File:  [local] / rpl / lapack / lapack / zlarfgp.f
Revision 1.8: download - view: text, annotated - select for diffs - revision graph
Wed Aug 22 09:48:37 2012 UTC (11 years, 8 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_9, rpl-4_1_10, HEAD
Cohérence

    1: *> \brief \b ZLARFGP
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZLARFGP + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlarfgp.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlarfgp.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlarfgp.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLARFGP( N, ALPHA, X, INCX, TAU )
   22:    23: *       .. Scalar Arguments ..
   24: *       INTEGER            INCX, N
   25: *       COMPLEX*16         ALPHA, TAU
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       COMPLEX*16         X( * )
   29: *       ..
   30: *  
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> ZLARFGP generates a complex elementary reflector H of order n, such
   38: *> that
   39: *>
   40: *>       H**H * ( alpha ) = ( beta ),   H**H * H = I.
   41: *>              (   x   )   (   0  )
   42: *>
   43: *> where alpha and beta are scalars, beta is real and non-negative, and
   44: *> x is an (n-1)-element complex vector.  H is represented in the form
   45: *>
   46: *>       H = I - tau * ( 1 ) * ( 1 v**H ) ,
   47: *>                     ( v )
   48: *>
   49: *> where tau is a complex scalar and v is a complex (n-1)-element
   50: *> vector. Note that H is not hermitian.
   51: *>
   52: *> If the elements of x are all zero and alpha is real, then tau = 0
   53: *> and H is taken to be the unit matrix.
   54: *> \endverbatim
   55: *
   56: *  Arguments:
   57: *  ==========
   58: *
   59: *> \param[in] N
   60: *> \verbatim
   61: *>          N is INTEGER
   62: *>          The order of the elementary reflector.
   63: *> \endverbatim
   64: *>
   65: *> \param[in,out] ALPHA
   66: *> \verbatim
   67: *>          ALPHA is COMPLEX*16
   68: *>          On entry, the value alpha.
   69: *>          On exit, it is overwritten with the value beta.
   70: *> \endverbatim
   71: *>
   72: *> \param[in,out] X
   73: *> \verbatim
   74: *>          X is COMPLEX*16 array, dimension
   75: *>                         (1+(N-2)*abs(INCX))
   76: *>          On entry, the vector x.
   77: *>          On exit, it is overwritten with the vector v.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] INCX
   81: *> \verbatim
   82: *>          INCX is INTEGER
   83: *>          The increment between elements of X. INCX > 0.
   84: *> \endverbatim
   85: *>
   86: *> \param[out] TAU
   87: *> \verbatim
   88: *>          TAU is COMPLEX*16
   89: *>          The value tau.
   90: *> \endverbatim
   91: *
   92: *  Authors:
   93: *  ========
   94: *
   95: *> \author Univ. of Tennessee 
   96: *> \author Univ. of California Berkeley 
   97: *> \author Univ. of Colorado Denver 
   98: *> \author NAG Ltd. 
   99: *
  100: *> \date November 2011
  101: *
  102: *> \ingroup complex16OTHERauxiliary
  103: *
  104: *  =====================================================================
  105:       SUBROUTINE ZLARFGP( N, ALPHA, X, INCX, TAU )
  106: *
  107: *  -- LAPACK auxiliary routine (version 3.4.0) --
  108: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  109: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  110: *     November 2011
  111: *
  112: *     .. Scalar Arguments ..
  113:       INTEGER            INCX, N
  114:       COMPLEX*16         ALPHA, TAU
  115: *     ..
  116: *     .. Array Arguments ..
  117:       COMPLEX*16         X( * )
  118: *     ..
  119: *
  120: *  =====================================================================
  121: *
  122: *     .. Parameters ..
  123:       DOUBLE PRECISION   TWO, ONE, ZERO
  124:       PARAMETER          ( TWO = 2.0D+0, ONE = 1.0D+0, ZERO = 0.0D+0 )
  125: *     ..
  126: *     .. Local Scalars ..
  127:       INTEGER            J, KNT
  128:       DOUBLE PRECISION   ALPHI, ALPHR, BETA, BIGNUM, SMLNUM, XNORM
  129:       COMPLEX*16         SAVEALPHA
  130: *     ..
  131: *     .. External Functions ..
  132:       DOUBLE PRECISION   DLAMCH, DLAPY3, DLAPY2, DZNRM2
  133:       COMPLEX*16         ZLADIV
  134:       EXTERNAL           DLAMCH, DLAPY3, DLAPY2, DZNRM2, ZLADIV
  135: *     ..
  136: *     .. Intrinsic Functions ..
  137:       INTRINSIC          ABS, DBLE, DCMPLX, DIMAG, SIGN
  138: *     ..
  139: *     .. External Subroutines ..
  140:       EXTERNAL           ZDSCAL, ZSCAL
  141: *     ..
  142: *     .. Executable Statements ..
  143: *
  144:       IF( N.LE.0 ) THEN
  145:          TAU = ZERO
  146:          RETURN
  147:       END IF
  148: *
  149:       XNORM = DZNRM2( N-1, X, INCX )
  150:       ALPHR = DBLE( ALPHA )
  151:       ALPHI = DIMAG( ALPHA )
  152: *
  153:       IF( XNORM.EQ.ZERO ) THEN
  154: *
  155: *        H  =  [1-alpha/abs(alpha) 0; 0 I], sign chosen so ALPHA >= 0.
