File:  [local] / rpl / lapack / lapack / zlaqr5.f
Revision 1.22: download - view: text, annotated - select for diffs - revision graph
Thu May 21 21:46:09 2020 UTC (3 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, HEAD
Mise à jour de Lapack.

    1: *> \brief \b ZLAQR5 performs a single small-bulge multi-shift QR sweep.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZLAQR5 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaqr5.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaqr5.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaqr5.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NSHFTS, S,
   22: *                          H, LDH, ILOZ, IHIZ, Z, LDZ, V, LDV, U, LDU, NV,
   23: *                          WV, LDWV, NH, WH, LDWH )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       INTEGER            IHIZ, ILOZ, KACC22, KBOT, KTOP, LDH, LDU, LDV,
   27: *      $                   LDWH, LDWV, LDZ, N, NH, NSHFTS, NV
   28: *       LOGICAL            WANTT, WANTZ
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       COMPLEX*16         H( LDH, * ), S( * ), U( LDU, * ), V( LDV, * ),
   32: *      $                   WH( LDWH, * ), WV( LDWV, * ), Z( LDZ, * )
   33: *       ..
   34: *
   35: *
   36: *> \par Purpose:
   37: *  =============
   38: *>
   39: *> \verbatim
   40: *>
   41: *>    ZLAQR5, called by ZLAQR0, performs a
   42: *>    single small-bulge multi-shift QR sweep.
   43: *> \endverbatim
   44: *
   45: *  Arguments:
   46: *  ==========
   47: *
   48: *> \param[in] WANTT
   49: *> \verbatim
   50: *>          WANTT is LOGICAL
   51: *>             WANTT = .true. if the triangular Schur factor
   52: *>             is being computed.  WANTT is set to .false. otherwise.
   53: *> \endverbatim
   54: *>
   55: *> \param[in] WANTZ
   56: *> \verbatim
   57: *>          WANTZ is LOGICAL
   58: *>             WANTZ = .true. if the unitary Schur factor is being
   59: *>             computed.  WANTZ is set to .false. otherwise.
   60: *> \endverbatim
   61: *>
   62: *> \param[in] KACC22
   63: *> \verbatim
   64: *>          KACC22 is INTEGER with value 0, 1, or 2.
   65: *>             Specifies the computation mode of far-from-diagonal
   66: *>             orthogonal updates.
   67: *>        = 0: ZLAQR5 does not accumulate reflections and does not
   68: *>             use matrix-matrix multiply to update far-from-diagonal
   69: *>             matrix entries.
   70: *>        = 1: ZLAQR5 accumulates reflections and uses matrix-matrix
   71: *>             multiply to update the far-from-diagonal matrix entries.
   72: *>        = 2: ZLAQR5 accumulates reflections, uses matrix-matrix
   73: *>             multiply to update the far-from-diagonal matrix entries,
   74: *>             and takes advantage of 2-by-2 block structure during
   75: *>             matrix multiplies.
   76: *> \endverbatim
   77: *>
   78: *> \param[in] N
   79: *> \verbatim
   80: *>          N is INTEGER
   81: *>             N is the order of the Hessenberg matrix H upon which this
   82: *>             subroutine operates.
   83: *> \endverbatim
   84: *>
   85: *> \param[in] KTOP
   86: *> \verbatim
   87: *>          KTOP is INTEGER
   88: *> \endverbatim
   89: *>
   90: *> \param[in] KBOT
   91: *> \verbatim
   92: *>          KBOT is INTEGER
   93: *>             These are the first and last rows and columns of an
   94: *>             isolated diagonal block upon which the QR sweep is to be
   95: *>             applied. It is assumed without a check that
   96: *>                       either KTOP = 1  or   H(KTOP,KTOP-1) = 0
   97: *>             and
   98: *>                       either KBOT = N  or   H(KBOT+1,KBOT) = 0.
   99: *> \endverbatim
  100: *>
  101: *> \param[in] NSHFTS
  102: *> \verbatim
  103: *>          NSHFTS is INTEGER
  104: *>             NSHFTS gives the number of simultaneous shifts.  NSHFTS
  105: *>             must be positive and even.
  106: *> \endverbatim
  107: *>
  108: *> \param[in,out] S
  109: *> \verbatim
  110: *>          S is COMPLEX*16 array, dimension (NSHFTS)
  111: *>             S contains the shifts of origin that define the multi-
  112: *>             shift QR sweep.  On output S may be reordered.
