    153: *                However, as the orthogonality of the computed vectors is
                    154: *                proportional to 1/MINRGP, the user should be aware that
                    155: *                he might be trading in precision when he decreases MINRGP.
                    156: *          =-3:  Problem in DLARRB when refining a single eigenvalue
                    157: *                after the Rayleigh correction was rejected.
                    158: *          = 5:  The Rayleigh Quotient Iteration failed to converge to
                    159: *                full accuracy in MAXITR steps.
                    160: *
                    161: *  Further Details
                    162: *  ===============
                    163: *
                    164: *  Based on contributions by
                    165: *     Beresford Parlett, University of California, Berkeley, USA
                    166: *     Jim Demmel, University of California, Berkeley, USA
                    167: *     Inderjit Dhillon, University of Texas, Austin, USA
                    168: *     Osni Marques, LBNL/NERSC, USA
                    169: *     Christof Voemel, University of California, Berkeley, USA
                    170: *
                    171: *  =====================================================================
                    172: *
                    173: *     .. Parameters ..
                    174:       INTEGER            MAXITR
                    175:       PARAMETER          ( MAXITR = 10 )
                    176:       COMPLEX*16         CZERO
                    177:       PARAMETER          ( CZERO = ( 0.0D0, 0.0D0 ) )
                    178:       DOUBLE PRECISION   ZERO, ONE, TWO, THREE, FOUR, HALF
                    179:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0,
                    180:      $                     TWO = 2.0D0, THREE = 3.0D0,
                    181:      $                     FOUR = 4.0D0, HALF = 0.5D0)
                    182: *     ..
                    183: *     .. Local Scalars ..
                    184:       LOGICAL            ESKIP, NEEDBS, STP2II, TRYRQC, USEDBS, USEDRQ
                    185:       INTEGER            DONE, I, IBEGIN, IDONE, IEND, II, IINDC1,
                    186:      $                   IINDC2, IINDR, IINDWK, IINFO, IM, IN, INDEIG,
                    187:      $                   INDLD, INDLLD, INDWRK, ISUPMN, ISUPMX, ITER,
                    188:      $                   ITMP1, J, JBLK, K, MINIWSIZE, MINWSIZE, NCLUS,
                    189:      $                   NDEPTH, NEGCNT, NEWCLS, NEWFST, NEWFTT, NEWLST,
                    190:      $                   NEWSIZ, OFFSET, OLDCLS, OLDFST, OLDIEN, OLDLST,
                    191:      $                   OLDNCL, P, PARITY, Q, WBEGIN, WEND, WINDEX,
                    192:      $                   WINDMN, WINDPL, ZFROM, ZTO, ZUSEDL, ZUSEDU,
                    193:      $                   ZUSEDW
                    194:       INTEGER            INDIN1, INDIN2
                    195:       DOUBLE PRECISION   BSTRES, BSTW, EPS, FUDGE, GAP, GAPTOL, GL, GU,
                    196:      $                   LAMBDA, LEFT, LGAP, MINGMA, NRMINV, RESID,
                    197:      $                   RGAP, RIGHT, RQCORR, RQTOL, SAVGAP, SGNDEF,
                    198:      $                   SIGMA, SPDIAM, SSIGMA, TAU, TMP, TOL, ZTZ
                    199: *     ..
                    200: *     .. External Functions ..
                    201:       DOUBLE PRECISION   DLAMCH
                    202:       EXTERNAL           DLAMCH
                    203: *     ..
                    204: *     .. External Subroutines ..
                    205:       EXTERNAL           DCOPY, DLARRB, DLARRF, ZDSCAL, ZLAR1V,
                    206:      $                   ZLASET
                    207: *     ..
                    208: *     .. Intrinsic Functions ..
                    209:       INTRINSIC ABS, DBLE, MAX, MIN
                    210:       INTRINSIC DCMPLX
                    211: *     ..
                    212: *     .. Executable Statements ..
                    213: *     ..
                    214: 
                    215: *     The first N entries of WORK are reserved for the eigenvalues
                    216:       INDLD = N+1
                    217:       INDLLD= 2*N+1
                    218:       INDIN1 = 3*N + 1
                    219:       INDIN2 = 4*N + 1
                    220:       INDWRK = 5*N + 1
                    221:       MINWSIZE = 12 * N
                    222: 
                    223:       DO 5 I= 1,MINWSIZE
                    224:          WORK( I ) = ZERO
                    225:  5    CONTINUE
                    226: 
                    227: *     IWORK(IINDR+1:IINDR+N) hold the twist indices R for the
                    228: *     factorization used to compute the FP vector
                    229:       IINDR = 0
                    230: *     IWORK(IINDC1+1:IINC2+N) are used to store the clusters of the current
                    231: *     layer and the one above.
