Annotation of rpl/lapack/lapack/zlaqz0.f, revision 1.1

1.1     ! bertrand    1: *> \brief \b ZLAQZ0
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at
        !             6: *            http://www.netlib.org/lapack/explore-html/
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZLAQZ0 + dependencies
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaqz0.f">
        !            11: *> [TGZ]</a>
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaqz0.f">
        !            13: *> [ZIP]</a>
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaqz0.f">
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *      SUBROUTINE ZLAQZ0( WANTS, WANTQ, WANTZ, N, ILO, IHI, A, LDA, B,
        !            22: *     $    LDB, ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK, RWORK, REC,
        !            23: *     $    INFO )
        !            24: *      IMPLICIT NONE
        !            25: *
        !            26: *      Arguments
        !            27: *      CHARACTER, INTENT( IN ) :: WANTS, WANTQ, WANTZ
        !            28: *      INTEGER, INTENT( IN ) :: N, ILO, IHI, LDA, LDB, LDQ, LDZ, LWORK,
        !            29: *     $    REC
        !            30: *      INTEGER, INTENT( OUT ) :: INFO
        !            31: *      COMPLEX*16, INTENT( INOUT ) :: A( LDA, * ), B( LDB, * ), Q( LDQ,
        !            32: *     $    * ), Z( LDZ, * ), ALPHA( * ), BETA( * ), WORK( * )
        !            33: *      DOUBLE PRECISION, INTENT( OUT ) :: RWORK( * )
        !            34: *       ..
        !            35: *
        !            36: *
        !            37: *> \par Purpose:
        !            38: *  =============
        !            39: *>
        !            40: *> \verbatim
        !            41: *>
        !            42: *> ZLAQZ0 computes the eigenvalues of a real matrix pair (H,T),
        !            43: *> where H is an upper Hessenberg matrix and T is upper triangular,
        !            44: *> using the double-shift QZ method.
        !            45: *> Matrix pairs of this type are produced by the reduction to
        !            46: *> generalized upper Hessenberg form of a real matrix pair (A,B):
        !            47: *>
        !            48: *>    A = Q1*H*Z1**H,  B = Q1*T*Z1**H,
        !            49: *>
        !            50: *> as computed by ZGGHRD.
        !            51: *>
        !            52: *> If JOB='S', then the Hessenberg-triangular pair (H,T) is
        !            53: *> also reduced to generalized Schur form,
        !            54: *>
        !            55: *>    H = Q*S*Z**H,  T = Q*P*Z**H,
        !            56: *>
        !            57: *> where Q and Z are unitary matrices, P and S are an upper triangular
        !            58: *> matrices.
        !            59: *>
        !            60: *> Optionally, the unitary matrix Q from the generalized Schur
        !            61: *> factorization may be postmultiplied into an input matrix Q1, and the
        !            62: *> unitary matrix Z may be postmultiplied into an input matrix Z1.
        !            63: *> If Q1 and Z1 are the unitary matrices from ZGGHRD that reduced
        !            64: *> the matrix pair (A,B) to generalized upper Hessenberg form, then the
        !            65: *> output matrices Q1*Q and Z1*Z are the unitary factors from the
        !            66: *> generalized Schur factorization of (A,B):
        !            67: *>
        !            68: *>    A = (Q1*Q)*S*(Z1*Z)**H,  B = (Q1*Q)*P*(Z1*Z)**H.
        !            69: *>
        !            70: *> To avoid overflow, eigenvalues of the matrix pair (H,T) (equivalently,
        !            71: *> of (A,B)) are computed as a pair of values (alpha,beta), where alpha is
        !            72: *> complex and beta real.
        !            73: *> If beta is nonzero, lambda = alpha / beta is an eigenvalue of the
        !            74: *> generalized nonsymmetric eigenvalue problem (GNEP)
        !            75: *>    A*x = lambda*B*x
        !            76: *> and if alpha is nonzero, mu = beta / alpha is an eigenvalue of the
        !            77: *> alternate form of the GNEP
        !            78: *>    mu*A*y = B*y.
        !            79: *> Eigenvalues can be read directly from the generalized Schur
        !            80: *> form:
        !            81: *>   alpha = S(i,i), beta = P(i,i).
        !            82: *>
        !            83: *> Ref: C.B. Moler & G.W. Stewart, "An Algorithm for Generalized Matrix
        !            84: *>      Eigenvalue Problems", SIAM J. Numer. Anal., 10(1973),
        !            85: *>      pp. 241--256.
        !            86: *>
        !            87: *> Ref: B. Kagstrom, D. Kressner, "Multishift Variants of the QZ
        !            88: *>      Algorithm with Aggressive Early Deflation", SIAM J. Numer.
        !            89: *>      Anal., 29(2006), pp. 199--227.