  113: *> \endverbatim
  114: *>
  115: *> \param[in,out] H
  116: *> \verbatim
  117: *>          H is COMPLEX*16 array, dimension (LDH,N)
  118: *>             On input H contains a Hessenberg matrix.  On output a
  119: *>             multi-shift QR sweep with shifts SR(J)+i*SI(J) is applied
  120: *>             to the isolated diagonal block in rows and columns KTOP
  121: *>             through KBOT.
  122: *> \endverbatim
  123: *>
  124: *> \param[in] LDH
  125: *> \verbatim
  126: *>          LDH is INTEGER
  127: *>             LDH is the leading dimension of H just as declared in the
  128: *>             calling procedure.  LDH >= MAX(1,N).
  129: *> \endverbatim
  130: *>
  131: *> \param[in] ILOZ
  132: *> \verbatim
  133: *>          ILOZ is INTEGER
  134: *> \endverbatim
  135: *>
  136: *> \param[in] IHIZ
  137: *> \verbatim
  138: *>          IHIZ is INTEGER
  139: *>             Specify the rows of Z to which transformations must be
  140: *>             applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N
  141: *> \endverbatim
  142: *>
  143: *> \param[in,out] Z
  144: *> \verbatim
  145: *>          Z is COMPLEX*16 array, dimension (LDZ,IHIZ)
  146: *>             If WANTZ = .TRUE., then the QR Sweep unitary
  147: *>             similarity transformation is accumulated into
  148: *>             Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right.
  149: *>             If WANTZ = .FALSE., then Z is unreferenced.
  150: *> \endverbatim
  151: *>
  152: *> \param[in] LDZ
  153: *> \verbatim
  154: *>          LDZ is INTEGER
  155: *>             LDA is the leading dimension of Z just as declared in
  156: *>             the calling procedure. LDZ >= N.
  157: *> \endverbatim
  158: *>
  159: *> \param[out] V
  160: *> \verbatim
  161: *>          V is COMPLEX*16 array, dimension (LDV,NSHFTS/2)
  162: *> \endverbatim
  163: *>
  164: *> \param[in] LDV
  165: *> \verbatim
  166: *>          LDV is INTEGER
  167: *>             LDV is the leading dimension of V as declared in the
  168: *>             calling procedure.  LDV >= 3.
  169: *> \endverbatim
  170: *>
  171: *> \param[out] U
  172: *> \verbatim
  173: *>          U is COMPLEX*16 array, dimension (LDU,3*NSHFTS-3)
  174: *> \endverbatim
  175: *>
  176: *> \param[in] LDU
  177: *> \verbatim
  178: *>          LDU is INTEGER
  179: *>             LDU is the leading dimension of U just as declared in the
  180: *>             in the calling subroutine.  LDU >= 3*NSHFTS-3.
  181: *> \endverbatim
  182: *>
  183: *> \param[in] NV
  184: *> \verbatim
  185: *>          NV is INTEGER
  186: *>             NV is the number of rows in WV agailable for workspace.
  187: *>             NV >= 1.
  188: *> \endverbatim
  189: *>
  190: *> \param[out] WV
  191: *> \verbatim
  192: *>          WV is COMPLEX*16 array, dimension (LDWV,3*NSHFTS-3)
  193: *> \endverbatim
  194: *>
  195: *> \param[in] LDWV
  196: *> \verbatim
  197: *>          LDWV is INTEGER
  198: *>             LDWV is the leading dimension of WV as declared in the
  199: *>             in the calling subroutine.  LDWV >= NV.
  200: *> \endverbatim
  201: *
  202: *> \param[in] NH
  203: *> \verbatim
  204: *>          NH is INTEGER
  205: *>             NH is the number of columns in array WH available for
  206: *>             workspace. NH >= 1.
  207: *> \endverbatim
  208: *>
  209: *> \param[out] WH
  210: *> \verbatim
  211: *>          WH is COMPLEX*16 array, dimension (LDWH,NH)
  212: *> \endverbatim
  213: *>
  214: *> \param[in] LDWH
  215: *> \verbatim
  216: *>          LDWH is INTEGER
  217: *>             Leading dimension of WH just as declared in the
  218: *>             calling procedure.  LDWH >= 3*NSHFTS-3.
  219: *> \endverbatim
  220: *>
  221: *  Authors:
  222: *  ========
  223: *
  224: *> \author Univ. of Tennessee
  225: *> \author Univ. of California Berkeley
  226: *> \author Univ. of Colorado Denver
  227: *> \author NAG Ltd.
