File:  [local] / rpl / lapack / lapack / zlarft.f
Revision 1.22: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:31 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZLARFT forms the triangular factor T of a block reflector H = I - vtvH
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZLARFT + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlarft.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlarft.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlarft.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          DIRECT, STOREV
   25: *       INTEGER            K, LDT, LDV, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       COMPLEX*16         T( LDT, * ), TAU( * ), V( LDV, * )
   29: *       ..
   30: *
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> ZLARFT forms the triangular factor T of a complex block reflector H
   38: *> of order n, which is defined as a product of k elementary reflectors.
   39: *>
   40: *> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
   41: *>
   42: *> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
   43: *>
   44: *> If STOREV = 'C', the vector which defines the elementary reflector
   45: *> H(i) is stored in the i-th column of the array V, and
   46: *>
   47: *>    H  =  I - V * T * V**H
   48: *>
   49: *> If STOREV = 'R', the vector which defines the elementary reflector
   50: *> H(i) is stored in the i-th row of the array V, and
   51: *>
   52: *>    H  =  I - V**H * T * V
   53: *> \endverbatim
   54: *
   55: *  Arguments:
   56: *  ==========
   57: *
   58: *> \param[in] DIRECT
   59: *> \verbatim
   60: *>          DIRECT is CHARACTER*1
   61: *>          Specifies the order in which the elementary reflectors are
   62: *>          multiplied to form the block reflector:
   63: *>          = 'F': H = H(1) H(2) . . . H(k) (Forward)
   64: *>          = 'B': H = H(k) . . . H(2) H(1) (Backward)
   65: *> \endverbatim
   66: *>
   67: *> \param[in] STOREV
   68: *> \verbatim
   69: *>          STOREV is CHARACTER*1
   70: *>          Specifies how the vectors which define the elementary
   71: *>          reflectors are stored (see also Further Details):
   72: *>          = 'C': columnwise
   73: *>          = 'R': rowwise
   74: *> \endverbatim
   75: *>
   76: *> \param[in] N
   77: *> \verbatim
   78: *>          N is INTEGER
   79: *>          The order of the block reflector H. N >= 0.
   80: *> \endverbatim
   81: *>
   82: *> \param[in] K
   83: *> \verbatim
   84: *>          K is INTEGER
   85: *>          The order of the triangular factor T (= the number of
   86: *>          elementary reflectors). K >= 1.
   87: *> \endverbatim
   88: *>
   89: *> \param[in] V
   90: *> \verbatim
   91: *>          V is COMPLEX*16 array, dimension
   92: *>                               (LDV,K) if STOREV = 'C'
   93: *>                               (LDV,N) if STOREV = 'R'
   94: *>          The matrix V. See further details.
   95: *> \endverbatim
   96: *>
   97: *> \param[in] LDV
   98: *> \verbatim
   99: *>          LDV is INTEGER
  100: *>          The leading dimension of the array V.
  101: *>          If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
  102: *> \endverbatim
  103: *>
  104: *> \param[in] TAU
  105: *> \verbatim
  106: *>          TAU is COMPLEX*16 array, dimension (K)
  107: *>          TAU(i) must contain the scalar factor of the elementary
  108: *>          reflector H(i).
  109: *> \endverbatim
  110: *>
  111: *> \param[out] T
  112: *> \verbatim
  113: *>          T is COMPLEX*16 array, dimension (LDT,K)
  114: *>          The k by k triangular factor T of the block reflector.
  115: *>          If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
  116: *>          lower triangular. The rest of the array is not used.
  117: *> \endverbatim
  118: *>
  119: *> \param[in] LDT
  120: *> \verbatim
  121: *>          LDT is INTEGER
  122: *>          The leading dimension of the array T. LDT >= K.
  123: *> \endverbatim
  124: *
  125: *  Authors:
  126: *  ========
  127: *
  128: *> \author Univ. of Tennessee
  129: *> \author Univ. of California Berkeley
  130: *> \author Univ. of Colorado Denver
  131: *> \author NAG Ltd.