        !            90: *>
        !            91: *> Ref: T. Steel, D. Camps, K. Meerbergen, R. Vandebril "A multishift,
        !            92: *>      multipole rational QZ method with agressive early deflation"
        !            93: *> \endverbatim
        !            94: *
        !            95: *  Arguments:
        !            96: *  ==========
        !            97: *
        !            98: *> \param[in] WANTS
        !            99: *> \verbatim
        !           100: *>          WANTS is CHARACTER*1
        !           101: *>          = 'E': Compute eigenvalues only;
        !           102: *>          = 'S': Compute eigenvalues and the Schur form.
        !           103: *> \endverbatim
        !           104: *>
        !           105: *> \param[in] WANTQ
        !           106: *> \verbatim
        !           107: *>          WANTQ is CHARACTER*1
        !           108: *>          = 'N': Left Schur vectors (Q) are not computed;
        !           109: *>          = 'I': Q is initialized to the unit matrix and the matrix Q
        !           110: *>                 of left Schur vectors of (A,B) is returned;
        !           111: *>          = 'V': Q must contain an unitary matrix Q1 on entry and
        !           112: *>                 the product Q1*Q is returned.
        !           113: *> \endverbatim
        !           114: *>
        !           115: *> \param[in] WANTZ
        !           116: *> \verbatim
        !           117: *>          WANTZ is CHARACTER*1
        !           118: *>          = 'N': Right Schur vectors (Z) are not computed;
        !           119: *>          = 'I': Z is initialized to the unit matrix and the matrix Z
        !           120: *>                 of right Schur vectors of (A,B) is returned;
        !           121: *>          = 'V': Z must contain an unitary matrix Z1 on entry and
        !           122: *>                 the product Z1*Z is returned.
        !           123: *> \endverbatim
        !           124: *>
        !           125: *> \param[in] N
        !           126: *> \verbatim
        !           127: *>          N is INTEGER
        !           128: *>          The order of the matrices A, B, Q, and Z.  N >= 0.
        !           129: *> \endverbatim
        !           130: *>
        !           131: *> \param[in] ILO
        !           132: *> \verbatim
        !           133: *>          ILO is INTEGER
        !           134: *> \endverbatim
        !           135: *>
        !           136: *> \param[in] IHI
        !           137: *> \verbatim
        !           138: *>          IHI is INTEGER
        !           139: *>          ILO and IHI mark the rows and columns of A which are in
        !           140: *>          Hessenberg form.  It is assumed that A is already upper
        !           141: *>          triangular in rows and columns 1:ILO-1 and IHI+1:N.
        !           142: *>          If N > 0, 1 <= ILO <= IHI <= N; if N = 0, ILO=1 and IHI=0.
        !           143: *> \endverbatim
        !           144: *>
        !           145: *> \param[in,out] A
        !           146: *> \verbatim
        !           147: *>          A is COMPLEX*16 array, dimension (LDA, N)
        !           148: *>          On entry, the N-by-N upper Hessenberg matrix A.
        !           149: *>          On exit, if JOB = 'S', A contains the upper triangular
        !           150: *>          matrix S from the generalized Schur factorization.
        !           151: *>          If JOB = 'E', the diagonal blocks of A match those of S, but
        !           152: *>          the rest of A is unspecified.
        !           153: *> \endverbatim
        !           154: *>
        !           155: *> \param[in] LDA
        !           156: *> \verbatim
        !           157: *>          LDA is INTEGER
        !           158: *>          The leading dimension of the array A.  LDA >= max( 1, N ).
        !           159: *> \endverbatim
        !           160: *>
        !           161: *> \param[in,out] B
        !           162: *> \verbatim
        !           163: *>          B is COMPLEX*16 array, dimension (LDB, N)
        !           164: *>          On entry, the N-by-N upper triangular matrix B.
        !           165: *>          On exit, if JOB = 'S', B contains the upper triangular
        !           166: *>          matrix P from the generalized Schur factorization;
        !           167: *>          If JOB = 'E', the diagonal blocks of B match those of P, but
        !           168: *>          the rest of B is unspecified.
        !           169: *> \endverbatim
        !           170: *>
        !           171: *> \param[in] LDB
        !           172: *> \verbatim
        !           173: *>          LDB is INTEGER
        !           174: *>          The leading dimension of the array B.  LDB >= max( 1, N ).
        !           175: *> \endverbatim
        !           176: *>
        !           177: *> \param[out] ALPHA
        !           178: *> \verbatim
        !           179: *>          ALPHA is COMPLEX*16 array, dimension (N)
        !           180: *>          Each scalar alpha defining an eigenvalue
        !           181: *>          of GNEP.
