version 1.6, 2010/08/13 21:04:10
|
version 1.19, 2023/08/07 08:39:31
|
Line 1
|
Line 1
|
|
*> \brief \b ZLARF applies an elementary reflector to a general rectangular matrix. |
|
* |
|
* =========== DOCUMENTATION =========== |
|
* |
|
* Online html documentation available at |
|
* http://www.netlib.org/lapack/explore-html/ |
|
* |
|
*> \htmlonly |
|
*> Download ZLARF + dependencies |
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlarf.f"> |
|
*> [TGZ]</a> |
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlarf.f"> |
|
*> [ZIP]</a> |
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlarf.f"> |
|
*> [TXT]</a> |
|
*> \endhtmlonly |
|
* |
|
* Definition: |
|
* =========== |
|
* |
|
* SUBROUTINE ZLARF( SIDE, M, N, V, INCV, TAU, C, LDC, WORK ) |
|
* |
|
* .. Scalar Arguments .. |
|
* CHARACTER SIDE |
|
* INTEGER INCV, LDC, M, N |
|
* COMPLEX*16 TAU |
|
* .. |
|
* .. Array Arguments .. |
|
* COMPLEX*16 C( LDC, * ), V( * ), WORK( * ) |
|
* .. |
|
* |
|
* |
|
*> \par Purpose: |
|
* ============= |
|
*> |
|
*> \verbatim |
|
*> |
|
*> ZLARF applies a complex elementary reflector H to a complex M-by-N |
|
*> matrix C, from either the left or the right. H is represented in the |
|
*> form |
|
*> |
|
*> H = I - tau * v * v**H |
|
*> |
|
*> where tau is a complex scalar and v is a complex vector. |
|
*> |
|
*> If tau = 0, then H is taken to be the unit matrix. |
|
*> |
|
*> To apply H**H, supply conjg(tau) instead |
|
*> tau. |
|
*> \endverbatim |
|
* |
|
* Arguments: |
|
* ========== |
|
* |
|
*> \param[in] SIDE |
|
*> \verbatim |
|
*> SIDE is CHARACTER*1 |
|
*> = 'L': form H * C |
|
*> = 'R': form C * H |
|
*> \endverbatim |
|
*> |
|
*> \param[in] M |
|
*> \verbatim |
|
*> M is INTEGER |
|
*> The number of rows of the matrix C. |
|
*> \endverbatim |
|
*> |
|
*> \param[in] N |
|
*> \verbatim |
|
*> N is INTEGER |
|
*> The number of columns of the matrix C. |
|
*> \endverbatim |
|
*> |
|
*> \param[in] V |
|
*> \verbatim |
|
*> V is COMPLEX*16 array, dimension |
|
*> (1 + (M-1)*abs(INCV)) if SIDE = 'L' |
|
*> or (1 + (N-1)*abs(INCV)) if SIDE = 'R' |
|
*> The vector v in the representation of H. V is not used if |
|
*> TAU = 0. |
|
*> \endverbatim |
|
*> |
|
*> \param[in] INCV |
|
*> \verbatim |
|
*> INCV is INTEGER |
|
*> The increment between elements of v. INCV <> 0. |
|
*> \endverbatim |
|
*> |
|
*> \param[in] TAU |
|
*> \verbatim |
|
*> TAU is COMPLEX*16 |
|
*> The value tau in the representation of H. |
|
*> \endverbatim |
|
*> |
|
*> \param[in,out] C |
|
*> \verbatim |
|
*> C is COMPLEX*16 array, dimension (LDC,N) |
|
*> On entry, the M-by-N matrix C. |
|
*> On exit, C is overwritten by the matrix H * C if SIDE = 'L', |
|
*> or C * H if SIDE = 'R'. |
|
*> \endverbatim |
|
*> |
|
*> \param[in] LDC |
|
*> \verbatim |
|
*> LDC is INTEGER |
