File:  [local] / rpl / lapack / lapack / zlarfgp.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:31 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZLARFGP generates an elementary reflector (Householder matrix) with non-negative beta.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZLARFGP + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlarfgp.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlarfgp.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlarfgp.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLARFGP( N, ALPHA, X, INCX, TAU )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       INTEGER            INCX, N
   25: *       COMPLEX*16         ALPHA, TAU
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       COMPLEX*16         X( * )
   29: *       ..
   30: *
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> ZLARFGP generates a complex elementary reflector H of order n, such
   38: *> that
   39: *>
   40: *>       H**H * ( alpha ) = ( beta ),   H**H * H = I.
   41: *>              (   x   )   (   0  )
   42: *>
   43: *> where alpha and beta are scalars, beta is real and non-negative, and
   44: *> x is an (n-1)-element complex vector.  H is represented in the form
   45: *>
   46: *>       H = I - tau * ( 1 ) * ( 1 v**H ) ,
   47: *>                     ( v )
   48: *>
   49: *> where tau is a complex scalar and v is a complex (n-1)-element
   50: *> vector. Note that H is not hermitian.
   51: *>
   52: *> If the elements of x are all zero and alpha is real, then tau = 0
   53: *> and H is taken to be the unit matrix.
   54: *> \endverbatim
   55: *
   56: *  Arguments:
   57: *  ==========
   58: *
   59: *> \param[in] N
   60: *> \verbatim
   61: *>          N is INTEGER
   62: *>          The order of the elementary reflector.
   63: *> \endverbatim
   64: *>
   65: *> \param[in,out] ALPHA
   66: *> \verbatim
   67: *>          ALPHA is COMPLEX*16
   68: *>          On entry, the value alpha.
   69: *>          On exit, it is overwritten with the value beta.
   70: *> \endverbatim
   71: *>
   72: *> \param[in,out] X
   73: *> \verbatim
   74: *>          X is COMPLEX*16 array, dimension
   75: *>                         (1+(N-2)*abs(INCX))
   76: *>          On entry, the vector x.
   77: *>          On exit, it is overwritten with the vector v.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] INCX
   81: *> \verbatim
   82: *>          INCX is INTEGER
   83: *>          The increment between elements of X. INCX > 0.
   84: *> \endverbatim
   85: *>
   86: *> \param[out] TAU
   87: *> \verbatim
   88: *>          TAU is COMPLEX*16
   89: *>          The value tau.
   90: *> \endverbatim
   91: *
   92: *  Authors:
   93: *  ========
   94: *
   95: *> \author Univ. of Tennessee
   96: *> \author Univ. of California Berkeley
   97: *> \author Univ. of Colorado Denver
   98: *> \author NAG Ltd.
   99: *
  100: *> \ingroup complex16OTHERauxiliary
  101: *
  102: *  =====================================================================
  103:       SUBROUTINE ZLARFGP( N, ALPHA, X, INCX, TAU )
  104: *
  105: *  -- LAPACK auxiliary routine --
  106: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  107: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  108: *
  109: *     .. Scalar Arguments ..
  110:       INTEGER            INCX, N
  111:       COMPLEX*16         ALPHA, TAU
  112: *     ..
  113: *     .. Array Arguments ..
  114:       COMPLEX*16         X( * )
  115: *     ..
  116: *
  117: *  =====================================================================
  118: *
  119: *     .. Parameters ..
  120:       DOUBLE PRECISION   TWO, ONE, ZERO
  121:       PARAMETER          ( TWO = 2.0D+0, ONE = 1.0D+0, ZERO = 0.0D+0 )
  122: *     ..
  123: *     .. Local Scalars ..
  124:       INTEGER            J, KNT
  125:       DOUBLE PRECISION   ALPHI, ALPHR, BETA, BIGNUM, SMLNUM, XNORM
  126:       COMPLEX*16         SAVEALPHA
  127: *     ..
  128: *     .. External Functions ..
  129:       DOUBLE PRECISION   DLAMCH, DLAPY3, DLAPY2, DZNRM2
  130:       COMPLEX*16         ZLADIV
  131:       EXTERNAL           DLAMCH, DLAPY3, DLAPY2, DZNRM2, ZLADIV
  132: *     ..
  133: *     .. Intrinsic Functions ..
  134:       INTRINSIC          ABS, DBLE, DCMPLX, DIMAG, SIGN
  135: *     ..
  136: *     .. External Subroutines ..
  137:       EXTERNAL           ZDSCAL, ZSCAL
  138: *     ..
  139: *     .. Executable Statements ..
  140: *
  141:       IF( N.LE.0 ) THEN
  142:          TAU = ZERO
  143:          RETURN
  144:       END IF
  145: *
  146:       XNORM = DZNRM2( N-1, X, INCX )
  147:       ALPHR = DBLE( ALPHA )
  148:       ALPHI = DIMAG( ALPHA )
  149: *
  150:       IF( XNORM.EQ.ZERO ) THEN
  151: *
  152: *        H  =  [1-alpha/abs(alpha) 0; 0 I], sign chosen so ALPHA >= 0.
