File:  [local] / rpl / lapack / lapack / zlarft.f
Revision 1.10: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 22:19:53 2011 UTC (12 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_8, rpl-4_1_7, rpl-4_1_6, rpl-4_1_5, rpl-4_1_4, HEAD
Cohérence

    1: *> \brief \b ZLARFT
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZLARFT + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlarft.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlarft.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlarft.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
   22:    23: *       .. Scalar Arguments ..
   24: *       CHARACTER          DIRECT, STOREV
   25: *       INTEGER            K, LDT, LDV, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       COMPLEX*16         T( LDT, * ), TAU( * ), V( LDV, * )
   29: *       ..
   30: *  
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> ZLARFT forms the triangular factor T of a complex block reflector H
   38: *> of order n, which is defined as a product of k elementary reflectors.
   39: *>
   40: *> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
   41: *>
   42: *> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
   43: *>
   44: *> If STOREV = 'C', the vector which defines the elementary reflector
   45: *> H(i) is stored in the i-th column of the array V, and
   46: *>
   47: *>    H  =  I - V * T * V**H
   48: *>
   49: *> If STOREV = 'R', the vector which defines the elementary reflector
   50: *> H(i) is stored in the i-th row of the array V, and
   51: *>
   52: *>    H  =  I - V**H * T * V
   53: *> \endverbatim
   54: *
   55: *  Arguments:
   56: *  ==========
   57: *
   58: *> \param[in] DIRECT
   59: *> \verbatim
   60: *>          DIRECT is CHARACTER*1
   61: *>          Specifies the order in which the elementary reflectors are
   62: *>          multiplied to form the block reflector:
   63: *>          = 'F': H = H(1) H(2) . . . H(k) (Forward)
   64: *>          = 'B': H = H(k) . . . H(2) H(1) (Backward)
   65: *> \endverbatim
   66: *>
   67: *> \param[in] STOREV
   68: *> \verbatim
   69: *>          STOREV is CHARACTER*1
   70: *>          Specifies how the vectors which define the elementary
   71: *>          reflectors are stored (see also Further Details):
   72: *>          = 'C': columnwise
   73: *>          = 'R': rowwise
   74: *> \endverbatim
   75: *>
   76: *> \param[in] N
   77: *> \verbatim
   78: *>          N is INTEGER
   79: *>          The order of the block reflector H. N >= 0.
   80: *> \endverbatim
   81: *>
   82: *> \param[in] K
   83: *> \verbatim
   84: *>          K is INTEGER
   85: *>          The order of the triangular factor T (= the number of
   86: *>          elementary reflectors). K >= 1.
   87: *> \endverbatim
   88: *>
   89: *> \param[in,out] V
   90: *> \verbatim
   91: *>          V is COMPLEX*16 array, dimension
   92: *>                               (LDV,K) if STOREV = 'C'
   93: *>                               (LDV,N) if STOREV = 'R'
   94: *>          The matrix V. See further details.
   95: *> \endverbatim
   96: *>
   97: *> \param[in] LDV
   98: *> \verbatim
   99: *>          LDV is INTEGER
  100: *>          The leading dimension of the array V.
  101: *>          If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
  102: *> \endverbatim
  103: *>
  104: *> \param[in] TAU
  105: *> \verbatim
  106: *>          TAU is COMPLEX*16 array, dimension (K)
  107: *>          TAU(i) must contain the scalar factor of the elementary
  108: *>          reflector H(i).
  109: *> \endverbatim
  110: *>
  111: *> \param[out] T
  112: *> \verbatim
  113: *>          T is COMPLEX*16 array, dimension (LDT,K)
  114: *>          The k by k triangular factor T of the block reflector.
  115: *>          If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
  116: *>          lower triangular. The rest of the array is not used.
  117: *> \endverbatim
  118: *>
  119: *> \param[in] LDT
  120: *> \verbatim
  121: *>          LDT is INTEGER
  122: *>          The leading dimension of the array T. LDT >= K.
  123: *> \endverbatim
  124: *
  125: *  Authors:
  126: *  ========
  127: *
  128: *> \author Univ. of Tennessee 
  129: *> \author Univ. of California Berkeley 
  130: *> \author Univ. of Colorado Denver 
  131: *> \author NAG Ltd. 
