--- rpl/lapack/lapack/zlarf.f 2010/08/07 13:22:40 1.5
+++ rpl/lapack/lapack/zlarf.f 2012/08/22 09:48:37 1.11
@@ -1,10 +1,137 @@
+*> \brief \b ZLARF
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download ZLARF + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
+*> [TXT]
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE ZLARF( SIDE, M, N, V, INCV, TAU, C, LDC, WORK )
+*
+* .. Scalar Arguments ..
+* CHARACTER SIDE
+* INTEGER INCV, LDC, M, N
+* COMPLEX*16 TAU
+* ..
+* .. Array Arguments ..
+* COMPLEX*16 C( LDC, * ), V( * ), WORK( * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> ZLARF applies a complex elementary reflector H to a complex M-by-N
+*> matrix C, from either the left or the right. H is represented in the
+*> form
+*>
+*> H = I - tau * v * v**H
+*>
+*> where tau is a complex scalar and v is a complex vector.
+*>
+*> If tau = 0, then H is taken to be the unit matrix.
+*>
+*> To apply H**H, supply conjg(tau) instead
+*> tau.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] SIDE
+*> \verbatim
+*> SIDE is CHARACTER*1
+*> = 'L': form H * C
+*> = 'R': form C * H
+*> \endverbatim
+*>
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the matrix C.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the matrix C.
+*> \endverbatim
+*>
+*> \param[in] V
+*> \verbatim
+*> V is COMPLEX*16 array, dimension
+*> (1 + (M-1)*abs(INCV)) if SIDE = 'L'
+*> or (1 + (N-1)*abs(INCV)) if SIDE = 'R'
+*> The vector v in the representation of H. V is not used if
+*> TAU = 0.
+*> \endverbatim
+*>
+*> \param[in] INCV
+*> \verbatim
+*> INCV is INTEGER
+*> The increment between elements of v. INCV <> 0.
+*> \endverbatim
+*>
+*> \param[in] TAU
+*> \verbatim
+*> TAU is COMPLEX*16
+*> The value tau in the representation of H.
+*> \endverbatim
+*>
+*> \param[in,out] C
+*> \verbatim
+*> C is COMPLEX*16 array, dimension (LDC,N)
+*> On entry, the M-by-N matrix C.
+*> On exit, C is overwritten by the matrix H * C if SIDE = 'L',
+*> or C * H if SIDE = 'R'.
+*> \endverbatim
+*>
+*> \param[in] LDC
+*> \verbatim
+*> LDC is INTEGER
+*> The leading dimension of the array C. LDC >= max(1,M).
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is COMPLEX*16 array, dimension
+*> (N) if SIDE = 'L'
+*> or (M) if SIDE = 'R'
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2011
+*
+*> \ingroup complex16OTHERauxiliary
+*
+* =====================================================================
SUBROUTINE ZLARF( SIDE, M, N, V, INCV, TAU, C, LDC, WORK )
- IMPLICIT NONE
*
-* -- LAPACK auxiliary routine (version 3.2) --
+* -- LAPACK auxiliary routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
-* November 2006
+* November 2011
*
* .. Scalar Arguments ..
CHARACTER SIDE
@@ -15,59 +142,6 @@
COMPLEX*16 C( LDC, * ), V( * ), WORK( * )
* ..
*
-* Purpose
-* =======
-*
-* ZLARF applies a complex elementary reflector H to a complex M-by-N
-* matrix C, from either the left or the right. H is represented in the
-* form
-*
-* H = I - tau * v * v'
-*
-* where tau is a complex scalar and v is a complex vector.
-*
-* If tau = 0, then H is taken to be the unit matrix.
-*
-* To apply H' (the conjugate transpose of H), supply conjg(tau) instead
-* tau.
-*
-* Arguments
-* =========
-*
-* SIDE (input) CHARACTER*1
-* = 'L': form H * C
-* = 'R': form C * H
-*
-* M (input) INTEGER
-* The number of rows of the matrix C.