        !           182: *> \endverbatim
        !           183: *>
        !           184: *> \param[out] BETA
        !           185: *> \verbatim
        !           186: *>          BETA is COMPLEX*16 array, dimension (N)
        !           187: *>          The scalars beta that define the eigenvalues of GNEP.
        !           188: *>          Together, the quantities alpha = ALPHA(j) and
        !           189: *>          beta = BETA(j) represent the j-th eigenvalue of the matrix
        !           190: *>          pair (A,B), in one of the forms lambda = alpha/beta or
        !           191: *>          mu = beta/alpha.  Since either lambda or mu may overflow,
        !           192: *>          they should not, in general, be computed.
        !           193: *> \endverbatim
        !           194: *>
        !           195: *> \param[in,out] Q
        !           196: *> \verbatim
        !           197: *>          Q is COMPLEX*16 array, dimension (LDQ, N)
        !           198: *>          On entry, if COMPQ = 'V', the unitary matrix Q1 used in
        !           199: *>          the reduction of (A,B) to generalized Hessenberg form.
        !           200: *>          On exit, if COMPQ = 'I', the unitary matrix of left Schur
        !           201: *>          vectors of (A,B), and if COMPQ = 'V', the unitary matrix
        !           202: *>          of left Schur vectors of (A,B).
        !           203: *>          Not referenced if COMPQ = 'N'.
        !           204: *> \endverbatim
        !           205: *>
        !           206: *> \param[in] LDQ
        !           207: *> \verbatim
        !           208: *>          LDQ is INTEGER
        !           209: *>          The leading dimension of the array Q.  LDQ >= 1.
        !           210: *>          If COMPQ='V' or 'I', then LDQ >= N.
        !           211: *> \endverbatim
        !           212: *>
        !           213: *> \param[in,out] Z
        !           214: *> \verbatim
        !           215: *>          Z is COMPLEX*16 array, dimension (LDZ, N)
        !           216: *>          On entry, if COMPZ = 'V', the unitary matrix Z1 used in
        !           217: *>          the reduction of (A,B) to generalized Hessenberg form.
        !           218: *>          On exit, if COMPZ = 'I', the unitary matrix of
        !           219: *>          right Schur vectors of (H,T), and if COMPZ = 'V', the
        !           220: *>          unitary matrix of right Schur vectors of (A,B).
        !           221: *>          Not referenced if COMPZ = 'N'.
        !           222: *> \endverbatim
        !           223: *>
        !           224: *> \param[in] LDZ
        !           225: *> \verbatim
        !           226: *>          LDZ is INTEGER
        !           227: *>          The leading dimension of the array Z.  LDZ >= 1.
        !           228: *>          If COMPZ='V' or 'I', then LDZ >= N.
        !           229: *> \endverbatim
        !           230: *>
        !           231: *> \param[out] WORK
        !           232: *> \verbatim
        !           233: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
        !           234: *>          On exit, if INFO >= 0, WORK(1) returns the optimal LWORK.
        !           235: *> \endverbatim
        !           236: *>
        !           237: *> \param[out] RWORK
        !           238: *> \verbatim
        !           239: *>          RWORK is DOUBLE PRECISION array, dimension (N)
        !           240: *> \endverbatim
        !           241: *>
        !           242: *> \param[in] LWORK
        !           243: *> \verbatim
        !           244: *>          LWORK is INTEGER
        !           245: *>          The dimension of the array WORK.  LWORK >= max(1,N).
        !           246: *>
        !           247: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           248: *>          only calculates the optimal size of the WORK array, returns
        !           249: *>          this value as the first entry of the WORK array, and no error
        !           250: *>          message related to LWORK is issued by XERBLA.
        !           251: *> \endverbatim
        !           252: *>
        !           253: *> \param[in] REC
        !           254: *> \verbatim
        !           255: *>          REC is INTEGER
        !           256: *>             REC indicates the current recursion level. Should be set
        !           257: *>             to 0 on first call.
        !           258: *> \endverbatim
        !           259: *>
        !           260: *> \param[out] INFO
        !           261: *> \verbatim
        !           262: *>          INFO is INTEGER
        !           263: *>          = 0: successful exit
        !           264: *>          < 0: if INFO = -i, the i-th argument had an illegal value
        !           265: *>          = 1,...,N: the QZ iteration did not converge.  (A,B) is not
        !           266: *>                     in Schur form, but ALPHA(i) and
        !           267: *>                     BETA(i), i=INFO+1,...,N should be correct.