  132: *
  133: *> \date November 2011
  134: *
  135: *> \ingroup complex16OTHERauxiliary
  136: *
  137: *> \par Further Details:
  138: *  =====================
  139: *>
  140: *> \verbatim
  141: *>
  142: *>  The shape of the matrix V and the storage of the vectors which define
  143: *>  the H(i) is best illustrated by the following example with n = 5 and
  144: *>  k = 3. The elements equal to 1 are not stored; the corresponding
  145: *>  array elements are modified but restored on exit. The rest of the
  146: *>  array is not used.
  147: *>
  148: *>  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R':
  149: *>
  150: *>               V = (  1       )                 V = (  1 v1 v1 v1 v1 )
  151: *>                   ( v1  1    )                     (     1 v2 v2 v2 )
  152: *>                   ( v1 v2  1 )                     (        1 v3 v3 )
  153: *>                   ( v1 v2 v3 )
  154: *>                   ( v1 v2 v3 )
  155: *>
  156: *>  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R':
  157: *>
  158: *>               V = ( v1 v2 v3 )                 V = ( v1 v1  1       )
  159: *>                   ( v1 v2 v3 )                     ( v2 v2 v2  1    )
  160: *>                   (  1 v2 v3 )                     ( v3 v3 v3 v3  1 )
  161: *>                   (     1 v3 )
  162: *>                   (        1 )
  163: *> \endverbatim
  164: *>
  165: *  =====================================================================
  166:       SUBROUTINE ZLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
  167: *
  168: *  -- LAPACK auxiliary routine (version 3.4.0) --
  169: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  170: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  171: *     November 2011
  172: *
  173: *     .. Scalar Arguments ..
  174:       CHARACTER          DIRECT, STOREV
  175:       INTEGER            K, LDT, LDV, N
  176: *     ..
  177: *     .. Array Arguments ..
  178:       COMPLEX*16         T( LDT, * ), TAU( * ), V( LDV, * )
  179: *     ..
  180: *
  181: *  =====================================================================
  182: *
  183: *     .. Parameters ..
  184:       COMPLEX*16         ONE, ZERO
  185:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ),
  186:      $                   ZERO = ( 0.0D+0, 0.0D+0 ) )
  187: *     ..
  188: *     .. Local Scalars ..
  189:       INTEGER            I, J, PREVLASTV, LASTV
  190:       COMPLEX*16         VII
  191: *     ..
  192: *     .. External Subroutines ..
  193:       EXTERNAL           ZGEMV, ZLACGV, ZTRMV
  194: *     ..
  195: *     .. External Functions ..
  196:       LOGICAL            LSAME
  197:       EXTERNAL           LSAME
  198: *     ..
  199: *     .. Executable Statements ..
  200: *
  201: *     Quick return if possible
  202: *
  203:       IF( N.EQ.0 )
  204:      $   RETURN
  205: *
  206:       IF( LSAME( DIRECT, 'F' ) ) THEN
  207:          PREVLASTV = N
  208:          DO 20 I = 1, K
  209:             PREVLASTV = MAX( PREVLASTV, I )
  210:             IF( TAU( I ).EQ.ZERO ) THEN
  211: *
  212: *              H(i)  =  I
  213: *
  214:                DO 10 J = 1, I
  215:                   T( J, I ) = ZERO
  216:    10          CONTINUE
  217:             ELSE
  218: *
  219: *              general case
  220: *
  221:                VII = V( I, I )
  222:                V( I, I ) = ONE
  223:                IF( LSAME( STOREV, 'C' ) ) THEN
  224: !                 Skip any trailing zeros.
  225:                   DO LASTV = N, I+1, -1
  226:                      IF( V( LASTV, I ).NE.ZERO ) EXIT
  227:                   END DO
  228:                   J = MIN( LASTV, PREVLASTV )
  229: *
  230: *                 T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)**H * V(i:j,i)
  231: *
  232:                   CALL ZGEMV( 'Conjugate transpose', J-I+1, I-1,
  233:      $                        -TAU( I ), V( I, 1 ), LDV, V( I, I ), 1,
  234:      $                        ZERO, T( 1, I ), 1 )
  235:                ELSE
  236: !                 Skip any trailing zeros.