                    232:       IINDC1 = N
                    233:       IINDC2 = 2*N
                    234:       IINDWK = 3*N + 1
                    235: 
                    236:       MINIWSIZE = 7 * N
                    237:       DO 10 I= 1,MINIWSIZE
                    238:          IWORK( I ) = 0
                    239:  10   CONTINUE
                    240: 
                    241:       ZUSEDL = 1
                    242:       IF(DOL.GT.1) THEN
                    243: *        Set lower bound for use of Z
                    244:          ZUSEDL = DOL-1
                    245:       ENDIF
                    246:       ZUSEDU = M
                    247:       IF(DOU.LT.M) THEN
                    248: *        Set lower bound for use of Z
                    249:          ZUSEDU = DOU+1
                    250:       ENDIF
                    251: *     The width of the part of Z that is used
                    252:       ZUSEDW = ZUSEDU - ZUSEDL + 1
                    253: 
                    254: 
                    255:       CALL ZLASET( 'Full', N, ZUSEDW, CZERO, CZERO,
                    256:      $                    Z(1,ZUSEDL), LDZ )
                    257: 
                    258:       EPS = DLAMCH( 'Precision' )
                    259:       RQTOL = TWO * EPS
                    260: *
                    261: *     Set expert flags for standard code.
                    262:       TRYRQC = .TRUE.
                    263: 
                    264:       IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
                    265:       ELSE
                    266: *        Only selected eigenpairs are computed. Since the other evalues
                    267: *        are not refined by RQ iteration, bisection has to compute to full
                    268: *        accuracy.
                    269:          RTOL1 = FOUR * EPS
                    270:          RTOL2 = FOUR * EPS
                    271:       ENDIF
                    272: 
                    273: *     The entries WBEGIN:WEND in W, WERR, WGAP correspond to the
                    274: *     desired eigenvalues. The support of the nonzero eigenvector
                    275: *     entries is contained in the interval IBEGIN:IEND.
                    276: *     Remark that if k eigenpairs are desired, then the eigenvectors
                    277: *     are stored in k contiguous columns of Z.
                    278: 
                    279: *     DONE is the number of eigenvectors already computed
                    280:       DONE = 0
                    281:       IBEGIN = 1
                    282:       WBEGIN = 1
                    283:       DO 170 JBLK = 1, IBLOCK( M )
                    284:          IEND = ISPLIT( JBLK )
                    285:          SIGMA = L( IEND )
                    286: *        Find the eigenvectors of the submatrix indexed IBEGIN
                    287: *        through IEND.
                    288:          WEND = WBEGIN - 1
                    289:  15      CONTINUE
                    290:          IF( WEND.LT.M ) THEN
                    291:             IF( IBLOCK( WEND+1 ).EQ.JBLK ) THEN
                    292:                WEND = WEND + 1
                    293:                GO TO 15
                    294:             END IF
                    295:          END IF
                    296:          IF( WEND.LT.WBEGIN ) THEN
                    297:             IBEGIN = IEND + 1
                    298:             GO TO 170
                    299:          ELSEIF( (WEND.LT.DOL).OR.(WBEGIN.GT.DOU) ) THEN
                    300:             IBEGIN = IEND + 1
                    301:             WBEGIN = WEND + 1
                    302:             GO TO 170
                    303:          END IF
                    304: 
                    305: *        Find local spectral diameter of the block
                    306:          GL = GERS( 2*IBEGIN-1 )
                    307:          GU = GERS( 2*IBEGIN )
                    308:          DO 20 I = IBEGIN+1 , IEND
                    309:             GL = MIN( GERS( 2*I-1 ), GL )
                    310:             GU = MAX( GERS( 2*I ), GU )
                    311:  20      CONTINUE
                    312:          SPDIAM = GU - GL
                    313: 
                    314: *        OLDIEN is the last index of the previous block
                    315:          OLDIEN = IBEGIN - 1
                    316: *        Calculate the size of the current block
                    317:          IN = IEND - IBEGIN + 1
                    318: *        The number of eigenvalues in the current block
                    319:          IM = WEND - WBEGIN + 1
                    320: 
                    321: *        This is for a 1x1 block
                    322:          IF( IBEGIN.EQ.IEND ) THEN
                    323:             DONE = DONE+1
                    324:             Z( IBEGIN, WBEGIN ) = DCMPLX( ONE, ZERO )
                    325:             ISUPPZ( 2*WBEGIN-1 ) = IBEGIN
                    326:             ISUPPZ( 2*WBEGIN ) = IBEGIN
                    327:             W( WBEGIN ) = W( WBEGIN ) + SIGMA
                    328:             WORK( WBEGIN ) = W( WBEGIN )
                    329:             IBEGIN = IEND + 1
                    330:             WBEGIN = WBEGIN + 1
                    331:             GO TO 170
                    332:          END IF
                    333: 
                    334: *        The desired (shifted) eigenvalues are stored in W(WBEGIN:WEND)
                    335: *        Note that these can be approximations, in this case, the corresp.
                    336: *        entries of WERR give the size of the uncertainty interval.
                    337: *        The eigenvalue approximations will be refined when necessary as
                    338: *        high relative accuracy is required for the computation of the
                    339: *        corresponding eigenvectors.
                    340:          CALL DCOPY( IM, W( WBEGIN ), 1,
                    341:      &                   WORK( WBEGIN ), 1 )
                    342: 
                    343: *        We store in W the eigenvalue approximations w.r.t. the original
                    344: *        matrix T.