  228: *
  229: *> \date June 2016
  230: *
  231: *> \ingroup complex16OTHERauxiliary
  232: *
  233: *> \par Contributors:
  234: *  ==================
  235: *>
  236: *>       Karen Braman and Ralph Byers, Department of Mathematics,
  237: *>       University of Kansas, USA
  238: *
  239: *> \par References:
  240: *  ================
  241: *>
  242: *>       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
  243: *>       Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
  244: *>       Performance, SIAM Journal of Matrix Analysis, volume 23, pages
  245: *>       929--947, 2002.
  246: *>
  247: *  =====================================================================
  248:       SUBROUTINE ZLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NSHFTS, S,
  249:      $                   H, LDH, ILOZ, IHIZ, Z, LDZ, V, LDV, U, LDU, NV,
  250:      $                   WV, LDWV, NH, WH, LDWH )
  251: *
  252: *  -- LAPACK auxiliary routine (version 3.7.1) --
  253: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  254: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  255: *     June 2016
  256: *
  257: *     .. Scalar Arguments ..
  258:       INTEGER            IHIZ, ILOZ, KACC22, KBOT, KTOP, LDH, LDU, LDV,
  259:      $                   LDWH, LDWV, LDZ, N, NH, NSHFTS, NV
  260:       LOGICAL            WANTT, WANTZ
  261: *     ..
  262: *     .. Array Arguments ..
  263:       COMPLEX*16         H( LDH, * ), S( * ), U( LDU, * ), V( LDV, * ),
  264:      $                   WH( LDWH, * ), WV( LDWV, * ), Z( LDZ, * )
  265: *     ..
  266: *
  267: *  ================================================================
  268: *     .. Parameters ..
  269:       COMPLEX*16         ZERO, ONE
  270:       PARAMETER          ( ZERO = ( 0.0d0, 0.0d0 ),
  271:      $                   ONE = ( 1.0d0, 0.0d0 ) )
  272:       DOUBLE PRECISION   RZERO, RONE
  273:       PARAMETER          ( RZERO = 0.0d0, RONE = 1.0d0 )
  274: *     ..
  275: *     .. Local Scalars ..
  276:       COMPLEX*16         ALPHA, BETA, CDUM, REFSUM
  277:       DOUBLE PRECISION   H11, H12, H21, H22, SAFMAX, SAFMIN, SCL,
  278:      $                   SMLNUM, TST1, TST2, ULP
  279:       INTEGER            I2, I4, INCOL, J, J2, J4, JBOT, JCOL, JLEN,
  280:      $                   JROW, JTOP, K, K1, KDU, KMS, KNZ, KRCOL, KZS,
  281:      $                   M, M22, MBOT, MEND, MSTART, MTOP, NBMPS, NDCOL,
  282:      $                   NS, NU
  283:       LOGICAL            ACCUM, BLK22, BMP22
  284: *     ..
  285: *     .. External Functions ..
  286:       DOUBLE PRECISION   DLAMCH
  287:       EXTERNAL           DLAMCH
  288: *     ..
  289: *     .. Intrinsic Functions ..
  290: *
  291:       INTRINSIC          ABS, DBLE, DCONJG, DIMAG, MAX, MIN, MOD
  292: *     ..
  293: *     .. Local Arrays ..
  294:       COMPLEX*16         VT( 3 )
  295: *     ..
  296: *     .. External Subroutines ..
  297:       EXTERNAL           DLABAD, ZGEMM, ZLACPY, ZLAQR1, ZLARFG, ZLASET,
  298:      $                   ZTRMM
  299: *     ..
  300: *     .. Statement Functions ..
  301:       DOUBLE PRECISION   CABS1
  302: *     ..
  303: *     .. Statement Function definitions ..
  304:       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
  305: *     ..
  306: *     .. Executable Statements ..