        !           268: *> \endverbatim
        !           269: *
        !           270: *  Authors:
        !           271: *  ========
        !           272: *
        !           273: *> \author Thijs Steel, KU Leuven
        !           274: *
        !           275: *> \date May 2020
        !           276: *
        !           277: *> \ingroup complex16GEcomputational
        !           278: *>
        !           279: *  =====================================================================
        !           280:       RECURSIVE SUBROUTINE ZLAQZ0( WANTS, WANTQ, WANTZ, N, ILO, IHI, A,
        !           281:      $                             LDA, B, LDB, ALPHA, BETA, Q, LDQ, Z,
        !           282:      $                             LDZ, WORK, LWORK, RWORK, REC,
        !           283:      $                             INFO )
        !           284:       IMPLICIT NONE
        !           285: 
        !           286: *     Arguments
        !           287:       CHARACTER, INTENT( IN ) :: WANTS, WANTQ, WANTZ
        !           288:       INTEGER, INTENT( IN ) :: N, ILO, IHI, LDA, LDB, LDQ, LDZ, LWORK,
        !           289:      $         REC
        !           290:       INTEGER, INTENT( OUT ) :: INFO
        !           291:       COMPLEX*16, INTENT( INOUT ) :: A( LDA, * ), B( LDB, * ), Q( LDQ,
        !           292:      $   * ), Z( LDZ, * ), ALPHA( * ), BETA( * ), WORK( * )
        !           293:       DOUBLE PRECISION, INTENT( OUT ) :: RWORK( * )
        !           294: 
        !           295: *     Parameters
        !           296:       COMPLEX*16         CZERO, CONE
        !           297:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ), CONE = ( 1.0D+0,
        !           298:      $                     0.0D+0 ) )
        !           299:       DOUBLE PRECISION :: ZERO, ONE, HALF
        !           300:       PARAMETER( ZERO = 0.0D0, ONE = 1.0D0, HALF = 0.5D0 )
        !           301: 
        !           302: *     Local scalars
        !           303:       DOUBLE PRECISION :: SMLNUM, ULP, SAFMIN, SAFMAX, C1, TEMPR,
        !           304:      $                    BNORM, BTOL
        !           305:       COMPLEX*16 :: ESHIFT, S1, TEMP
        !           306:       INTEGER :: ISTART, ISTOP, IITER, MAXIT, ISTART2, K, LD, NSHIFTS,
        !           307:      $           NBLOCK, NW, NMIN, NIBBLE, N_UNDEFLATED, N_DEFLATED,
        !           308:      $           NS, SWEEP_INFO, SHIFTPOS, LWORKREQ, K2, ISTARTM,
        !           309:      $           ISTOPM, IWANTS, IWANTQ, IWANTZ, NORM_INFO, AED_INFO,
        !           310:      $           NWR, NBR, NSR, ITEMP1, ITEMP2, RCOST
        !           311:       LOGICAL :: ILSCHUR, ILQ, ILZ
        !           312:       CHARACTER :: JBCMPZ*3
        !           313: 
        !           314: *     External Functions
        !           315:       EXTERNAL :: XERBLA, ZHGEQZ, ZLAQZ2, ZLAQZ3, ZLASET, DLABAD,
        !           316:      $            ZLARTG, ZROT
        !           317:       DOUBLE PRECISION, EXTERNAL :: DLAMCH, ZLANHS
        !           318:       LOGICAL, EXTERNAL :: LSAME
        !           319:       INTEGER, EXTERNAL :: ILAENV
        !           320: 
        !           321: *
        !           322: *     Decode wantS,wantQ,wantZ
        !           323: *      
        !           324:       IF( LSAME( WANTS, 'E' ) ) THEN
        !           325:          ILSCHUR = .FALSE.
        !           326:          IWANTS = 1
        !           327:       ELSE IF( LSAME( WANTS, 'S' ) ) THEN
        !           328:          ILSCHUR = .TRUE.
        !           329:          IWANTS = 2
        !           330:       ELSE
        !           331:          IWANTS = 0
        !           332:       END IF
        !           333: 
        !           334:       IF( LSAME( WANTQ, 'N' ) ) THEN
        !           335:          ILQ = .FALSE.
        !           336:          IWANTQ = 1
        !           337:       ELSE IF( LSAME( WANTQ, 'V' ) ) THEN
        !           338:          ILQ = .TRUE.
        !           339:          IWANTQ = 2
        !           340:       ELSE IF( LSAME( WANTQ, 'I' ) ) THEN
        !           341:          ILQ = .TRUE.
        !           342:          IWANTQ = 3
        !           343:       ELSE
        !           344:          IWANTQ = 0
        !           345:       END IF
        !           346: 
        !           347:       IF( LSAME( WANTZ, 'N' ) ) THEN
        !           348:          ILZ = .FALSE.
        !           349:          IWANTZ = 1
        !           350:       ELSE IF( LSAME( WANTZ, 'V' ) ) THEN
        !           351:          ILZ = .TRUE.
        !           352:          IWANTZ = 2
        !           353:       ELSE IF( LSAME( WANTZ, 'I' ) ) THEN
        !           354:          ILZ = .TRUE.