  237:                   DO LASTV = N, I+1, -1
  238:                      IF( V( I, LASTV ).NE.ZERO ) EXIT
  239:                   END DO
  240:                   J = MIN( LASTV, PREVLASTV )
  241: *
  242: *                 T(1:i-1,i) := - tau(i) * V(1:i-1,i:j) * V(i,i:j)**H
  243: *
  244:                   IF( I.LT.J )
  245:      $               CALL ZLACGV( J-I, V( I, I+1 ), LDV )
  246:                   CALL ZGEMV( 'No transpose', I-1, J-I+1, -TAU( I ),
  247:      $                        V( 1, I ), LDV, V( I, I ), LDV, ZERO,
  248:      $                        T( 1, I ), 1 )
  249:                   IF( I.LT.J )
  250:      $               CALL ZLACGV( J-I, V( I, I+1 ), LDV )
  251:                END IF
  252:                V( I, I ) = VII
  253: *
  254: *              T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i)
  255: *
  256:                CALL ZTRMV( 'Upper', 'No transpose', 'Non-unit', I-1, T,
  257:      $                     LDT, T( 1, I ), 1 )
  258:                T( I, I ) = TAU( I )
  259:                IF( I.GT.1 ) THEN
  260:                   PREVLASTV = MAX( PREVLASTV, LASTV )
  261:                ELSE
  262:                   PREVLASTV = LASTV
  263:                END IF
  264:              END IF
  265:    20    CONTINUE
  266:       ELSE
  267:          PREVLASTV = 1
  268:          DO 40 I = K, 1, -1
  269:             IF( TAU( I ).EQ.ZERO ) THEN
  270: *
  271: *              H(i)  =  I
  272: *
  273:                DO 30 J = I, K
  274:                   T( J, I ) = ZERO
  275:    30          CONTINUE
  276:             ELSE
  277: *
  278: *              general case
  279: *
  280:                IF( I.LT.K ) THEN
  281:                   IF( LSAME( STOREV, 'C' ) ) THEN
  282:                      VII = V( N-K+I, I )
  283:                      V( N-K+I, I ) = ONE
  284: !                    Skip any leading zeros.
  285:                      DO LASTV = 1, I-1
  286:                         IF( V( LASTV, I ).NE.ZERO ) EXIT
  287:                      END DO
  288:                      J = MAX( LASTV, PREVLASTV )
  289: *
  290: *                    T(i+1:k,i) :=
  291: *                            - tau(i) * V(j:n-k+i,i+1:k)**H * V(j:n-k+i,i)
  292: *
  293:                      CALL ZGEMV( 'Conjugate transpose', N-K+I-J+1, K-I,
  294:      $                           -TAU( I ), V( J, I+1 ), LDV, V( J, I ),
  295:      $                           1, ZERO, T( I+1, I ), 1 )
  296:                      V( N-K+I, I ) = VII
  297:                   ELSE
  298:                      VII = V( I, N-K+I )
  299:                      V( I, N-K+I ) = ONE
  300: !                    Skip any leading zeros.
  301:                      DO LASTV = 1, I-1
  302:                         IF( V( I, LASTV ).NE.ZERO ) EXIT
  303:                      END DO
  304:                      J = MAX( LASTV, PREVLASTV )
  305: *
  306: *                    T(i+1:k,i) :=
  307: *                            - tau(i) * V(i+1:k,j:n-k+i) * V(i,j:n-k+i)**H
  308: *
  309:                      CALL ZLACGV( N-K+I-1-J+1, V( I, J ), LDV )
  310:                      CALL ZGEMV( 'No transpose', K-I, N-K+I-J+1,
  311:      $                    -TAU( I ), V( I+1, J ), LDV, V( I, J ), LDV,
  312:      $                    ZERO, T( I+1, I ), 1 )
  313:                      CALL ZLACGV( N-K+I-1-J+1, V( I, J ), LDV )
  314:                      V( I, N-K+I ) = VII
  315:                   END IF
  316: *
  317: *                 T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i)
  318: *
  319:                   CALL ZTRMV( 'Lower', 'No transpose', 'Non-unit', K-I,
  320:      $                        T( I+1, I+1 ), LDT, T( I+1, I ), 1 )
  321:                   IF( I.GT.1 ) THEN
  322:                      PREVLASTV = MIN( PREVLASTV, LASTV )
  323:                   ELSE
  324:                      PREVLASTV = LASTV
  325:                   END IF
  326:                END IF
  327:                T( I, I ) = TAU( I )
  328:             END IF
  329:    40    CONTINUE
  330:       END IF
  331:       RETURN
  332: *
  333: *     End of ZLARFT
  334: *
  335:       END

CVSweb interface <joel.bertrand@systella.fr>