  307: *
  308: *     ==== If there are no shifts, then there is nothing to do. ====
  309: *
  310:       IF( NSHFTS.LT.2 )
  311:      $   RETURN
  312: *
  313: *     ==== If the active block is empty or 1-by-1, then there
  314: *     .    is nothing to do. ====
  315: *
  316:       IF( KTOP.GE.KBOT )
  317:      $   RETURN
  318: *
  319: *     ==== NSHFTS is supposed to be even, but if it is odd,
  320: *     .    then simply reduce it by one.  ====
  321: *
  322:       NS = NSHFTS - MOD( NSHFTS, 2 )
  323: *
  324: *     ==== Machine constants for deflation ====
  325: *
  326:       SAFMIN = DLAMCH( 'SAFE MINIMUM' )
  327:       SAFMAX = RONE / SAFMIN
  328:       CALL DLABAD( SAFMIN, SAFMAX )
  329:       ULP = DLAMCH( 'PRECISION' )
  330:       SMLNUM = SAFMIN*( DBLE( N ) / ULP )
  331: *
  332: *     ==== Use accumulated reflections to update far-from-diagonal
  333: *     .    entries ? ====
  334: *
  335:       ACCUM = ( KACC22.EQ.1 ) .OR. ( KACC22.EQ.2 )
  336: *
  337: *     ==== If so, exploit the 2-by-2 block structure? ====
  338: *
  339:       BLK22 = ( NS.GT.2 ) .AND. ( KACC22.EQ.2 )
  340: *
  341: *     ==== clear trash ====
  342: *
  343:       IF( KTOP+2.LE.KBOT )
  344:      $   H( KTOP+2, KTOP ) = ZERO
  345: *
  346: *     ==== NBMPS = number of 2-shift bulges in the chain ====
  347: *
  348:       NBMPS = NS / 2
  349: *
  350: *     ==== KDU = width of slab ====
  351: *
  352:       KDU = 6*NBMPS - 3
  353: *
  354: *     ==== Create and chase chains of NBMPS bulges ====
  355: *
  356:       DO 210 INCOL = 3*( 1-NBMPS ) + KTOP - 1, KBOT - 2, 3*NBMPS - 2
  357:          NDCOL = INCOL + KDU
  358:          IF( ACCUM )
  359:      $      CALL ZLASET( 'ALL', KDU, KDU, ZERO, ONE, U, LDU )
  360: *
  361: *        ==== Near-the-diagonal bulge chase.  The following loop
  362: *        .    performs the near-the-diagonal part of a small bulge
  363: *        .    multi-shift QR sweep.  Each 6*NBMPS-2 column diagonal
  364: *        .    chunk extends from column INCOL to column NDCOL
  365: *        .    (including both column INCOL and column NDCOL). The
  366: *        .    following loop chases a 3*NBMPS column long chain of
  367: *        .    NBMPS bulges 3*NBMPS-2 columns to the right.  (INCOL
  368: *        .    may be less than KTOP and and NDCOL may be greater than
  369: *        .    KBOT indicating phantom columns from which to chase
  370: *        .    bulges before they are actually introduced or to which
  371: *        .    to chase bulges beyond column KBOT.)  ====
  372: *
  373:          DO 140 KRCOL = INCOL, MIN( INCOL+3*NBMPS-3, KBOT-2 )
  374: *
  375: *           ==== Bulges number MTOP to MBOT are active double implicit
  376: *           .    shift bulges.  There may or may not also be small
  377: *           .    2-by-2 bulge, if there is room.  The inactive bulges
  378: *           .    (if any) must wait until the active bulges have moved
  379: *           .    down the diagonal to make room.  The phantom matrix
  380: *           .    paradigm described above helps keep track.  ====
  381: *
  382:             MTOP = MAX( 1, ( ( KTOP-1 )-KRCOL+2 ) / 3+1 )
  383:             MBOT = MIN( NBMPS, ( KBOT-KRCOL ) / 3 )
  384:             M22 = MBOT + 1
  385:             BMP22 = ( MBOT.LT.NBMPS ) .AND. ( KRCOL+3*( M22-1 ) ).EQ.
  386:      $              ( KBOT-2 )
  387: *
  388: *           ==== Generate reflections to chase the chain right
  389: *           .    one column.  (The minimum value of K is KTOP-1.) ====
  390: *
  391:             DO 10 M = MTOP, MBOT
  392:                K = KRCOL + 3*( M-1 )
  393:                IF( K.EQ.KTOP-1 ) THEN
  394:                   CALL ZLAQR1( 3, H( KTOP, KTOP ), LDH, S( 2*M-1 ),
  395:      $                         S( 2*M ), V( 1, M ) )
  396:                   ALPHA = V( 1, M )
  397:                   CALL ZLARFG( 3, ALPHA, V( 2, M ), 1, V( 1, M ) )
  398:                ELSE
  399:                   BETA = H( K+1, K )
  400:                   V( 2, M ) = H( K+2, K )
  401:                   V( 3, M ) = H( K+3, K )
  402:                   CALL ZLARFG( 3, BETA, V( 2, M ), 1, V( 1, M ) )
  403: *
  404: *                 ==== A Bulge may collapse because of vigilant
  405: *                 .    deflation or destructive underflow.  In the
  406: *                 .    underflow case, try the two-small-subdiagonals
  407: *                 .    trick to try to reinflate the bulge.  ====
  408: *
  409:                   IF( H( K+3, K ).NE.ZERO .OR. H( K+3, K+1 ).NE.