        !           355:          IWANTZ = 3
        !           356:       ELSE
        !           357:          IWANTZ = 0
        !           358:       END IF
        !           359: *
        !           360: *     Check Argument Values
        !           361: *
        !           362:       INFO = 0
        !           363:       IF( IWANTS.EQ.0 ) THEN
        !           364:          INFO = -1
        !           365:       ELSE IF( IWANTQ.EQ.0 ) THEN
        !           366:          INFO = -2
        !           367:       ELSE IF( IWANTZ.EQ.0 ) THEN
        !           368:          INFO = -3
        !           369:       ELSE IF( N.LT.0 ) THEN
        !           370:          INFO = -4
        !           371:       ELSE IF( ILO.LT.1 ) THEN
        !           372:          INFO = -5
        !           373:       ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN
        !           374:          INFO = -6
        !           375:       ELSE IF( LDA.LT.N ) THEN
        !           376:          INFO = -8
        !           377:       ELSE IF( LDB.LT.N ) THEN
        !           378:          INFO = -10
        !           379:       ELSE IF( LDQ.LT.1 .OR. ( ILQ .AND. LDQ.LT.N ) ) THEN
        !           380:          INFO = -15
        !           381:       ELSE IF( LDZ.LT.1 .OR. ( ILZ .AND. LDZ.LT.N ) ) THEN
        !           382:          INFO = -17
        !           383:       END IF
        !           384:       IF( INFO.NE.0 ) THEN
        !           385:          CALL XERBLA( 'ZLAQZ0', -INFO )
        !           386:          RETURN
        !           387:       END IF
        !           388:    
        !           389: *
        !           390: *     Quick return if possible
        !           391: *
        !           392:       IF( N.LE.0 ) THEN
        !           393:          WORK( 1 ) = DBLE( 1 )
        !           394:          RETURN
        !           395:       END IF
        !           396: 
        !           397: *
        !           398: *     Get the parameters
        !           399: *
        !           400:       JBCMPZ( 1:1 ) = WANTS
        !           401:       JBCMPZ( 2:2 ) = WANTQ
        !           402:       JBCMPZ( 3:3 ) = WANTZ
        !           403: 
        !           404:       NMIN = ILAENV( 12, 'ZLAQZ0', JBCMPZ, N, ILO, IHI, LWORK )
        !           405: 
        !           406:       NWR = ILAENV( 13, 'ZLAQZ0', JBCMPZ, N, ILO, IHI, LWORK )
        !           407:       NWR = MAX( 2, NWR )
        !           408:       NWR = MIN( IHI-ILO+1, ( N-1 ) / 3, NWR )
        !           409: 
        !           410:       NIBBLE = ILAENV( 14, 'ZLAQZ0', JBCMPZ, N, ILO, IHI, LWORK )
        !           411:       
        !           412:       NSR = ILAENV( 15, 'ZLAQZ0', JBCMPZ, N, ILO, IHI, LWORK )
        !           413:       NSR = MIN( NSR, ( N+6 ) / 9, IHI-ILO )
        !           414:       NSR = MAX( 2, NSR-MOD( NSR, 2 ) )
        !           415: 
        !           416:       RCOST = ILAENV( 17, 'ZLAQZ0', JBCMPZ, N, ILO, IHI, LWORK )
        !           417:       ITEMP1 = INT( NSR/SQRT( 1+2*NSR/( DBLE( RCOST )/100*N ) ) )
        !           418:       ITEMP1 = ( ( ITEMP1-1 )/4 )*4+4
        !           419:       NBR = NSR+ITEMP1
        !           420: 
        !           421:       IF( N .LT. NMIN .OR. REC .GE. 2 ) THEN
        !           422:          CALL ZHGEQZ( WANTS, WANTQ, WANTZ, N, ILO, IHI, A, LDA, B, LDB,
        !           423:      $                ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK, RWORK,
        !           424:      $                INFO )
        !           425:          RETURN
        !           426:       END IF
        !           427: 
        !           428: *
        !           429: *     Find out required workspace
        !           430: *
        !           431: 
        !           432: *     Workspace query to ZLAQZ2
        !           433:       NW = MAX( NWR, NMIN )
        !           434:       CALL ZLAQZ2( ILSCHUR, ILQ, ILZ, N, ILO, IHI, NW, A, LDA, B, LDB,
        !           435:      $             Q, LDQ, Z, LDZ, N_UNDEFLATED, N_DEFLATED, ALPHA,
        !           436:      $             BETA, WORK, NW, WORK, NW, WORK, -1, RWORK, REC,
        !           437:      $             AED_INFO )
        !           438:       ITEMP1 = INT( WORK( 1 ) )
        !           439: *     Workspace query to ZLAQZ3
        !           440:       CALL ZLAQZ3( ILSCHUR, ILQ, ILZ, N, ILO, IHI, NSR, NBR, ALPHA,
        !           441:      $             BETA, A, LDA, B, LDB, Q, LDQ, Z, LDZ, WORK, NBR,
        !           442:      $             WORK, NBR, WORK, -1, SWEEP_INFO )
        !           443:       ITEMP2 = INT( WORK( 1 ) )
        !           444: 
        !           445:       LWORKREQ = MAX( ITEMP1+2*NW**2, ITEMP2+2*NBR**2 )
        !           446:       IF ( LWORK .EQ.-1 ) THEN
