Annotation of rpl/lapack/lapack/zlarfgp.f, revision 1.10

1.9       bertrand    1: *> \brief \b ZLARFGP generates an elementary reflector (Householder matrix) with non-negatibe beta.
1.6       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download ZLARFGP + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlarfgp.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlarfgp.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlarfgp.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZLARFGP( N, ALPHA, X, INCX, TAU )
                     22: * 
                     23: *       .. Scalar Arguments ..
                     24: *       INTEGER            INCX, N
                     25: *       COMPLEX*16         ALPHA, TAU
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       COMPLEX*16         X( * )
                     29: *       ..
                     30: *  
                     31: *
                     32: *> \par Purpose:
                     33: *  =============
                     34: *>
                     35: *> \verbatim
                     36: *>
                     37: *> ZLARFGP generates a complex elementary reflector H of order n, such
                     38: *> that
                     39: *>
                     40: *>       H**H * ( alpha ) = ( beta ),   H**H * H = I.
                     41: *>              (   x   )   (   0  )
                     42: *>
                     43: *> where alpha and beta are scalars, beta is real and non-negative, and
                     44: *> x is an (n-1)-element complex vector.  H is represented in the form
                     45: *>
                     46: *>       H = I - tau * ( 1 ) * ( 1 v**H ) ,
                     47: *>                     ( v )
                     48: *>
                     49: *> where tau is a complex scalar and v is a complex (n-1)-element
                     50: *> vector. Note that H is not hermitian.
                     51: *>
                     52: *> If the elements of x are all zero and alpha is real, then tau = 0
                     53: *> and H is taken to be the unit matrix.
                     54: *> \endverbatim
                     55: *
                     56: *  Arguments:
                     57: *  ==========
                     58: *
                     59: *> \param[in] N
                     60: *> \verbatim
                     61: *>          N is INTEGER
                     62: *>          The order of the elementary reflector.
                     63: *> \endverbatim
                     64: *>
                     65: *> \param[in,out] ALPHA
                     66: *> \verbatim
                     67: *>          ALPHA is COMPLEX*16
                     68: *>          On entry, the value alpha.
                     69: *>          On exit, it is overwritten with the value beta.
                     70: *> \endverbatim
                     71: *>
                     72: *> \param[in,out] X
                     73: *> \verbatim
                     74: *>          X is COMPLEX*16 array, dimension
                     75: *>                         (1+(N-2)*abs(INCX))
                     76: *>          On entry, the vector x.
                     77: *>          On exit, it is overwritten with the vector v.
                     78: *> \endverbatim
                     79: *>
                     80: *> \param[in] INCX
                     81: *> \verbatim
                     82: *>          INCX is INTEGER
                     83: *>          The increment between elements of X. INCX > 0.
                     84: *> \endverbatim
                     85: *>
                     86: *> \param[out] TAU
                     87: *> \verbatim
                     88: *>          TAU is COMPLEX*16
                     89: *>          The value tau.
                     90: *> \endverbatim
                     91: *
                     92: *  Authors:
                     93: *  ========
                     94: *
                     95: *> \author Univ. of Tennessee 
                     96: *> \author Univ. of California Berkeley 
                     97: *> \author Univ. of Colorado Denver 
                     98: *> \author NAG Ltd. 
                     99: *
1.9       bertrand  100: *> \date September 2012
1.6       bertrand  101: *
                    102: *> \ingroup complex16OTHERauxiliary
                    103: *
                    104: *  =====================================================================
1.1       bertrand  105:       SUBROUTINE ZLARFGP( N, ALPHA, X, INCX, TAU )
                    106: *
1.9       bertrand  107: *  -- LAPACK auxiliary routine (version 3.4.2) --
1.1       bertrand  108: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    109: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9       bertrand  110: *     September 2012
1.1       bertrand  111: *
                    112: *     .. Scalar Arguments ..
                    113:       INTEGER            INCX, N
                    114:       COMPLEX*16         ALPHA, TAU
                    115: *     ..
                    116: *     .. Array Arguments ..
                    117:       COMPLEX*16         X( * )
                    118: *     ..
                    119: *
                    120: *  =====================================================================
                    121: *
                    122: *     .. Parameters ..
                    123:       DOUBLE PRECISION   TWO, ONE, ZERO
                    124:       PARAMETER          ( TWO = 2.0D+0, ONE = 1.0D+0, ZERO = 0.0D+0 )
                    125: *     ..
                    126: *     .. Local Scalars ..
                    127:       INTEGER            J, KNT
                    128:       DOUBLE PRECISION   ALPHI, ALPHR, BETA, BIGNUM, SMLNUM, XNORM
                    129:       COMPLEX*16         SAVEALPHA
                    130: *     ..
                    131: *     .. External Functions ..
                    132:       DOUBLE PRECISION   DLAMCH, DLAPY3, DLAPY2, DZNRM2
                    133:       COMPLEX*16         ZLADIV
                    134:       EXTERNAL           DLAMCH, DLAPY3, DLAPY2, DZNRM2, ZLADIV
                    135: *     ..
                    136: *     .. Intrinsic Functions ..
                    137:       INTRINSIC          ABS, DBLE, DCMPLX, DIMAG, SIGN
                    138: *     ..
                    139: *     .. External Subroutines ..
                    140:       EXTERNAL           ZDSCAL, ZSCAL
                    141: *     ..
                    142: *     .. Executable Statements ..
                    143: *
                    144:       IF( N.LE.0 ) THEN
                    145:          TAU = ZERO
                    146:          RETURN
                    147:       END IF
                    148: *
                    149:       XNORM = DZNRM2( N-1, X, INCX )
                    150:       ALPHR = DBLE( ALPHA )
                    151:       ALPHI = DIMAG( ALPHA )
                    152: *
                    153:       IF( XNORM.EQ.ZERO ) THEN
                    154: *
                    155: *        H  =  [1-alpha/abs(alpha) 0; 0 I], sign chosen so ALPHA >= 0.
