Annotation of rpl/lapack/lapack/zlarfgp.f, revision 1.3

1.1       bertrand    1:       SUBROUTINE ZLARFGP( N, ALPHA, X, INCX, TAU )
                      2: *
                      3: *  -- LAPACK auxiliary routine (version 3.2.2) --
                      4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      6: *     June 2010
                      7: *
                      8: *     .. Scalar Arguments ..
                      9:       INTEGER            INCX, N
                     10:       COMPLEX*16         ALPHA, TAU
                     11: *     ..
                     12: *     .. Array Arguments ..
                     13:       COMPLEX*16         X( * )
                     14: *     ..
                     15: *
                     16: *  Purpose
                     17: *  =======
                     18: *
                     19: *  ZLARFGP generates a complex elementary reflector H of order n, such
                     20: *  that
                     21: *
                     22: *        H' * ( alpha ) = ( beta ),   H' * H = I.
                     23: *             (   x   )   (   0  )
                     24: *
                     25: *  where alpha and beta are scalars, beta is real and non-negative, and
                     26: *  x is an (n-1)-element complex vector.  H is represented in the form
                     27: *
                     28: *        H = I - tau * ( 1 ) * ( 1 v' ) ,
                     29: *                      ( v )
                     30: *
                     31: *  where tau is a complex scalar and v is a complex (n-1)-element
                     32: *  vector. Note that H is not hermitian.
                     33: *
                     34: *  If the elements of x are all zero and alpha is real, then tau = 0
                     35: *  and H is taken to be the unit matrix.
                     36: *
                     37: *  Arguments
                     38: *  =========
                     39: *
                     40: *  N       (input) INTEGER
                     41: *          The order of the elementary reflector.
                     42: *
                     43: *  ALPHA   (input/output) COMPLEX*16
                     44: *          On entry, the value alpha.
                     45: *          On exit, it is overwritten with the value beta.
                     46: *
                     47: *  X       (input/output) COMPLEX*16 array, dimension
                     48: *                         (1+(N-2)*abs(INCX))
                     49: *          On entry, the vector x.
                     50: *          On exit, it is overwritten with the vector v.
                     51: *
                     52: *  INCX    (input) INTEGER
                     53: *          The increment between elements of X. INCX > 0.
                     54: *
                     55: *  TAU     (output) COMPLEX*16
                     56: *          The value tau.
                     57: *
                     58: *  =====================================================================
                     59: *
                     60: *     .. Parameters ..
                     61:       DOUBLE PRECISION   TWO, ONE, ZERO
                     62:       PARAMETER          ( TWO = 2.0D+0, ONE = 1.0D+0, ZERO = 0.0D+0 )
                     63: *     ..
                     64: *     .. Local Scalars ..
                     65:       INTEGER            J, KNT
                     66:       DOUBLE PRECISION   ALPHI, ALPHR, BETA, BIGNUM, SMLNUM, XNORM
                     67:       COMPLEX*16         SAVEALPHA
                     68: *     ..
                     69: *     .. External Functions ..
                     70:       DOUBLE PRECISION   DLAMCH, DLAPY3, DLAPY2, DZNRM2
                     71:       COMPLEX*16         ZLADIV
                     72:       EXTERNAL           DLAMCH, DLAPY3, DLAPY2, DZNRM2, ZLADIV
                     73: *     ..
                     74: *     .. Intrinsic Functions ..
                     75:       INTRINSIC          ABS, DBLE, DCMPLX, DIMAG, SIGN
                     76: *     ..
                     77: *     .. External Subroutines ..
                     78:       EXTERNAL           ZDSCAL, ZSCAL
                     79: *     ..
                     80: *     .. Executable Statements ..
                     81: *
                     82:       IF( N.LE.0 ) THEN
                     83:          TAU = ZERO
                     84:          RETURN
                     85:       END IF
                     86: *
                     87:       XNORM = DZNRM2( N-1, X, INCX )
                     88:       ALPHR = DBLE( ALPHA )
                     89:       ALPHI = DIMAG( ALPHA )
                     90: *
                     91:       IF( XNORM.EQ.ZERO ) THEN
                     92: *
                     93: *        H  =  [1-alpha/abs(alpha) 0; 0 I], sign chosen so ALPHA >= 0.
                     94: *
                     95:          IF( ALPHI.EQ.ZERO ) THEN
                     96:             IF( ALPHR.GE.ZERO ) THEN
                     97: *              When TAU.eq.ZERO, the vector is special-cased to be
                     98: *              all zeros in the application routines.  We do not need
                     99: *              to clear it.
                    100:                TAU = ZERO
                    101:             ELSE
                    102: *              However, the application routines rely on explicit
                    103: *              zero checks when TAU.ne.ZERO, and we must clear X.