        !           447:          WORK( 1 ) = DBLE( LWORKREQ )
        !           448:          RETURN
        !           449:       ELSE IF ( LWORK .LT. LWORKREQ ) THEN
        !           450:          INFO = -19
        !           451:       END IF
        !           452:       IF( INFO.NE.0 ) THEN
        !           453:          CALL XERBLA( 'ZLAQZ0', INFO )
        !           454:          RETURN
        !           455:       END IF
        !           456: *
        !           457: *     Initialize Q and Z
        !           458: *
        !           459:       IF( IWANTQ.EQ.3 ) CALL ZLASET( 'FULL', N, N, CZERO, CONE, Q,
        !           460:      $    LDQ )
        !           461:       IF( IWANTZ.EQ.3 ) CALL ZLASET( 'FULL', N, N, CZERO, CONE, Z,
        !           462:      $    LDZ )
        !           463: 
        !           464: *     Get machine constants
        !           465:       SAFMIN = DLAMCH( 'SAFE MINIMUM' )
        !           466:       SAFMAX = ONE/SAFMIN
        !           467:       CALL DLABAD( SAFMIN, SAFMAX )
        !           468:       ULP = DLAMCH( 'PRECISION' )
        !           469:       SMLNUM = SAFMIN*( DBLE( N )/ULP )
        !           470: 
        !           471:       BNORM = ZLANHS( 'F', IHI-ILO+1, B( ILO, ILO ), LDB, RWORK )
        !           472:       BTOL = MAX( SAFMIN, ULP*BNORM )
        !           473: 
        !           474:       ISTART = ILO
        !           475:       ISTOP = IHI
        !           476:       MAXIT = 30*( IHI-ILO+1 )
        !           477:       LD = 0
        !           478:  
        !           479:       DO IITER = 1, MAXIT
        !           480:          IF( IITER .GE. MAXIT ) THEN
        !           481:             INFO = ISTOP+1
        !           482:             GOTO 80
        !           483:          END IF
        !           484:          IF ( ISTART+1 .GE. ISTOP ) THEN
        !           485:             ISTOP = ISTART
        !           486:             EXIT
        !           487:          END IF
        !           488: 
        !           489: *        Check deflations at the end
        !           490:          IF ( ABS( A( ISTOP, ISTOP-1 ) ) .LE. MAX( SMLNUM,
        !           491:      $      ULP*( ABS( A( ISTOP, ISTOP ) )+ABS( A( ISTOP-1,
        !           492:      $      ISTOP-1 ) ) ) ) ) THEN
        !           493:             A( ISTOP, ISTOP-1 ) = CZERO
        !           494:             ISTOP = ISTOP-1
        !           495:             LD = 0
        !           496:             ESHIFT = CZERO
        !           497:          END IF
        !           498: *        Check deflations at the start
        !           499:          IF ( ABS( A( ISTART+1, ISTART ) ) .LE. MAX( SMLNUM,
        !           500:      $      ULP*( ABS( A( ISTART, ISTART ) )+ABS( A( ISTART+1,
        !           501:      $      ISTART+1 ) ) ) ) ) THEN
        !           502:             A( ISTART+1, ISTART ) = CZERO
        !           503:             ISTART = ISTART+1
        !           504:             LD = 0
        !           505:             ESHIFT = CZERO
        !           506:          END IF
        !           507: 
        !           508:          IF ( ISTART+1 .GE. ISTOP ) THEN
        !           509:             EXIT
        !           510:          END IF
        !           511: 
        !           512: *        Check interior deflations
        !           513:          ISTART2 = ISTART
        !           514:          DO K = ISTOP, ISTART+1, -1
        !           515:             IF ( ABS( A( K, K-1 ) ) .LE. MAX( SMLNUM, ULP*( ABS( A( K,
        !           516:      $         K ) )+ABS( A( K-1, K-1 ) ) ) ) ) THEN
        !           517:                A( K, K-1 ) = CZERO
        !           518:                ISTART2 = K
        !           519:                EXIT
        !           520:             END IF
        !           521:          END DO
        !           522: 
        !           523: *        Get range to apply rotations to
        !           524:          IF ( ILSCHUR ) THEN
        !           525:             ISTARTM = 1
        !           526:             ISTOPM = N
        !           527:          ELSE
        !           528:             ISTARTM = ISTART2
        !           529:             ISTOPM = ISTOP
        !           530:          END IF
        !           531: 
        !           532: *        Check infinite eigenvalues, this is done without blocking so might
        !           533: *        slow down the method when many infinite eigenvalues are present
        !           534:          K = ISTOP
        !           535:          DO WHILE ( K.GE.ISTART2 )
        !           536: 
        !           537:             IF( ABS( B( K, K ) ) .LT. BTOL ) THEN
        !           538: *              A diagonal element of B is negligable, move it