                    345:          DO 30 I=1,IM
                    346:             W(WBEGIN+I-1) = W(WBEGIN+I-1)+SIGMA
                    347:  30      CONTINUE
                    348: 
                    349: 
                    350: *        NDEPTH is the current depth of the representation tree
                    351:          NDEPTH = 0
                    352: *        PARITY is either 1 or 0
                    353:          PARITY = 1
                    354: *        NCLUS is the number of clusters for the next level of the
                    355: *        representation tree, we start with NCLUS = 1 for the root
                    356:          NCLUS = 1
                    357:          IWORK( IINDC1+1 ) = 1
                    358:          IWORK( IINDC1+2 ) = IM
                    359: 
                    360: *        IDONE is the number of eigenvectors already computed in the current
                    361: *        block
                    362:          IDONE = 0
                    363: *        loop while( IDONE.LT.IM )
                    364: *        generate the representation tree for the current block and
                    365: *        compute the eigenvectors
                    366:    40    CONTINUE
                    367:          IF( IDONE.LT.IM ) THEN
                    368: *           This is a crude protection against infinitely deep trees
                    369:             IF( NDEPTH.GT.M ) THEN
                    370:                INFO = -2
                    371:                RETURN
                    372:             ENDIF
                    373: *           breadth first processing of the current level of the representation
                    374: *           tree: OLDNCL = number of clusters on current level
                    375:             OLDNCL = NCLUS
                    376: *           reset NCLUS to count the number of child clusters
                    377:             NCLUS = 0
                    378: *
                    379:             PARITY = 1 - PARITY
                    380:             IF( PARITY.EQ.0 ) THEN
                    381:                OLDCLS = IINDC1
                    382:                NEWCLS = IINDC2
                    383:             ELSE
                    384:                OLDCLS = IINDC2
                    385:                NEWCLS = IINDC1
                    386:             END IF
                    387: *           Process the clusters on the current level
                    388:             DO 150 I = 1, OLDNCL
                    389:                J = OLDCLS + 2*I
                    390: *              OLDFST, OLDLST = first, last index of current cluster.
                    391: *                               cluster indices start with 1 and are relative
                    392: *                               to WBEGIN when accessing W, WGAP, WERR, Z
                    393:                OLDFST = IWORK( J-1 )
                    394:                OLDLST = IWORK( J )
                    395:                IF( NDEPTH.GT.0 ) THEN
                    396: *                 Retrieve relatively robust representation (RRR) of cluster
                    397: *                 that has been computed at the previous level
                    398: *                 The RRR is stored in Z and overwritten once the eigenvectors
                    399: *                 have been computed or when the cluster is refined
                    400: 
                    401:                   IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
                    402: *                    Get representation from location of the leftmost evalue
                    403: *                    of the cluster
                    404:                      J = WBEGIN + OLDFST - 1
                    405:                   ELSE
                    406:                      IF(WBEGIN+OLDFST-1.LT.DOL) THEN
                    407: *                       Get representation from the left end of Z array
                    408:                         J = DOL - 1
                    409:                      ELSEIF(WBEGIN+OLDFST-1.GT.DOU) THEN
                    410: *                       Get representation from the right end of Z array
                    411:                         J = DOU
                    412:                      ELSE
                    413:                         J = WBEGIN + OLDFST - 1
                    414:                      ENDIF
                    415:                   ENDIF
                    416:                   DO 45 K = 1, IN - 1
                    417:                      D( IBEGIN+K-1 ) = DBLE( Z( IBEGIN+K-1,
                    418:      $                                 J ) )
                    419:                      L( IBEGIN+K-1 ) = DBLE( Z( IBEGIN+K-1,
                    420:      $                                 J+1 ) )
                    421:    45             CONTINUE
                    422:                   D( IEND ) = DBLE( Z( IEND, J ) )
                    423:                   SIGMA = DBLE( Z( IEND, J+1 ) )
                    424: 
                    425: *                 Set the corresponding entries in Z to zero
                    426:                   CALL ZLASET( 'Full', IN, 2, CZERO, CZERO,
                    427:      $                         Z( IBEGIN, J), LDZ )
                    428:                END IF
                    429: 
                    430: *              Compute DL and DLL of current RRR
                    431:                DO 50 J = IBEGIN, IEND-1
                    432:                   TMP = D( J )*L( J )
                    433:                   WORK( INDLD-1+J ) = TMP
                    434:                   WORK( INDLLD-1+J ) = TMP*L( J )
                    435:    50          CONTINUE
                    436: 
                    437:                IF( NDEPTH.GT.0 ) THEN
                    438: *                 P and Q are index of the first and last eigenvalue to compute
                    439: *                 within the current block
                    440:                   P = INDEXW( WBEGIN-1+OLDFST )
                    441:                   Q = INDEXW( WBEGIN-1+OLDLST )
                    442: *                 Offset for the arrays WORK, WGAP and WERR, i.e., th P-OFFSET
                    443: *                 thru' Q-OFFSET elements of these arrays are to be used.
                    444: C                  OFFSET = P-OLDFST
                    445:                   OFFSET = INDEXW( WBEGIN ) - 1
                    446: *                 perform limited bisection (if necessary) to get approximate
                    447: *                 eigenvalues to the precision needed.