|
*> The leading dimension of the array C. LDC >= max(1,M). |
|
*> \endverbatim |
|
*> |
|
*> \param[out] WORK |
|
*> \verbatim |
|
*> WORK is COMPLEX*16 array, dimension |
|
*> (N) if SIDE = 'L' |
|
*> or (M) if SIDE = 'R' |
|
*> \endverbatim |
|
* |
|
* Authors: |
|
* ======== |
|
* |
|
*> \author Univ. of Tennessee |
|
*> \author Univ. of California Berkeley |
|
*> \author Univ. of Colorado Denver |
|
*> \author NAG Ltd. |
|
* |
|
*> \ingroup complex16OTHERauxiliary |
|
* |
|
* ===================================================================== |
SUBROUTINE ZLARF( SIDE, M, N, V, INCV, TAU, C, LDC, WORK ) |
SUBROUTINE ZLARF( SIDE, M, N, V, INCV, TAU, C, LDC, WORK ) |
IMPLICIT NONE |
|
* |
* |
* -- LAPACK auxiliary routine (version 3.2) -- |
* -- LAPACK auxiliary routine -- |
* -- LAPACK is a software package provided by Univ. of Tennessee, -- |
* -- LAPACK is a software package provided by Univ. of Tennessee, -- |
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- |
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- |
* November 2006 |
|
* |
* |
* .. Scalar Arguments .. |
* .. Scalar Arguments .. |
CHARACTER SIDE |
CHARACTER SIDE |
Line 15
|
Line 139
|
COMPLEX*16 C( LDC, * ), V( * ), WORK( * ) |
COMPLEX*16 C( LDC, * ), V( * ), WORK( * ) |
* .. |
* .. |
* |
* |
* Purpose |
|
* ======= |
|
* |
|
* ZLARF applies a complex elementary reflector H to a complex M-by-N |
|
* matrix C, from either the left or the right. H is represented in the |
|
* form |
|
* |
|
* H = I - tau * v * v' |
|
* |
|
* where tau is a complex scalar and v is a complex vector. |
|
* |
|
* If tau = 0, then H is taken to be the unit matrix. |
|
* |
|
* To apply H' (the conjugate transpose of H), supply conjg(tau) instead |
|
* tau. |
|
* |
|
* Arguments |
|
* ========= |
|
* |
|
* SIDE (input) CHARACTER*1 |
|
* = 'L': form H * C |
|
* = 'R': form C * H |
|
* |
|
* M (input) INTEGER |
|
* The number of rows of the matrix C. |
|
* |
|
* N (input) INTEGER |
|
* The number of columns of the matrix C. |
|
* |
|
* V (input) COMPLEX*16 array, dimension |
|
* (1 + (M-1)*abs(INCV)) if SIDE = 'L' |
|
* or (1 + (N-1)*abs(INCV)) if SIDE = 'R' |
|
* The vector v in the representation of H. V is not used if |
|
* TAU = 0. |
|
* |
|
* INCV (input) INTEGER |
|
* The increment between elements of v. INCV <> 0. |
|
* |
|
* TAU (input) COMPLEX*16 |
|
* The value tau in the representation of H. |
|
* |
|
* C (input/output) COMPLEX*16 array, dimension (LDC,N) |
|
* On entry, the M-by-N matrix C. |
|
* On exit, C is overwritten by the matrix H * C if SIDE = 'L', |
|
* or C * H if SIDE = 'R'. |
|
* |
|
* LDC (input) INTEGER |
|
* The leading dimension of the array C. LDC >= max(1,M). |
|
* |
|
* WORK (workspace) COMPLEX*16 array, dimension |
|
* (N) if SIDE = 'L' |
|
* or (M) if SIDE = 'R' |