                    156: *
                    157:          IF( ALPHI.EQ.ZERO ) THEN
                    158:             IF( ALPHR.GE.ZERO ) THEN
                    159: *              When TAU.eq.ZERO, the vector is special-cased to be
                    160: *              all zeros in the application routines.  We do not need
                    161: *              to clear it.
                    162:                TAU = ZERO
                    163:             ELSE
                    164: *              However, the application routines rely on explicit
                    165: *              zero checks when TAU.ne.ZERO, and we must clear X.
                    166:                TAU = TWO
                    167:                DO J = 1, N-1
                    168:                   X( 1 + (J-1)*INCX ) = ZERO
                    169:                END DO
                    170:                ALPHA = -ALPHA
                    171:             END IF
                    172:          ELSE
                    173: *           Only "reflecting" the diagonal entry to be real and non-negative.
                    174:             XNORM = DLAPY2( ALPHR, ALPHI )
                    175:             TAU = DCMPLX( ONE - ALPHR / XNORM, -ALPHI / XNORM )
                    176:             DO J = 1, N-1
                    177:                X( 1 + (J-1)*INCX ) = ZERO
                    178:             END DO
                    179:             ALPHA = XNORM
                    180:          END IF
                    181:       ELSE
                    182: *
                    183: *        general case
                    184: *
                    185:          BETA = SIGN( DLAPY3( ALPHR, ALPHI, XNORM ), ALPHR )
                    186:          SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'E' )
                    187:          BIGNUM = ONE / SMLNUM
                    188: *
                    189:          KNT = 0
                    190:          IF( ABS( BETA ).LT.SMLNUM ) THEN
                    191: *
                    192: *           XNORM, BETA may be inaccurate; scale X and recompute them
                    193: *
                    194:    10       CONTINUE
                    195:             KNT = KNT + 1
                    196:             CALL ZDSCAL( N-1, BIGNUM, X, INCX )
                    197:             BETA = BETA*BIGNUM
                    198:             ALPHI = ALPHI*BIGNUM
                    199:             ALPHR = ALPHR*BIGNUM
                    200:             IF( ABS( BETA ).LT.SMLNUM )
                    201:      $         GO TO 10
                    202: *
                    203: *           New BETA is at most 1, at least SMLNUM
                    204: *
                    205:             XNORM = DZNRM2( N-1, X, INCX )
                    206:             ALPHA = DCMPLX( ALPHR, ALPHI )
                    207:             BETA = SIGN( DLAPY3( ALPHR, ALPHI, XNORM ), ALPHR )
                    208:          END IF
                    209:          SAVEALPHA = ALPHA
                    210:          ALPHA = ALPHA + BETA
                    211:          IF( BETA.LT.ZERO ) THEN
                    212:             BETA = -BETA
                    213:             TAU = -ALPHA / BETA
                    214:          ELSE
                    215:             ALPHR = ALPHI * (ALPHI/DBLE( ALPHA ))
                    216:             ALPHR = ALPHR + XNORM * (XNORM/DBLE( ALPHA ))
                    217:             TAU = DCMPLX( ALPHR/BETA, -ALPHI/BETA )
                    218:             ALPHA = DCMPLX( -ALPHR, ALPHI )
                    219:          END IF
                    220:          ALPHA = ZLADIV( DCMPLX( ONE ), ALPHA )
                    221: *
                    222:          IF ( ABS(TAU).LE.SMLNUM ) THEN
                    223: *
                    224: *           In the case where the computed TAU ends up being a denormalized number,
                    225: *           it loses relative accuracy. This is a BIG problem. Solution: flush TAU 
                    226: *           to ZERO (or TWO or whatever makes a nonnegative real number for BETA).
                    227: *
                    228: *           (Bug report provided by Pat Quillen from MathWorks on Jul 29, 2009.)
                    229: *           (Thanks Pat. Thanks MathWorks.)
                    230: *
                    231:             ALPHR = DBLE( SAVEALPHA )
                    232:             ALPHI = DIMAG( SAVEALPHA )
                    233:             IF( ALPHI.EQ.ZERO ) THEN
                    234:                IF( ALPHR.GE.ZERO ) THEN
                    235:                   TAU = ZERO
                    236:                ELSE
                    237:                   TAU = TWO
                    238:                   DO J = 1, N-1
                    239:                      X( 1 + (J-1)*INCX ) = ZERO
                    240:                   END DO
                    241:                   BETA = -SAVEALPHA
                    242:                END IF
                    243:             ELSE
                    244:                XNORM = DLAPY2( ALPHR, ALPHI )
                    245:                TAU = DCMPLX( ONE - ALPHR / XNORM, -ALPHI / XNORM )
                    246:                DO J = 1, N-1
                    247:                   X( 1 + (J-1)*INCX ) = ZERO
                    248:                END DO
                    249:                BETA = XNORM
                    250:             END IF
                    251: *
                    252:          ELSE 
                    253: *
                    254: *           This is the general case.
                    255: *
                    256:             CALL ZSCAL( N-1, ALPHA, X, INCX )
                    257: *
                    258:          END IF
                    259: *
                    260: *        If BETA is subnormal, it may lose relative accuracy
                    261: *
                    262:          DO 20 J = 1, KNT
                    263:             BETA = BETA*SMLNUM
                    264:  20      CONTINUE
                    265:          ALPHA = BETA
                    266:       END IF
                    267: *
                    268:       RETURN
                    269: *
                    270: *     End of ZLARFGP
                    271: *
                    272:       END

CVSweb interface <joel.bertrand@systella.fr>