                    448:                   CALL DLARRB( IN, D( IBEGIN ),
                    449:      $                         WORK(INDLLD+IBEGIN-1),
                    450:      $                         P, Q, RTOL1, RTOL2, OFFSET,
                    451:      $                         WORK(WBEGIN),WGAP(WBEGIN),WERR(WBEGIN),
                    452:      $                         WORK( INDWRK ), IWORK( IINDWK ),
                    453:      $                         PIVMIN, SPDIAM, IN, IINFO )
                    454:                   IF( IINFO.NE.0 ) THEN
                    455:                      INFO = -1
                    456:                      RETURN
                    457:                   ENDIF
                    458: *                 We also recompute the extremal gaps. W holds all eigenvalues
                    459: *                 of the unshifted matrix and must be used for computation
                    460: *                 of WGAP, the entries of WORK might stem from RRRs with
                    461: *                 different shifts. The gaps from WBEGIN-1+OLDFST to
                    462: *                 WBEGIN-1+OLDLST are correctly computed in DLARRB.
                    463: *                 However, we only allow the gaps to become greater since
                    464: *                 this is what should happen when we decrease WERR
                    465:                   IF( OLDFST.GT.1) THEN
                    466:                      WGAP( WBEGIN+OLDFST-2 ) =
                    467:      $             MAX(WGAP(WBEGIN+OLDFST-2),
                    468:      $                 W(WBEGIN+OLDFST-1)-WERR(WBEGIN+OLDFST-1)
                    469:      $                 - W(WBEGIN+OLDFST-2)-WERR(WBEGIN+OLDFST-2) )
                    470:                   ENDIF
                    471:                   IF( WBEGIN + OLDLST -1 .LT. WEND ) THEN
                    472:                      WGAP( WBEGIN+OLDLST-1 ) =
                    473:      $               MAX(WGAP(WBEGIN+OLDLST-1),
                    474:      $                   W(WBEGIN+OLDLST)-WERR(WBEGIN+OLDLST)
                    475:      $                   - W(WBEGIN+OLDLST-1)-WERR(WBEGIN+OLDLST-1) )
                    476:                   ENDIF
                    477: *                 Each time the eigenvalues in WORK get refined, we store
                    478: *                 the newly found approximation with all shifts applied in W
                    479:                   DO 53 J=OLDFST,OLDLST
                    480:                      W(WBEGIN+J-1) = WORK(WBEGIN+J-1)+SIGMA
                    481:  53               CONTINUE
                    482:                END IF
                    483: 
                    484: *              Process the current node.
                    485:                NEWFST = OLDFST
                    486:                DO 140 J = OLDFST, OLDLST
                    487:                   IF( J.EQ.OLDLST ) THEN
                    488: *                    we are at the right end of the cluster, this is also the
                    489: *                    boundary of the child cluster
                    490:                      NEWLST = J
                    491:                   ELSE IF ( WGAP( WBEGIN + J -1).GE.
                    492:      $                    MINRGP* ABS( WORK(WBEGIN + J -1) ) ) THEN
                    493: *                    the right relative gap is big enough, the child cluster
                    494: *                    (NEWFST,..,NEWLST) is well separated from the following
                    495:                      NEWLST = J
                    496:                    ELSE
                    497: *                    inside a child cluster, the relative gap is not
                    498: *                    big enough.
                    499:                      GOTO 140
                    500:                   END IF
                    501: 
                    502: *                 Compute size of child cluster found
                    503:                   NEWSIZ = NEWLST - NEWFST + 1
                    504: 
                    505: *                 NEWFTT is the place in Z where the new RRR or the computed
                    506: *                 eigenvector is to be stored
                    507:                   IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
                    508: *                    Store representation at location of the leftmost evalue
                    509: *                    of the cluster
                    510:                      NEWFTT = WBEGIN + NEWFST - 1
                    511:                   ELSE
                    512:                      IF(WBEGIN+NEWFST-1.LT.DOL) THEN
                    513: *                       Store representation at the left end of Z array
                    514:                         NEWFTT = DOL - 1
                    515:                      ELSEIF(WBEGIN+NEWFST-1.GT.DOU) THEN
                    516: *                       Store representation at the right end of Z array
                    517:                         NEWFTT = DOU
                    518:                      ELSE
                    519:                         NEWFTT = WBEGIN + NEWFST - 1
                    520:                      ENDIF
                    521:                   ENDIF
                    522: 
                    523:                   IF( NEWSIZ.GT.1) THEN
                    524: *
                    525: *                    Current child is not a singleton but a cluster.
                    526: *                    Compute and store new representation of child.
                    527: *
                    528: *
                    529: *                    Compute left and right cluster gap.
                    530: *
                    531: *                    LGAP and RGAP are not computed from WORK because
                    532: *                    the eigenvalue approximations may stem from RRRs
                    533: *                    different shifts. However, W hold all eigenvalues
                    534: *                    of the unshifted matrix. Still, the entries in WGAP
                    535: *                    have to be computed from WORK since the entries
                    536: *                    in W might be of the same order so that gaps are not
                    537: *                    exhibited correctly for very close eigenvalues.
