Annotation of rpl/lapack/lapack/zlarf.f, revision 1.19

1.12      bertrand    1: *> \brief \b ZLARF applies an elementary reflector to a general rectangular matrix.
1.9       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.16      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.16      bertrand    9: *> Download ZLARF + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlarf.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlarf.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlarf.f">
1.9       bertrand   15: *> [TXT]</a>
1.16      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZLARF( SIDE, M, N, V, INCV, TAU, C, LDC, WORK )
1.16      bertrand   22: *
1.9       bertrand   23: *       .. Scalar Arguments ..
                     24: *       CHARACTER          SIDE
                     25: *       INTEGER            INCV, LDC, M, N
                     26: *       COMPLEX*16         TAU
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       COMPLEX*16         C( LDC, * ), V( * ), WORK( * )
                     30: *       ..
1.16      bertrand   31: *
1.9       bertrand   32: *
                     33: *> \par Purpose:
                     34: *  =============
                     35: *>
                     36: *> \verbatim
                     37: *>
                     38: *> ZLARF applies a complex elementary reflector H to a complex M-by-N
                     39: *> matrix C, from either the left or the right. H is represented in the
                     40: *> form
                     41: *>
                     42: *>       H = I - tau * v * v**H
                     43: *>
                     44: *> where tau is a complex scalar and v is a complex vector.
                     45: *>
                     46: *> If tau = 0, then H is taken to be the unit matrix.
                     47: *>
                     48: *> To apply H**H, supply conjg(tau) instead
                     49: *> tau.
                     50: *> \endverbatim
                     51: *
                     52: *  Arguments:
                     53: *  ==========
                     54: *
                     55: *> \param[in] SIDE
                     56: *> \verbatim
                     57: *>          SIDE is CHARACTER*1
                     58: *>          = 'L': form  H * C
                     59: *>          = 'R': form  C * H
                     60: *> \endverbatim
                     61: *>
                     62: *> \param[in] M
                     63: *> \verbatim
                     64: *>          M is INTEGER
                     65: *>          The number of rows of the matrix C.
                     66: *> \endverbatim
                     67: *>
                     68: *> \param[in] N
                     69: *> \verbatim
                     70: *>          N is INTEGER
                     71: *>          The number of columns of the matrix C.
                     72: *> \endverbatim
                     73: *>
                     74: *> \param[in] V
                     75: *> \verbatim
                     76: *>          V is COMPLEX*16 array, dimension
                     77: *>                     (1 + (M-1)*abs(INCV)) if SIDE = 'L'
                     78: *>                  or (1 + (N-1)*abs(INCV)) if SIDE = 'R'
                     79: *>          The vector v in the representation of H. V is not used if
                     80: *>          TAU = 0.
                     81: *> \endverbatim
                     82: *>
                     83: *> \param[in] INCV
                     84: *> \verbatim
                     85: *>          INCV is INTEGER
                     86: *>          The increment between elements of v. INCV <> 0.
                     87: *> \endverbatim
                     88: *>
                     89: *> \param[in] TAU
                     90: *> \verbatim
                     91: *>          TAU is COMPLEX*16
                     92: *>          The value tau in the representation of H.
                     93: *> \endverbatim
                     94: *>
                     95: *> \param[in,out] C
                     96: *> \verbatim
                     97: *>          C is COMPLEX*16 array, dimension (LDC,N)
                     98: *>          On entry, the M-by-N matrix C.
                     99: *>          On exit, C is overwritten by the matrix H * C if SIDE = 'L',
                    100: *>          or C * H if SIDE = 'R'.
                    101: *> \endverbatim
                    102: *>
                    103: *> \param[in] LDC
                    104: *> \verbatim
                    105: *>          LDC is INTEGER
                    106: *>          The leading dimension of the array C. LDC >= max(1,M).
                    107: *> \endverbatim
                    108: *>
                    109: *> \param[out] WORK
                    110: *> \verbatim
                    111: *>          WORK is COMPLEX*16 array, dimension
                    112: *>                         (N) if SIDE = 'L'
                    113: *>                      or (M) if SIDE = 'R'
                    114: *> \endverbatim
                    115: *
                    116: *  Authors:
                    117: *  ========
                    118: *
1.16      bertrand  119: *> \author Univ. of Tennessee
                    120: *> \author Univ. of California Berkeley
                    121: *> \author Univ. of Colorado Denver
                    122: *> \author NAG Ltd.
1.9       bertrand  123: *
                    124: *> \ingroup complex16OTHERauxiliary
                    125: *
                    126: *  =====================================================================
1.1       bertrand  127:       SUBROUTINE ZLARF( SIDE, M, N, V, INCV, TAU, C, LDC, WORK )
                    128: *
1.19    ! bertrand  129: *  -- LAPACK auxiliary routine --
1.1       bertrand  130: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    131: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    132: *
                    133: *     .. Scalar Arguments ..