-*
-* N (input) INTEGER
-* The number of columns of the matrix C.
-*
-* V (input) COMPLEX*16 array, dimension
-* (1 + (M-1)*abs(INCV)) if SIDE = 'L'
-* or (1 + (N-1)*abs(INCV)) if SIDE = 'R'
-* The vector v in the representation of H. V is not used if
-* TAU = 0.
-*
-* INCV (input) INTEGER
-* The increment between elements of v. INCV <> 0.
-*
-* TAU (input) COMPLEX*16
-* The value tau in the representation of H.
-*
-* C (input/output) COMPLEX*16 array, dimension (LDC,N)
-* On entry, the M-by-N matrix C.
-* On exit, C is overwritten by the matrix H * C if SIDE = 'L',
-* or C * H if SIDE = 'R'.
-*
-* LDC (input) INTEGER
-* The leading dimension of the array C. LDC >= max(1,M).
-*
-* WORK (workspace) COMPLEX*16 array, dimension
-* (N) if SIDE = 'L'
-* or (M) if SIDE = 'R'
-*
* =====================================================================
*
* .. Parameters ..
@@ -93,8 +167,8 @@
LASTV = 0
LASTC = 0
IF( TAU.NE.ZERO ) THEN
-! Set up variables for scanning V. LASTV begins pointing to the end
-! of V.
+* Set up variables for scanning V. LASTV begins pointing to the end
+* of V.
IF( APPLYLEFT ) THEN
LASTV = M
ELSE
@@ -105,33 +179,33 @@
ELSE
I = 1
END IF
-! Look for the last non-zero row in V.
+* Look for the last non-zero row in V.
DO WHILE( LASTV.GT.0 .AND. V( I ).EQ.ZERO )
LASTV = LASTV - 1
I = I - INCV
END DO
IF( APPLYLEFT ) THEN
-! Scan for the last non-zero column in C(1:lastv,:).
+* Scan for the last non-zero column in C(1:lastv,:).
LASTC = ILAZLC(LASTV, N, C, LDC)
ELSE
-! Scan for the last non-zero row in C(:,1:lastv).
+* Scan for the last non-zero row in C(:,1:lastv).
LASTC = ILAZLR(M, LASTV, C, LDC)
END IF
END IF
-! Note that lastc.eq.0 renders the BLAS operations null; no special
-! case is needed at this level.
+* Note that lastc.eq.0 renders the BLAS operations null; no special
+* case is needed at this level.
IF( APPLYLEFT ) THEN
*
* Form H * C
*
IF( LASTV.GT.0 ) THEN
*
-* w(1:lastc,1) := C(1:lastv,1:lastc)' * v(1:lastv,1)
+* w(1:lastc,1) := C(1:lastv,1:lastc)**H * v(1:lastv,1)
*
CALL ZGEMV( 'Conjugate transpose', LASTV, LASTC, ONE,
$ C, LDC, V, INCV, ZERO, WORK, 1 )
*
-* C(1:lastv,1:lastc) := C(...) - v(1:lastv,1) * w(1:lastc,1)'
+* C(1:lastv,1:lastc) := C(...) - v(1:lastv,1) * w(1:lastc,1)**H
*
CALL ZGERC( LASTV, LASTC, -TAU, V, INCV, WORK, 1, C, LDC )
END IF
@@ -146,7 +220,7 @@
CALL ZGEMV( 'No transpose', LASTC, LASTV, ONE, C, LDC,
$ V, INCV, ZERO, WORK, 1 )
*
-* C(1:lastc,1:lastv) := C(...) - w(1:lastc,1) * v(1:lastv,1)'
+* C(1:lastc,1:lastv) := C(...) - w(1:lastc,1) * v(1:lastv,1)**H
*
CALL ZGERC( LASTC, LASTV, -TAU, WORK, 1, V, INCV, C, LDC )
END IF