                    538:                      IF( NEWFST.EQ.1 ) THEN
                    539:                         LGAP = MAX( ZERO,
                    540:      $                       W(WBEGIN)-WERR(WBEGIN) - VL )
                    541:                     ELSE
                    542:                         LGAP = WGAP( WBEGIN+NEWFST-2 )
                    543:                      ENDIF
                    544:                      RGAP = WGAP( WBEGIN+NEWLST-1 )
                    545: *
                    546: *                    Compute left- and rightmost eigenvalue of child
                    547: *                    to high precision in order to shift as close
                    548: *                    as possible and obtain as large relative gaps
                    549: *                    as possible
                    550: *
                    551:                      DO 55 K =1,2
                    552:                         IF(K.EQ.1) THEN
                    553:                            P = INDEXW( WBEGIN-1+NEWFST )
                    554:                         ELSE
                    555:                            P = INDEXW( WBEGIN-1+NEWLST )
                    556:                         ENDIF
                    557:                         OFFSET = INDEXW( WBEGIN ) - 1
                    558:                         CALL DLARRB( IN, D(IBEGIN),
                    559:      $                       WORK( INDLLD+IBEGIN-1 ),P,P,
                    560:      $                       RQTOL, RQTOL, OFFSET,
                    561:      $                       WORK(WBEGIN),WGAP(WBEGIN),
                    562:      $                       WERR(WBEGIN),WORK( INDWRK ),
                    563:      $                       IWORK( IINDWK ), PIVMIN, SPDIAM,
                    564:      $                       IN, IINFO )
                    565:  55                  CONTINUE
                    566: *
                    567:                      IF((WBEGIN+NEWLST-1.LT.DOL).OR.
                    568:      $                  (WBEGIN+NEWFST-1.GT.DOU)) THEN
                    569: *                       if the cluster contains no desired eigenvalues
                    570: *                       skip the computation of that branch of the rep. tree
                    571: *
                    572: *                       We could skip before the refinement of the extremal
                    573: *                       eigenvalues of the child, but then the representation
                    574: *                       tree could be different from the one when nothing is
                    575: *                       skipped. For this reason we skip at this place.
                    576:                         IDONE = IDONE + NEWLST - NEWFST + 1
                    577:                         GOTO 139
                    578:                      ENDIF
                    579: *
                    580: *                    Compute RRR of child cluster.
                    581: *                    Note that the new RRR is stored in Z
                    582: *
                    583: C                    DLARRF needs LWORK = 2*N
                    584:                      CALL DLARRF( IN, D( IBEGIN ), L( IBEGIN ),
                    585:      $                         WORK(INDLD+IBEGIN-1),
                    586:      $                         NEWFST, NEWLST, WORK(WBEGIN),
                    587:      $                         WGAP(WBEGIN), WERR(WBEGIN),
                    588:      $                         SPDIAM, LGAP, RGAP, PIVMIN, TAU,
                    589:      $                         WORK( INDIN1 ), WORK( INDIN2 ),
                    590:      $                         WORK( INDWRK ), IINFO )
                    591: *                    In the complex case, DLARRF cannot write
                    592: *                    the new RRR directly into Z and needs an intermediate
                    593: *                    workspace
                    594:                      DO 56 K = 1, IN-1
                    595:                         Z( IBEGIN+K-1, NEWFTT ) =
                    596:      $                     DCMPLX( WORK( INDIN1+K-1 ), ZERO )
                    597:                         Z( IBEGIN+K-1, NEWFTT+1 ) =
                    598:      $                     DCMPLX( WORK( INDIN2+K-1 ), ZERO )
                    599:    56                CONTINUE
                    600:                      Z( IEND, NEWFTT ) =
                    601:      $                  DCMPLX( WORK( INDIN1+IN-1 ), ZERO )
                    602:                      IF( IINFO.EQ.0 ) THEN
                    603: *                       a new RRR for the cluster was found by DLARRF
                    604: *                       update shift and store it
                    605:                         SSIGMA = SIGMA + TAU
                    606:                         Z( IEND, NEWFTT+1 ) = DCMPLX( SSIGMA, ZERO )
                    607: *                       WORK() are the midpoints and WERR() the semi-width
                    608: *                       Note that the entries in W are unchanged.
                    609:                         DO 116 K = NEWFST, NEWLST
                    610:                            FUDGE =
                    611:      $                          THREE*EPS*ABS(WORK(WBEGIN+K-1))
                    612:                            WORK( WBEGIN + K - 1 ) =
                    613:      $                          WORK( WBEGIN + K - 1) - TAU
                    614:                            FUDGE = FUDGE +
                    615:      $                          FOUR*EPS*ABS(WORK(WBEGIN+K-1))
                    616: *                          Fudge errors
                    617:                            WERR( WBEGIN + K - 1 ) =
                    618:      $                          WERR( WBEGIN + K - 1 ) + FUDGE
                    619: *                          Gaps are not fudged. Provided that WERR is small
                    620: *                          when eigenvalues are close, a zero gap indicates
                    621: *                          that a new representation is needed for resolving
                    622: *                          the cluster. A fudge could lead to a wrong decision
                    623: *                          of judging eigenvalues 'separated' which in
                    624: *                          reality are not. This could have a negative impact
                    625: *                          on the orthogonality of the computed eigenvectors.