  156: *
  157:          IF( ALPHI.EQ.ZERO ) THEN
  158:             IF( ALPHR.GE.ZERO ) THEN
  159: *              When TAU.eq.ZERO, the vector is special-cased to be
  160: *              all zeros in the application routines.  We do not need
  161: *              to clear it.
  162:                TAU = ZERO
  163:             ELSE
  164: *              However, the application routines rely on explicit
  165: *              zero checks when TAU.ne.ZERO, and we must clear X.
  166:                TAU = TWO
  167:                DO J = 1, N-1
  168:                   X( 1 + (J-1)*INCX ) = ZERO
  169:                END DO
  170:                ALPHA = -ALPHA
  171:             END IF
  172:          ELSE
  173: *           Only "reflecting" the diagonal entry to be real and non-negative.
  174:             XNORM = DLAPY2( ALPHR, ALPHI )
  175:             TAU = DCMPLX( ONE - ALPHR / XNORM, -ALPHI / XNORM )
  176:             DO J = 1, N-1
  177:                X( 1 + (J-1)*INCX ) = ZERO
  178:             END DO
  179:             ALPHA = XNORM
  180:          END IF
  181:       ELSE
  182: *
  183: *        general case
  184: *
  185:          BETA = SIGN( DLAPY3( ALPHR, ALPHI, XNORM ), ALPHR )
  186:          SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'E' )
  187:          BIGNUM = ONE / SMLNUM
  188: *
  189:          KNT = 0
  190:          IF( ABS( BETA ).LT.SMLNUM ) THEN
  191: *
  192: *           XNORM, BETA may be inaccurate; scale X and recompute them
  193: *
  194:    10       CONTINUE
  195:             KNT = KNT + 1
  196:             CALL ZDSCAL( N-1, BIGNUM, X, INCX )
  197:             BETA = BETA*BIGNUM
  198:             ALPHI = ALPHI*BIGNUM
  199:             ALPHR = ALPHR*BIGNUM
  200:             IF( ABS( BETA ).LT.SMLNUM )
  201:      $         GO TO 10
  202: *
  203: *           New BETA is at most 1, at least SMLNUM
  204: *
  205:             XNORM = DZNRM2( N-1, X, INCX )
  206:             ALPHA = DCMPLX( ALPHR, ALPHI )
  207:             BETA = SIGN( DLAPY3( ALPHR, ALPHI, XNORM ), ALPHR )
  208:          END IF
  209:          SAVEALPHA = ALPHA
  210:          ALPHA = ALPHA + BETA
  211:          IF( BETA.LT.ZERO ) THEN
  212:             BETA = -BETA
  213:             TAU = -ALPHA / BETA
  214:          ELSE
  215:             ALPHR = ALPHI * (ALPHI/DBLE( ALPHA ))
  216:             ALPHR = ALPHR + XNORM * (XNORM/DBLE( ALPHA ))
  217:             TAU = DCMPLX( ALPHR/BETA, -ALPHI/BETA )
  218:             ALPHA = DCMPLX( -ALPHR, ALPHI )
  219:          END IF
  220:          ALPHA = ZLADIV( DCMPLX( ONE ), ALPHA )
  221: *
  222:          IF ( ABS(TAU).LE.SMLNUM ) THEN
  223: *
  224: *           In the case where the computed TAU ends up being a denormalized number,
  225: *           it loses relative accuracy. This is a BIG problem. Solution: flush TAU 
  226: *           to ZERO (or TWO or whatever makes a nonnegative real number for BETA).
  227: *
  228: *           (Bug report provided by Pat Quillen from MathWorks on Jul 29, 2009.)
  229: *           (Thanks Pat. Thanks MathWorks.)
  230: *
  231:             ALPHR = DBLE( SAVEALPHA )
  232:             ALPHI = DIMAG( SAVEALPHA )
  233:             IF( ALPHI.EQ.ZERO ) THEN
  234:                IF( ALPHR.GE.ZERO ) THEN
  235:                   TAU = ZERO
  236:                ELSE
  237:                   TAU = TWO
  238:                   DO J = 1, N-1
  239:                      X( 1 + (J-1)*INCX ) = ZERO
  240:                   END DO
  241:                   BETA = -SAVEALPHA
  242:                END IF
  243:             ELSE
  244:                XNORM = DLAPY2( ALPHR, ALPHI )
  245:                TAU = DCMPLX( ONE - ALPHR / XNORM, -ALPHI / XNORM )
  246:                DO J = 1, N-1
  247:                   X( 1 + (J-1)*INCX ) = ZERO
  248:                END DO
  249:                BETA = XNORM
  250:             END IF
  251: *
  252:          ELSE 
  253: *
  254: *           This is the general case.
  255: *
  256:             CALL ZSCAL( N-1, ALPHA, X, INCX )
  257: *
  258:          END IF
  259: *
  260: *        If BETA is subnormal, it may lose relative accuracy
  261: *
  262:          DO 20 J = 1, KNT
  263:             BETA = BETA*SMLNUM
  264:  20      CONTINUE
  265:          ALPHA = BETA
  266:       END IF
  267: *
  268:       RETURN
  269: *
  270: *     End of ZLARFGP
  271: *
  272:       END

CVSweb interface <joel.bertrand@systella.fr>