|
* |
|
* ===================================================================== |
* ===================================================================== |
* |
* |
* .. Parameters .. |
* .. Parameters .. |
Line 93
|
Line 164
|
LASTV = 0 |
LASTV = 0 |
LASTC = 0 |
LASTC = 0 |
IF( TAU.NE.ZERO ) THEN |
IF( TAU.NE.ZERO ) THEN |
! Set up variables for scanning V. LASTV begins pointing to the end |
* Set up variables for scanning V. LASTV begins pointing to the end |
! of V. |
* of V. |
IF( APPLYLEFT ) THEN |
IF( APPLYLEFT ) THEN |
LASTV = M |
LASTV = M |
ELSE |
ELSE |
Line 105
|
Line 176
|
ELSE |
ELSE |
I = 1 |
I = 1 |
END IF |
END IF |
! Look for the last non-zero row in V. |
* Look for the last non-zero row in V. |
DO WHILE( LASTV.GT.0 .AND. V( I ).EQ.ZERO ) |
DO WHILE( LASTV.GT.0 .AND. V( I ).EQ.ZERO ) |
LASTV = LASTV - 1 |
LASTV = LASTV - 1 |
I = I - INCV |
I = I - INCV |
END DO |
END DO |
IF( APPLYLEFT ) THEN |
IF( APPLYLEFT ) THEN |
! Scan for the last non-zero column in C(1:lastv,:). |
* Scan for the last non-zero column in C(1:lastv,:). |
LASTC = ILAZLC(LASTV, N, C, LDC) |
LASTC = ILAZLC(LASTV, N, C, LDC) |
ELSE |
ELSE |
! Scan for the last non-zero row in C(:,1:lastv). |
* Scan for the last non-zero row in C(:,1:lastv). |
LASTC = ILAZLR(M, LASTV, C, LDC) |
LASTC = ILAZLR(M, LASTV, C, LDC) |
END IF |
END IF |
END IF |
END IF |
! Note that lastc.eq.0 renders the BLAS operations null; no special |
* Note that lastc.eq.0 renders the BLAS operations null; no special |
! case is needed at this level. |
* case is needed at this level. |
IF( APPLYLEFT ) THEN |
IF( APPLYLEFT ) THEN |
* |
* |
* Form H * C |
* Form H * C |
* |
* |
IF( LASTV.GT.0 ) THEN |
IF( LASTV.GT.0 ) THEN |
* |
* |
* w(1:lastc,1) := C(1:lastv,1:lastc)' * v(1:lastv,1) |
* w(1:lastc,1) := C(1:lastv,1:lastc)**H * v(1:lastv,1) |
* |
* |
CALL ZGEMV( 'Conjugate transpose', LASTV, LASTC, ONE, |
CALL ZGEMV( 'Conjugate transpose', LASTV, LASTC, ONE, |
$ C, LDC, V, INCV, ZERO, WORK, 1 ) |
$ C, LDC, V, INCV, ZERO, WORK, 1 ) |
* |
* |
* C(1:lastv,1:lastc) := C(...) - v(1:lastv,1) * w(1:lastc,1)' |
* C(1:lastv,1:lastc) := C(...) - v(1:lastv,1) * w(1:lastc,1)**H |
* |
* |
CALL ZGERC( LASTV, LASTC, -TAU, V, INCV, WORK, 1, C, LDC ) |
CALL ZGERC( LASTV, LASTC, -TAU, V, INCV, WORK, 1, C, LDC ) |
END IF |
END IF |
Line 146
|
Line 217
|
CALL ZGEMV( 'No transpose', LASTC, LASTV, ONE, C, LDC, |
CALL ZGEMV( 'No transpose', LASTC, LASTV, ONE, C, LDC, |
$ V, INCV, ZERO, WORK, 1 ) |
$ V, INCV, ZERO, WORK, 1 ) |
* |
* |
* C(1:lastc,1:lastv) := C(...) - w(1:lastc,1) * v(1:lastv,1)' |
* C(1:lastc,1:lastv) := C(...) - w(1:lastc,1) * v(1:lastv,1)**H |
* |
* |
CALL ZGERC( LASTC, LASTV, -TAU, WORK, 1, V, INCV, C, LDC ) |
CALL ZGERC( LASTC, LASTV, -TAU, WORK, 1, V, INCV, C, LDC ) |
END IF |
END IF |