        !           539: *              to the top and deflate it
        !           540:                
        !           541:                DO K2 = K, ISTART2+1, -1
        !           542:                   CALL ZLARTG( B( K2-1, K2 ), B( K2-1, K2-1 ), C1, S1,
        !           543:      $                         TEMP )
        !           544:                   B( K2-1, K2 ) = TEMP
        !           545:                   B( K2-1, K2-1 ) = CZERO
        !           546: 
        !           547:                   CALL ZROT( K2-2-ISTARTM+1, B( ISTARTM, K2 ), 1,
        !           548:      $                       B( ISTARTM, K2-1 ), 1, C1, S1 )
        !           549:                   CALL ZROT( MIN( K2+1, ISTOP )-ISTARTM+1, A( ISTARTM,
        !           550:      $                       K2 ), 1, A( ISTARTM, K2-1 ), 1, C1, S1 )
        !           551:                   IF ( ILZ ) THEN
        !           552:                      CALL ZROT( N, Z( 1, K2 ), 1, Z( 1, K2-1 ), 1, C1,
        !           553:      $                          S1 )
        !           554:                   END IF
        !           555: 
        !           556:                   IF( K2.LT.ISTOP ) THEN
        !           557:                      CALL ZLARTG( A( K2, K2-1 ), A( K2+1, K2-1 ), C1,
        !           558:      $                            S1, TEMP )
        !           559:                      A( K2, K2-1 ) = TEMP
        !           560:                      A( K2+1, K2-1 ) = CZERO
        !           561: 
        !           562:                      CALL ZROT( ISTOPM-K2+1, A( K2, K2 ), LDA, A( K2+1,
        !           563:      $                          K2 ), LDA, C1, S1 )
        !           564:                      CALL ZROT( ISTOPM-K2+1, B( K2, K2 ), LDB, B( K2+1,
        !           565:      $                          K2 ), LDB, C1, S1 )
        !           566:                      IF( ILQ ) THEN
        !           567:                         CALL ZROT( N, Q( 1, K2 ), 1, Q( 1, K2+1 ), 1,
        !           568:      $                             C1, DCONJG( S1 ) )
        !           569:                      END IF
        !           570:                   END IF
        !           571: 
        !           572:                END DO
        !           573: 
        !           574:                IF( ISTART2.LT.ISTOP )THEN
        !           575:                   CALL ZLARTG( A( ISTART2, ISTART2 ), A( ISTART2+1,
        !           576:      $                         ISTART2 ), C1, S1, TEMP )
        !           577:                   A( ISTART2, ISTART2 ) = TEMP
        !           578:                   A( ISTART2+1, ISTART2 ) = CZERO
        !           579: 
        !           580:                   CALL ZROT( ISTOPM-( ISTART2+1 )+1, A( ISTART2,
        !           581:      $                       ISTART2+1 ), LDA, A( ISTART2+1,
        !           582:      $                       ISTART2+1 ), LDA, C1, S1 )
        !           583:                   CALL ZROT( ISTOPM-( ISTART2+1 )+1, B( ISTART2,
        !           584:      $                       ISTART2+1 ), LDB, B( ISTART2+1,
        !           585:      $                       ISTART2+1 ), LDB, C1, S1 )
        !           586:                   IF( ILQ ) THEN
        !           587:                      CALL ZROT( N, Q( 1, ISTART2 ), 1, Q( 1,
        !           588:      $                          ISTART2+1 ), 1, C1, DCONJG( S1 ) )
        !           589:                   END IF
        !           590:                END IF
        !           591: 
        !           592:                ISTART2 = ISTART2+1
        !           593:    
        !           594:             END IF
        !           595:             K = K-1
        !           596:          END DO
        !           597: 
        !           598: *        istart2 now points to the top of the bottom right
        !           599: *        unreduced Hessenberg block
        !           600:          IF ( ISTART2 .GE. ISTOP ) THEN
        !           601:             ISTOP = ISTART2-1
        !           602:             LD = 0
        !           603:             ESHIFT = CZERO
        !           604:             CYCLE
        !           605:          END IF
        !           606: 
        !           607:          NW = NWR
        !           608:          NSHIFTS = NSR
        !           609:          NBLOCK = NBR
        !           610: 
        !           611:          IF ( ISTOP-ISTART2+1 .LT. NMIN ) THEN
        !           612: *           Setting nw to the size of the subblock will make AED deflate
        !           613: *           all the eigenvalues. This is slightly more efficient than just
        !           614: *           using qz_small because the off diagonal part gets updated via BLAS.