  132: *
  133: *> \ingroup complex16OTHERauxiliary
  134: *
  135: *> \par Further Details:
  136: *  =====================
  137: *>
  138: *> \verbatim
  139: *>
  140: *>  The shape of the matrix V and the storage of the vectors which define
  141: *>  the H(i) is best illustrated by the following example with n = 5 and
  142: *>  k = 3. The elements equal to 1 are not stored.
  143: *>
  144: *>  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R':
  145: *>
  146: *>               V = (  1       )                 V = (  1 v1 v1 v1 v1 )
  147: *>                   ( v1  1    )                     (     1 v2 v2 v2 )
  148: *>                   ( v1 v2  1 )                     (        1 v3 v3 )
  149: *>                   ( v1 v2 v3 )
  150: *>                   ( v1 v2 v3 )
  151: *>
  152: *>  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R':
  153: *>
  154: *>               V = ( v1 v2 v3 )                 V = ( v1 v1  1       )
  155: *>                   ( v1 v2 v3 )                     ( v2 v2 v2  1    )
  156: *>                   (  1 v2 v3 )                     ( v3 v3 v3 v3  1 )
  157: *>                   (     1 v3 )
  158: *>                   (        1 )
  159: *> \endverbatim
  160: *>
  161: *  =====================================================================
  162:       SUBROUTINE ZLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
  163: *
  164: *  -- LAPACK auxiliary routine --
  165: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  166: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  167: *
  168: *     .. Scalar Arguments ..
  169:       CHARACTER          DIRECT, STOREV
  170:       INTEGER            K, LDT, LDV, N
  171: *     ..
  172: *     .. Array Arguments ..
  173:       COMPLEX*16         T( LDT, * ), TAU( * ), V( LDV, * )
  174: *     ..
  175: *
  176: *  =====================================================================
  177: *
  178: *     .. Parameters ..
  179:       COMPLEX*16         ONE, ZERO
  180:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ),
  181:      $                   ZERO = ( 0.0D+0, 0.0D+0 ) )
  182: *     ..
  183: *     .. Local Scalars ..
  184:       INTEGER            I, J, PREVLASTV, LASTV
  185: *     ..
  186: *     .. External Subroutines ..
  187:       EXTERNAL           ZGEMV, ZTRMV, ZGEMM
  188: *     ..
  189: *     .. External Functions ..
  190:       LOGICAL            LSAME
  191:       EXTERNAL           LSAME
  192: *     ..
  193: *     .. Executable Statements ..
  194: *
  195: *     Quick return if possible
  196: *
  197:       IF( N.EQ.0 )
  198:      $   RETURN
  199: *
  200:       IF( LSAME( DIRECT, 'F' ) ) THEN
  201:          PREVLASTV = N
  202:          DO I = 1, K
  203:             PREVLASTV = MAX( PREVLASTV, I )
  204:             IF( TAU( I ).EQ.ZERO ) THEN
  205: *
  206: *              H(i)  =  I
  207: *
  208:                DO J = 1, I
  209:                   T( J, I ) = ZERO
  210:                END DO
  211:             ELSE
  212: *
  213: *              general case
  214: *
  215:                IF( LSAME( STOREV, 'C' ) ) THEN
  216: *                 Skip any trailing zeros.
  217:                   DO LASTV = N, I+1, -1
  218:                      IF( V( LASTV, I ).NE.ZERO ) EXIT
  219:                   END DO
  220:                   DO J = 1, I-1
  221:                      T( J, I ) = -TAU( I ) * CONJG( V( I , J ) )
  222:                   END DO
  223:                   J = MIN( LASTV, PREVLASTV )
  224: *
  225: *                 T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)**H * V(i:j,i)
  226: *
  227:                   CALL ZGEMV( 'Conjugate transpose', J-I, I-1,
  228:      $                        -TAU( I ), V( I+1, 1 ), LDV,
  229:      $                        V( I+1, I ), 1, ONE, T( 1, I ), 1 )
  230:                ELSE
  231: *                 Skip any trailing zeros.