                    626:  116                    CONTINUE
                    627: 
                    628:                         NCLUS = NCLUS + 1
                    629:                         K = NEWCLS + 2*NCLUS
                    630:                         IWORK( K-1 ) = NEWFST
                    631:                         IWORK( K ) = NEWLST
                    632:                      ELSE
                    633:                         INFO = -2
                    634:                         RETURN
                    635:                      ENDIF
                    636:                   ELSE
                    637: *
                    638: *                    Compute eigenvector of singleton
                    639: *
                    640:                      ITER = 0
                    641: *
                    642:                      TOL = FOUR * LOG(DBLE(IN)) * EPS
                    643: *
                    644:                      K = NEWFST
                    645:                      WINDEX = WBEGIN + K - 1
                    646:                      WINDMN = MAX(WINDEX - 1,1)
                    647:                      WINDPL = MIN(WINDEX + 1,M)
                    648:                      LAMBDA = WORK( WINDEX )
                    649:                      DONE = DONE + 1
                    650: *                    Check if eigenvector computation is to be skipped
                    651:                      IF((WINDEX.LT.DOL).OR.
                    652:      $                  (WINDEX.GT.DOU)) THEN
                    653:                         ESKIP = .TRUE.
                    654:                         GOTO 125
                    655:                      ELSE
                    656:                         ESKIP = .FALSE.
                    657:                      ENDIF
                    658:                      LEFT = WORK( WINDEX ) - WERR( WINDEX )
                    659:                      RIGHT = WORK( WINDEX ) + WERR( WINDEX )
                    660:                      INDEIG = INDEXW( WINDEX )
                    661: *                    Note that since we compute the eigenpairs for a child,
                    662: *                    all eigenvalue approximations are w.r.t the same shift.
                    663: *                    In this case, the entries in WORK should be used for
                    664: *                    computing the gaps since they exhibit even very small
                    665: *                    differences in the eigenvalues, as opposed to the
                    666: *                    entries in W which might "look" the same.
                    667: 
                    668:                      IF( K .EQ. 1) THEN
                    669: *                       In the case RANGE='I' and with not much initial
                    670: *                       accuracy in LAMBDA and VL, the formula
                    671: *                       LGAP = MAX( ZERO, (SIGMA - VL) + LAMBDA )
                    672: *                       can lead to an overestimation of the left gap and
                    673: *                       thus to inadequately early RQI 'convergence'.
                    674: *                       Prevent this by forcing a small left gap.
                    675:                         LGAP = EPS*MAX(ABS(LEFT),ABS(RIGHT))
                    676:                      ELSE
                    677:                         LGAP = WGAP(WINDMN)
                    678:                      ENDIF
                    679:                      IF( K .EQ. IM) THEN
                    680: *                       In the case RANGE='I' and with not much initial
                    681: *                       accuracy in LAMBDA and VU, the formula
                    682: *                       can lead to an overestimation of the right gap and
                    683: *                       thus to inadequately early RQI 'convergence'.
                    684: *                       Prevent this by forcing a small right gap.
                    685:                         RGAP = EPS*MAX(ABS(LEFT),ABS(RIGHT))
                    686:                      ELSE
                    687:                         RGAP = WGAP(WINDEX)
                    688:                      ENDIF
                    689:                      GAP = MIN( LGAP, RGAP )
                    690:                      IF(( K .EQ. 1).OR.(K .EQ. IM)) THEN
                    691: *                       The eigenvector support can become wrong
                    692: *                       because significant entries could be cut off due to a
                    693: *                       large GAPTOL parameter in LAR1V. Prevent this.
                    694:                         GAPTOL = ZERO
                    695:                      ELSE
                    696:                         GAPTOL = GAP * EPS
                    697:                      ENDIF
                    698:                      ISUPMN = IN
                    699:                      ISUPMX = 1
                    700: *                    Update WGAP so that it holds the minimum gap
                    701: *                    to the left or the right. This is crucial in the
                    702: *                    case where bisection is used to ensure that the
                    703: *                    eigenvalue is refined up to the required precision.
                    704: *                    The correct value is restored afterwards.
                    705:                      SAVGAP = WGAP(WINDEX)
                    706:                      WGAP(WINDEX) = GAP
                    707: *                    We want to use the Rayleigh Quotient Correction
                    708: *                    as often as possible since it converges quadratically
                    709: *                    when we are close enough to the desired eigenvalue.
                    710: *                    However, the Rayleigh Quotient can have the wrong sign
                    711: *                    and lead us away from the desired eigenvalue. In this
                    712: *                    case, the best we can do is to use bisection.
                    713:                      USEDBS = .FALSE.
                    714:                      USEDRQ = .FALSE.
                    715: *                    Bisection is initially turned off unless it is forced
                    716:                      NEEDBS =  .NOT.TRYRQC
                    717:  120                 CONTINUE
                    718: *                    Check if bisection should be used to refine eigenvalue
                    719:                      IF(NEEDBS) THEN
                    720: *                       Take the bisection as new iterate
                    721:                         USEDBS = .TRUE.