  153: *
  154:          IF( ALPHI.EQ.ZERO ) THEN
  155:             IF( ALPHR.GE.ZERO ) THEN
  156: *              When TAU.eq.ZERO, the vector is special-cased to be
  157: *              all zeros in the application routines.  We do not need
  158: *              to clear it.
  159:                TAU = ZERO
  160:             ELSE
  161: *              However, the application routines rely on explicit
  162: *              zero checks when TAU.ne.ZERO, and we must clear X.
  163:                TAU = TWO
  164:                DO J = 1, N-1
  165:                   X( 1 + (J-1)*INCX ) = ZERO
  166:                END DO
  167:                ALPHA = -ALPHA
  168:             END IF
  169:          ELSE
  170: *           Only "reflecting" the diagonal entry to be real and non-negative.
  171:             XNORM = DLAPY2( ALPHR, ALPHI )
  172:             TAU = DCMPLX( ONE - ALPHR / XNORM, -ALPHI / XNORM )
  173:             DO J = 1, N-1
  174:                X( 1 + (J-1)*INCX ) = ZERO
  175:             END DO
  176:             ALPHA = XNORM
  177:          END IF
  178:       ELSE
  179: *
  180: *        general case
  181: *
  182:          BETA = SIGN( DLAPY3( ALPHR, ALPHI, XNORM ), ALPHR )
  183:          SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'E' )
  184:          BIGNUM = ONE / SMLNUM
  185: *
  186:          KNT = 0
  187:          IF( ABS( BETA ).LT.SMLNUM ) THEN
  188: *
  189: *           XNORM, BETA may be inaccurate; scale X and recompute them
  190: *
  191:    10       CONTINUE
  192:             KNT = KNT + 1
  193:             CALL ZDSCAL( N-1, BIGNUM, X, INCX )
  194:             BETA = BETA*BIGNUM
  195:             ALPHI = ALPHI*BIGNUM
  196:             ALPHR = ALPHR*BIGNUM
  197:             IF( (ABS( BETA ).LT.SMLNUM) .AND. (KNT .LT. 20) )
  198:      $         GO TO 10
  199: *
  200: *           New BETA is at most 1, at least SMLNUM
  201: *
  202:             XNORM = DZNRM2( N-1, X, INCX )
  203:             ALPHA = DCMPLX( ALPHR, ALPHI )
  204:             BETA = SIGN( DLAPY3( ALPHR, ALPHI, XNORM ), ALPHR )
  205:          END IF
  206:          SAVEALPHA = ALPHA
  207:          ALPHA = ALPHA + BETA
  208:          IF( BETA.LT.ZERO ) THEN
  209:             BETA = -BETA
  210:             TAU = -ALPHA / BETA
  211:          ELSE
  212:             ALPHR = ALPHI * (ALPHI/DBLE( ALPHA ))
  213:             ALPHR = ALPHR + XNORM * (XNORM/DBLE( ALPHA ))
  214:             TAU = DCMPLX( ALPHR/BETA, -ALPHI/BETA )
  215:             ALPHA = DCMPLX( -ALPHR, ALPHI )
  216:          END IF
  217:          ALPHA = ZLADIV( DCMPLX( ONE ), ALPHA )
  218: *
  219:          IF ( ABS(TAU).LE.SMLNUM ) THEN
  220: *
  221: *           In the case where the computed TAU ends up being a denormalized number,
  222: *           it loses relative accuracy. This is a BIG problem. Solution: flush TAU
  223: *           to ZERO (or TWO or whatever makes a nonnegative real number for BETA).
  224: *
  225: *           (Bug report provided by Pat Quillen from MathWorks on Jul 29, 2009.)
  226: *           (Thanks Pat. Thanks MathWorks.)
  227: *
  228:             ALPHR = DBLE( SAVEALPHA )
  229:             ALPHI = DIMAG( SAVEALPHA )
  230:             IF( ALPHI.EQ.ZERO ) THEN
  231:                IF( ALPHR.GE.ZERO ) THEN
  232:                   TAU = ZERO
  233:                ELSE
  234:                   TAU = TWO
  235:                   DO J = 1, N-1
  236:                      X( 1 + (J-1)*INCX ) = ZERO
  237:                   END DO
  238:                   BETA = DBLE( -SAVEALPHA )
  239:                END IF
  240:             ELSE
  241:                XNORM = DLAPY2( ALPHR, ALPHI )
  242:                TAU = DCMPLX( ONE - ALPHR / XNORM, -ALPHI / XNORM )
  243:                DO J = 1, N-1
  244:                   X( 1 + (J-1)*INCX ) = ZERO
  245:                END DO
  246:                BETA = XNORM
  247:             END IF
  248: *
  249:          ELSE
  250: *
  251: *           This is the general case.
  252: *
  253:             CALL ZSCAL( N-1, ALPHA, X, INCX )
  254: *
  255:          END IF
  256: *
  257: *        If BETA is subnormal, it may lose relative accuracy
  258: *
  259:          DO 20 J = 1, KNT
  260:             BETA = BETA*SMLNUM
  261:  20      CONTINUE
  262:          ALPHA = BETA
  263:       END IF
  264: *
  265:       RETURN
  266: *
  267: *     End of ZLARFGP
  268: *
  269:       END

CVSweb interface <joel.bertrand@systella.fr>