  232:                   DO LASTV = N, I+1, -1
  233:                      IF( V( I, LASTV ).NE.ZERO ) EXIT
  234:                   END DO
  235:                   DO J = 1, I-1
  236:                      T( J, I ) = -TAU( I ) * V( J , I )
  237:                   END DO
  238:                   J = MIN( LASTV, PREVLASTV )
  239: *
  240: *                 T(1:i-1,i) := - tau(i) * V(1:i-1,i:j) * V(i,i:j)**H
  241: *
  242:                   CALL ZGEMM( 'N', 'C', I-1, 1, J-I, -TAU( I ),
  243:      $                        V( 1, I+1 ), LDV, V( I, I+1 ), LDV,
  244:      $                        ONE, T( 1, I ), LDT )
  245:                END IF
  246: *
  247: *              T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i)
  248: *
  249:                CALL ZTRMV( 'Upper', 'No transpose', 'Non-unit', I-1, T,
  250:      $                     LDT, T( 1, I ), 1 )
  251:                T( I, I ) = TAU( I )
  252:                IF( I.GT.1 ) THEN
  253:                   PREVLASTV = MAX( PREVLASTV, LASTV )
  254:                ELSE
  255:                   PREVLASTV = LASTV
  256:                END IF
  257:              END IF
  258:          END DO
  259:       ELSE
  260:          PREVLASTV = 1
  261:          DO I = K, 1, -1
  262:             IF( TAU( I ).EQ.ZERO ) THEN
  263: *
  264: *              H(i)  =  I
  265: *
  266:                DO J = I, K
  267:                   T( J, I ) = ZERO
  268:                END DO
  269:             ELSE
  270: *
  271: *              general case
  272: *
  273:                IF( I.LT.K ) THEN
  274:                   IF( LSAME( STOREV, 'C' ) ) THEN
  275: *                    Skip any leading zeros.
  276:                      DO LASTV = 1, I-1
  277:                         IF( V( LASTV, I ).NE.ZERO ) EXIT
  278:                      END DO
  279:                      DO J = I+1, K
  280:                         T( J, I ) = -TAU( I ) * CONJG( V( N-K+I , J ) )
  281:                      END DO
  282:                      J = MAX( LASTV, PREVLASTV )
  283: *
  284: *                    T(i+1:k,i) = -tau(i) * V(j:n-k+i,i+1:k)**H * V(j:n-k+i,i)
  285: *
  286:                      CALL ZGEMV( 'Conjugate transpose', N-K+I-J, K-I,
  287:      $                           -TAU( I ), V( J, I+1 ), LDV, V( J, I ),
  288:      $                           1, ONE, T( I+1, I ), 1 )
  289:                   ELSE
  290: *                    Skip any leading zeros.
  291:                      DO LASTV = 1, I-1
  292:                         IF( V( I, LASTV ).NE.ZERO ) EXIT
  293:                      END DO
  294:                      DO J = I+1, K
  295:                         T( J, I ) = -TAU( I ) * V( J, N-K+I )
  296:                      END DO
  297:                      J = MAX( LASTV, PREVLASTV )
  298: *
  299: *                    T(i+1:k,i) = -tau(i) * V(i+1:k,j:n-k+i) * V(i,j:n-k+i)**H
  300: *
  301:                      CALL ZGEMM( 'N', 'C', K-I, 1, N-K+I-J, -TAU( I ),
  302:      $                           V( I+1, J ), LDV, V( I, J ), LDV,
  303:      $                           ONE, T( I+1, I ), LDT )
  304:                   END IF
  305: *
  306: *                 T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i)
  307: *
  308:                   CALL ZTRMV( 'Lower', 'No transpose', 'Non-unit', K-I,
  309:      $                        T( I+1, I+1 ), LDT, T( I+1, I ), 1 )
  310:                   IF( I.GT.1 ) THEN
  311:                      PREVLASTV = MIN( PREVLASTV, LASTV )
  312:                   ELSE
  313:                      PREVLASTV = LASTV
  314:                   END IF
  315:                END IF
  316:                T( I, I ) = TAU( I )
  317:             END IF
  318:          END DO
  319:       END IF
  320:       RETURN
  321: *
  322: *     End of ZLARFT
  323: *
  324:       END

CVSweb interface <joel.bertrand@systella.fr>