                    722:                         ITMP1 = IWORK( IINDR+WINDEX )
                    723:                         OFFSET = INDEXW( WBEGIN ) - 1
                    724:                         CALL DLARRB( IN, D(IBEGIN),
                    725:      $                       WORK(INDLLD+IBEGIN-1),INDEIG,INDEIG,
                    726:      $                       ZERO, TWO*EPS, OFFSET,
                    727:      $                       WORK(WBEGIN),WGAP(WBEGIN),
                    728:      $                       WERR(WBEGIN),WORK( INDWRK ),
                    729:      $                       IWORK( IINDWK ), PIVMIN, SPDIAM,
                    730:      $                       ITMP1, IINFO )
                    731:                         IF( IINFO.NE.0 ) THEN
                    732:                            INFO = -3
                    733:                            RETURN
                    734:                         ENDIF
                    735:                         LAMBDA = WORK( WINDEX )
                    736: *                       Reset twist index from inaccurate LAMBDA to
                    737: *                       force computation of true MINGMA
                    738:                         IWORK( IINDR+WINDEX ) = 0
                    739:                      ENDIF
                    740: *                    Given LAMBDA, compute the eigenvector.
                    741:                      CALL ZLAR1V( IN, 1, IN, LAMBDA, D( IBEGIN ),
                    742:      $                    L( IBEGIN ), WORK(INDLD+IBEGIN-1),
                    743:      $                    WORK(INDLLD+IBEGIN-1),
                    744:      $                    PIVMIN, GAPTOL, Z( IBEGIN, WINDEX ),
                    745:      $                    .NOT.USEDBS, NEGCNT, ZTZ, MINGMA,
                    746:      $                    IWORK( IINDR+WINDEX ), ISUPPZ( 2*WINDEX-1 ),
                    747:      $                    NRMINV, RESID, RQCORR, WORK( INDWRK ) )
                    748:                      IF(ITER .EQ. 0) THEN
                    749:                         BSTRES = RESID
                    750:                         BSTW = LAMBDA
                    751:                      ELSEIF(RESID.LT.BSTRES) THEN
                    752:                         BSTRES = RESID
                    753:                         BSTW = LAMBDA
                    754:                      ENDIF
                    755:                      ISUPMN = MIN(ISUPMN,ISUPPZ( 2*WINDEX-1 ))
                    756:                      ISUPMX = MAX(ISUPMX,ISUPPZ( 2*WINDEX ))
                    757:                      ITER = ITER + 1
                    758: 
                    759: *                    sin alpha <= |resid|/gap
                    760: *                    Note that both the residual and the gap are
                    761: *                    proportional to the matrix, so ||T|| doesn't play
                    762: *                    a role in the quotient
                    763: 
                    764: *
                    765: *                    Convergence test for Rayleigh-Quotient iteration
                    766: *                    (omitted when Bisection has been used)
                    767: *
                    768:                      IF( RESID.GT.TOL*GAP .AND. ABS( RQCORR ).GT.
                    769:      $                    RQTOL*ABS( LAMBDA ) .AND. .NOT. USEDBS)
                    770:      $                    THEN
                    771: *                       We need to check that the RQCORR update doesn't
                    772: *                       move the eigenvalue away from the desired one and
                    773: *                       towards a neighbor. -> protection with bisection
                    774:                         IF(INDEIG.LE.NEGCNT) THEN
                    775: *                          The wanted eigenvalue lies to the left
                    776:                            SGNDEF = -ONE
                    777:                         ELSE
                    778: *                          The wanted eigenvalue lies to the right
                    779:                            SGNDEF = ONE
                    780:                         ENDIF
                    781: *                       We only use the RQCORR if it improves the
                    782: *                       the iterate reasonably.
                    783:                         IF( ( RQCORR*SGNDEF.GE.ZERO )
                    784:      $                       .AND.( LAMBDA + RQCORR.LE. RIGHT)
                    785:      $                       .AND.( LAMBDA + RQCORR.GE. LEFT)
                    786:      $                       ) THEN
                    787:                            USEDRQ = .TRUE.
                    788: *                          Store new midpoint of bisection interval in WORK
                    789:                            IF(SGNDEF.EQ.ONE) THEN
                    790: *                             The current LAMBDA is on the left of the true
                    791: *                             eigenvalue
                    792:                               LEFT = LAMBDA
                    793: *                             We prefer to assume that the error estimate
                    794: *                             is correct. We could make the interval not
                    795: *                             as a bracket but to be modified if the RQCORR
                    796: *                             chooses to. In this case, the RIGHT side should
                    797: *                             be modified as follows:
                    798: *                              RIGHT = MAX(RIGHT, LAMBDA + RQCORR)
                    799:                            ELSE
                    800: *                             The current LAMBDA is on the right of the true
                    801: *                             eigenvalue
                    802:                               RIGHT = LAMBDA
                    803: *                             See comment about assuming the error estimate is
                    804: *                             correct above.
                    805: *                              LEFT = MIN(LEFT, LAMBDA + RQCORR)
                    806:                            ENDIF
                    807:                            WORK( WINDEX ) =
                    808:      $                       HALF * (RIGHT + LEFT)
                    809: *                          Take RQCORR since it has the correct sign and
                    810: *                          improves the iterate reasonably
                    811:                            LAMBDA = LAMBDA + RQCORR
                    812: *                          Update width of error interval
                    813:                            WERR( WINDEX ) =
                    814:      $                             HALF * (RIGHT-LEFT)
                    815:                         ELSE
                    816:                            NEEDBS = .TRUE.