        !           615:             IF ( ISTOP-ISTART+1 .LT. NMIN ) THEN
        !           616:                NW = ISTOP-ISTART+1
        !           617:                ISTART2 = ISTART
        !           618:             ELSE
        !           619:                NW = ISTOP-ISTART2+1
        !           620:             END IF
        !           621:          END IF
        !           622: 
        !           623: *
        !           624: *        Time for AED
        !           625: *
        !           626:          CALL ZLAQZ2( ILSCHUR, ILQ, ILZ, N, ISTART2, ISTOP, NW, A, LDA,
        !           627:      $                B, LDB, Q, LDQ, Z, LDZ, N_UNDEFLATED, N_DEFLATED,
        !           628:      $                ALPHA, BETA, WORK, NW, WORK( NW**2+1 ), NW,
        !           629:      $                WORK( 2*NW**2+1 ), LWORK-2*NW**2, RWORK, REC,
        !           630:      $                AED_INFO )
        !           631: 
        !           632:          IF ( N_DEFLATED > 0 ) THEN
        !           633:             ISTOP = ISTOP-N_DEFLATED
        !           634:             LD = 0
        !           635:             ESHIFT = CZERO
        !           636:          END IF
        !           637: 
        !           638:          IF ( 100*N_DEFLATED > NIBBLE*( N_DEFLATED+N_UNDEFLATED ) .OR.
        !           639:      $      ISTOP-ISTART2+1 .LT. NMIN ) THEN
        !           640: *           AED has uncovered many eigenvalues. Skip a QZ sweep and run
        !           641: *           AED again.
        !           642:             CYCLE
        !           643:          END IF
        !           644: 
        !           645:          LD = LD+1
        !           646: 
        !           647:          NS = MIN( NSHIFTS, ISTOP-ISTART2 )
        !           648:          NS = MIN( NS, N_UNDEFLATED )
        !           649:          SHIFTPOS = ISTOP-N_DEFLATED-N_UNDEFLATED+1
        !           650: 
        !           651:          IF ( MOD( LD, 6 ) .EQ. 0 ) THEN
        !           652: * 
        !           653: *           Exceptional shift.  Chosen for no particularly good reason.
        !           654: *
        !           655:             IF( ( DBLE( MAXIT )*SAFMIN )*ABS( A( ISTOP,
        !           656:      $         ISTOP-1 ) ).LT.ABS( A( ISTOP-1, ISTOP-1 ) ) ) THEN
        !           657:                ESHIFT = A( ISTOP, ISTOP-1 )/B( ISTOP-1, ISTOP-1 )
        !           658:             ELSE
        !           659:                ESHIFT = ESHIFT+CONE/( SAFMIN*DBLE( MAXIT ) )
        !           660:             END IF
        !           661:             ALPHA( SHIFTPOS ) = CONE
        !           662:             BETA( SHIFTPOS ) = ESHIFT
        !           663:             NS = 1
        !           664:          END IF
        !           665: 
        !           666: *
        !           667: *        Time for a QZ sweep
        !           668: *
        !           669:          CALL ZLAQZ3( ILSCHUR, ILQ, ILZ, N, ISTART2, ISTOP, NS, NBLOCK,
        !           670:      $                ALPHA( SHIFTPOS ), BETA( SHIFTPOS ), A, LDA, B,
        !           671:      $                LDB, Q, LDQ, Z, LDZ, WORK, NBLOCK, WORK( NBLOCK**
        !           672:      $                2+1 ), NBLOCK, WORK( 2*NBLOCK**2+1 ),
        !           673:      $                LWORK-2*NBLOCK**2, SWEEP_INFO )
        !           674: 
        !           675:       END DO
        !           676: 
        !           677: *
        !           678: *     Call ZHGEQZ to normalize the eigenvalue blocks and set the eigenvalues
        !           679: *     If all the eigenvalues have been found, ZHGEQZ will not do any iterations
        !           680: *     and only normalize the blocks. In case of a rare convergence failure,
        !           681: *     the single shift might perform better.
        !           682: *
        !           683:    80 CALL ZHGEQZ( WANTS, WANTQ, WANTZ, N, ILO, IHI, A, LDA, B, LDB,
        !           684:      $             ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK, RWORK,
        !           685:      $             NORM_INFO )
        !           686:       
        !           687:       INFO = NORM_INFO
        !           688: 
        !           689:       END SUBROUTINE

CVSweb interface <joel.bertrand@systella.fr>