                    134:       CHARACTER          SIDE
                    135:       INTEGER            INCV, LDC, M, N
                    136:       COMPLEX*16         TAU
                    137: *     ..
                    138: *     .. Array Arguments ..
                    139:       COMPLEX*16         C( LDC, * ), V( * ), WORK( * )
                    140: *     ..
                    141: *
                    142: *  =====================================================================
                    143: *
                    144: *     .. Parameters ..
                    145:       COMPLEX*16         ONE, ZERO
                    146:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ),
                    147:      $                   ZERO = ( 0.0D+0, 0.0D+0 ) )
                    148: *     ..
                    149: *     .. Local Scalars ..
                    150:       LOGICAL            APPLYLEFT
                    151:       INTEGER            I, LASTV, LASTC
                    152: *     ..
                    153: *     .. External Subroutines ..
                    154:       EXTERNAL           ZGEMV, ZGERC
                    155: *     ..
                    156: *     .. External Functions ..
                    157:       LOGICAL            LSAME
                    158:       INTEGER            ILAZLR, ILAZLC
                    159:       EXTERNAL           LSAME, ILAZLR, ILAZLC
                    160: *     ..
                    161: *     .. Executable Statements ..
                    162: *
                    163:       APPLYLEFT = LSAME( SIDE, 'L' )
                    164:       LASTV = 0
                    165:       LASTC = 0
                    166:       IF( TAU.NE.ZERO ) THEN
1.9       bertrand  167: *     Set up variables for scanning V.  LASTV begins pointing to the end
                    168: *     of V.
1.1       bertrand  169:          IF( APPLYLEFT ) THEN
                    170:             LASTV = M
                    171:          ELSE
                    172:             LASTV = N
                    173:          END IF
                    174:          IF( INCV.GT.0 ) THEN
                    175:             I = 1 + (LASTV-1) * INCV
                    176:          ELSE
                    177:             I = 1
                    178:          END IF
1.9       bertrand  179: *     Look for the last non-zero row in V.
1.1       bertrand  180:          DO WHILE( LASTV.GT.0 .AND. V( I ).EQ.ZERO )
                    181:             LASTV = LASTV - 1
                    182:             I = I - INCV
                    183:          END DO
                    184:          IF( APPLYLEFT ) THEN
1.9       bertrand  185: *     Scan for the last non-zero column in C(1:lastv,:).
1.1       bertrand  186:             LASTC = ILAZLC(LASTV, N, C, LDC)
                    187:          ELSE
1.9       bertrand  188: *     Scan for the last non-zero row in C(:,1:lastv).
1.1       bertrand  189:             LASTC = ILAZLR(M, LASTV, C, LDC)
                    190:          END IF
                    191:       END IF
1.9       bertrand  192: *     Note that lastc.eq.0 renders the BLAS operations null; no special
                    193: *     case is needed at this level.
1.1       bertrand  194:       IF( APPLYLEFT ) THEN
                    195: *
                    196: *        Form  H * C
                    197: *
                    198:          IF( LASTV.GT.0 ) THEN
                    199: *
1.8       bertrand  200: *           w(1:lastc,1) := C(1:lastv,1:lastc)**H * v(1:lastv,1)
1.1       bertrand  201: *
                    202:             CALL ZGEMV( 'Conjugate transpose', LASTV, LASTC, ONE,
                    203:      $           C, LDC, V, INCV, ZERO, WORK, 1 )
                    204: *
1.8       bertrand  205: *           C(1:lastv,1:lastc) := C(...) - v(1:lastv,1) * w(1:lastc,1)**H
1.1       bertrand  206: *
                    207:             CALL ZGERC( LASTV, LASTC, -TAU, V, INCV, WORK, 1, C, LDC )
                    208:          END IF
                    209:       ELSE
                    210: *
                    211: *        Form  C * H
                    212: *
                    213:          IF( LASTV.GT.0 ) THEN
                    214: *
                    215: *           w(1:lastc,1) := C(1:lastc,1:lastv) * v(1:lastv,1)
                    216: *
                    217:             CALL ZGEMV( 'No transpose', LASTC, LASTV, ONE, C, LDC,
                    218:      $           V, INCV, ZERO, WORK, 1 )
                    219: *
1.8       bertrand  220: *           C(1:lastc,1:lastv) := C(...) - w(1:lastc,1) * v(1:lastv,1)**H
1.1       bertrand  221: *
                    222:             CALL ZGERC( LASTC, LASTV, -TAU, WORK, 1, V, INCV, C, LDC )
                    223:          END IF
                    224:       END IF
                    225:       RETURN
                    226: *
                    227: *     End of ZLARF
                    228: *
                    229:       END

CVSweb interface <joel.bertrand@systella.fr>