                    104:                TAU = TWO
                    105:                DO J = 1, N-1
                    106:                   X( 1 + (J-1)*INCX ) = ZERO
                    107:                END DO
                    108:                ALPHA = -ALPHA
                    109:             END IF
                    110:          ELSE
                    111: *           Only "reflecting" the diagonal entry to be real and non-negative.
                    112:             XNORM = DLAPY2( ALPHR, ALPHI )
                    113:             TAU = DCMPLX( ONE - ALPHR / XNORM, -ALPHI / XNORM )
                    114:             DO J = 1, N-1
                    115:                X( 1 + (J-1)*INCX ) = ZERO
                    116:             END DO
                    117:             ALPHA = XNORM
                    118:          END IF
                    119:       ELSE
                    120: *
                    121: *        general case
                    122: *
                    123:          BETA = SIGN( DLAPY3( ALPHR, ALPHI, XNORM ), ALPHR )
                    124:          SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'E' )
                    125:          BIGNUM = ONE / SMLNUM
                    126: *
                    127:          KNT = 0
                    128:          IF( ABS( BETA ).LT.SMLNUM ) THEN
                    129: *
                    130: *           XNORM, BETA may be inaccurate; scale X and recompute them
                    131: *
                    132:    10       CONTINUE
                    133:             KNT = KNT + 1
                    134:             CALL ZDSCAL( N-1, BIGNUM, X, INCX )
                    135:             BETA = BETA*BIGNUM
                    136:             ALPHI = ALPHI*BIGNUM
                    137:             ALPHR = ALPHR*BIGNUM
                    138:             IF( ABS( BETA ).LT.SMLNUM )
                    139:      $         GO TO 10
                    140: *
                    141: *           New BETA is at most 1, at least SMLNUM
                    142: *
                    143:             XNORM = DZNRM2( N-1, X, INCX )
                    144:             ALPHA = DCMPLX( ALPHR, ALPHI )
                    145:             BETA = SIGN( DLAPY3( ALPHR, ALPHI, XNORM ), ALPHR )
                    146:          END IF
                    147:          SAVEALPHA = ALPHA
                    148:          ALPHA = ALPHA + BETA
                    149:          IF( BETA.LT.ZERO ) THEN
                    150:             BETA = -BETA
                    151:             TAU = -ALPHA / BETA
                    152:          ELSE
                    153:             ALPHR = ALPHI * (ALPHI/DBLE( ALPHA ))
                    154:             ALPHR = ALPHR + XNORM * (XNORM/DBLE( ALPHA ))
                    155:             TAU = DCMPLX( ALPHR/BETA, -ALPHI/BETA )
                    156:             ALPHA = DCMPLX( -ALPHR, ALPHI )
                    157:          END IF
                    158:          ALPHA = ZLADIV( DCMPLX( ONE ), ALPHA )
                    159: *
                    160:          IF ( ABS(TAU).LE.SMLNUM ) THEN
                    161: *
                    162: *           In the case where the computed TAU ends up being a denormalized number,
                    163: *           it loses relative accuracy. This is a BIG problem. Solution: flush TAU 
                    164: *           to ZERO (or TWO or whatever makes a nonnegative real number for BETA).
                    165: *
                    166: *           (Bug report provided by Pat Quillen from MathWorks on Jul 29, 2009.)
                    167: *           (Thanks Pat. Thanks MathWorks.)
                    168: *
                    169:             ALPHR = DBLE( SAVEALPHA )
                    170:             ALPHI = DIMAG( SAVEALPHA )
                    171:             IF( ALPHI.EQ.ZERO ) THEN
                    172:                IF( ALPHR.GE.ZERO ) THEN
                    173:                   TAU = ZERO
                    174:                ELSE
                    175:                   TAU = TWO
                    176:                   DO J = 1, N-1
                    177:                      X( 1 + (J-1)*INCX ) = ZERO
                    178:                   END DO
                    179:                   BETA = -SAVEALPHA
                    180:                END IF
                    181:             ELSE
                    182:                XNORM = DLAPY2( ALPHR, ALPHI )
                    183:                TAU = DCMPLX( ONE - ALPHR / XNORM, -ALPHI / XNORM )
                    184:                DO J = 1, N-1
                    185:                   X( 1 + (J-1)*INCX ) = ZERO
                    186:                END DO
                    187:                BETA = XNORM
                    188:             END IF
                    189: *
                    190:          ELSE 
                    191: *
                    192: *           This is the general case.
                    193: *
                    194:             CALL ZSCAL( N-1, ALPHA, X, INCX )
                    195: *
                    196:          END IF
                    197: *
                    198: *        If BETA is subnormal, it may lose relative accuracy
                    199: *
                    200:          DO 20 J = 1, KNT
                    201:             BETA = BETA*SMLNUM
                    202:  20      CONTINUE
                    203:          ALPHA = BETA
                    204:       END IF
                    205: *
                    206:       RETURN
                    207: *
                    208: *     End of ZLARFGP
                    209: *
                    210:       END

CVSweb interface <joel.bertrand@systella.fr>