                    817:                         ENDIF
                    818:                         IF(RIGHT-LEFT.LT.RQTOL*ABS(LAMBDA)) THEN
                    819: *                             The eigenvalue is computed to bisection accuracy
                    820: *                             compute eigenvector and stop
                    821:                            USEDBS = .TRUE.
                    822:                            GOTO 120
                    823:                         ELSEIF( ITER.LT.MAXITR ) THEN
                    824:                            GOTO 120
                    825:                         ELSEIF( ITER.EQ.MAXITR ) THEN
                    826:                            NEEDBS = .TRUE.
                    827:                            GOTO 120
                    828:                         ELSE
                    829:                            INFO = 5
                    830:                            RETURN
                    831:                         END IF
                    832:                      ELSE
                    833:                         STP2II = .FALSE.
                    834:         IF(USEDRQ .AND. USEDBS .AND.
                    835:      $                     BSTRES.LE.RESID) THEN
                    836:                            LAMBDA = BSTW
                    837:                            STP2II = .TRUE.
                    838:                         ENDIF
                    839:                         IF (STP2II) THEN
                    840: *                          improve error angle by second step
                    841:                            CALL ZLAR1V( IN, 1, IN, LAMBDA,
                    842:      $                          D( IBEGIN ), L( IBEGIN ),
                    843:      $                          WORK(INDLD+IBEGIN-1),
                    844:      $                          WORK(INDLLD+IBEGIN-1),
                    845:      $                          PIVMIN, GAPTOL, Z( IBEGIN, WINDEX ),
                    846:      $                          .NOT.USEDBS, NEGCNT, ZTZ, MINGMA,
                    847:      $                          IWORK( IINDR+WINDEX ),
                    848:      $                          ISUPPZ( 2*WINDEX-1 ),
                    849:      $                          NRMINV, RESID, RQCORR, WORK( INDWRK ) )
                    850:                         ENDIF
                    851:                         WORK( WINDEX ) = LAMBDA
                    852:                      END IF
                    853: *
                    854: *                    Compute FP-vector support w.r.t. whole matrix
                    855: *
                    856:                      ISUPPZ( 2*WINDEX-1 ) = ISUPPZ( 2*WINDEX-1 )+OLDIEN
                    857:                      ISUPPZ( 2*WINDEX ) = ISUPPZ( 2*WINDEX )+OLDIEN
                    858:                      ZFROM = ISUPPZ( 2*WINDEX-1 )
                    859:                      ZTO = ISUPPZ( 2*WINDEX )
                    860:                      ISUPMN = ISUPMN + OLDIEN
                    861:                      ISUPMX = ISUPMX + OLDIEN
                    862: *                    Ensure vector is ok if support in the RQI has changed
                    863:                      IF(ISUPMN.LT.ZFROM) THEN
                    864:                         DO 122 II = ISUPMN,ZFROM-1
                    865:                            Z( II, WINDEX ) = ZERO
                    866:  122                    CONTINUE
                    867:                      ENDIF
                    868:                      IF(ISUPMX.GT.ZTO) THEN
                    869:                         DO 123 II = ZTO+1,ISUPMX
                    870:                            Z( II, WINDEX ) = ZERO
                    871:  123                    CONTINUE
                    872:                      ENDIF
                    873:                      CALL ZDSCAL( ZTO-ZFROM+1, NRMINV,
                    874:      $                       Z( ZFROM, WINDEX ), 1 )
                    875:  125                 CONTINUE
                    876: *                    Update W
                    877:                      W( WINDEX ) = LAMBDA+SIGMA
                    878: *                    Recompute the gaps on the left and right
                    879: *                    But only allow them to become larger and not
                    880: *                    smaller (which can only happen through "bad"
                    881: *                    cancellation and doesn't reflect the theory
                    882: *                    where the initial gaps are underestimated due
                    883: *                    to WERR being too crude.)
                    884:                      IF(.NOT.ESKIP) THEN
                    885:                         IF( K.GT.1) THEN
                    886:                            WGAP( WINDMN ) = MAX( WGAP(WINDMN),
                    887:      $                          W(WINDEX)-WERR(WINDEX)
                    888:      $                          - W(WINDMN)-WERR(WINDMN) )
                    889:                         ENDIF
                    890:                         IF( WINDEX.LT.WEND ) THEN
                    891:                            WGAP( WINDEX ) = MAX( SAVGAP,
                    892:      $                          W( WINDPL )-WERR( WINDPL )
                    893:      $                          - W( WINDEX )-WERR( WINDEX) )
                    894:                         ENDIF
                    895:                      ENDIF
                    896:                      IDONE = IDONE + 1
                    897:                   ENDIF
                    898: *                 here ends the code for the current child
                    899: *
                    900:  139              CONTINUE
                    901: *                 Proceed to any remaining child nodes
                    902:                   NEWFST = J + 1
                    903:  140           CONTINUE
                    904:  150        CONTINUE
                    905:             NDEPTH = NDEPTH + 1
                    906:             GO TO 40
                    907:          END IF
                    908:          IBEGIN = IEND + 1
                    909:          WBEGIN = WEND + 1
                    910:  170  CONTINUE
                    911: *
                    912: 
                    913:       RETURN
                    914: *
                    915: *     End of ZLARRV
                    916: *
                    917:       END

CVSweb interface <joel.bertrand@systella.fr>