  410:      $                ZERO .OR. H( K+3, K+2 ).EQ.ZERO ) THEN
  411: *
  412: *                    ==== Typical case: not collapsed (yet). ====
  413: *
  414:                      H( K+1, K ) = BETA
  415:                      H( K+2, K ) = ZERO
  416:                      H( K+3, K ) = ZERO
  417:                   ELSE
  418: *
  419: *                    ==== Atypical case: collapsed.  Attempt to
  420: *                    .    reintroduce ignoring H(K+1,K) and H(K+2,K).
  421: *                    .    If the fill resulting from the new
  422: *                    .    reflector is too large, then abandon it.
  423: *                    .    Otherwise, use the new one. ====
  424: *
  425:                      CALL ZLAQR1( 3, H( K+1, K+1 ), LDH, S( 2*M-1 ),
  426:      $                            S( 2*M ), VT )
  427:                      ALPHA = VT( 1 )
  428:                      CALL ZLARFG( 3, ALPHA, VT( 2 ), 1, VT( 1 ) )
  429:                      REFSUM = DCONJG( VT( 1 ) )*
  430:      $                        ( H( K+1, K )+DCONJG( VT( 2 ) )*
  431:      $                        H( K+2, K ) )
  432: *
  433:                      IF( CABS1( H( K+2, K )-REFSUM*VT( 2 ) )+
  434:      $                   CABS1( REFSUM*VT( 3 ) ).GT.ULP*
  435:      $                   ( CABS1( H( K, K ) )+CABS1( H( K+1,
  436:      $                   K+1 ) )+CABS1( H( K+2, K+2 ) ) ) ) THEN
  437: *
  438: *                       ==== Starting a new bulge here would
  439: *                       .    create non-negligible fill.  Use
  440: *                       .    the old one with trepidation. ====
  441: *
  442:                         H( K+1, K ) = BETA
  443:                         H( K+2, K ) = ZERO
  444:                         H( K+3, K ) = ZERO
  445:                      ELSE
  446: *
  447: *                       ==== Stating a new bulge here would
  448: *                       .    create only negligible fill.
  449: *                       .    Replace the old reflector with
  450: *                       .    the new one. ====
  451: *
  452:                         H( K+1, K ) = H( K+1, K ) - REFSUM
  453:                         H( K+2, K ) = ZERO
  454:                         H( K+3, K ) = ZERO
  455:                         V( 1, M ) = VT( 1 )
  456:                         V( 2, M ) = VT( 2 )
  457:                         V( 3, M ) = VT( 3 )
  458:                      END IF
  459:                   END IF
  460:                END IF
  461:    10       CONTINUE
  462: *
  463: *           ==== Generate a 2-by-2 reflection, if needed. ====
  464: *
  465:             K = KRCOL + 3*( M22-1 )
  466:             IF( BMP22 ) THEN
  467:                IF( K.EQ.KTOP-1 ) THEN
  468:                   CALL ZLAQR1( 2, H( K+1, K+1 ), LDH, S( 2*M22-1 ),
  469:      $                         S( 2*M22 ), V( 1, M22 ) )
  470:                   BETA = V( 1, M22 )
  471:                   CALL ZLARFG( 2, BETA, V( 2, M22 ), 1, V( 1, M22 ) )
  472:                ELSE
  473:                   BETA = H( K+1, K )
  474:                   V( 2, M22 ) = H( K+2, K )
  475:                   CALL ZLARFG( 2, BETA, V( 2, M22 ), 1, V( 1, M22 ) )
  476:                   H( K+1, K ) = BETA
  477:                   H( K+2, K ) = ZERO
  478:                END IF
  479:             END IF
  480: *
  481: *           ==== Multiply H by reflections from the left ====
  482: *
  483:             IF( ACCUM ) THEN
  484:                JBOT = MIN( NDCOL, KBOT )
  485:             ELSE IF( WANTT ) THEN
  486:                JBOT = N
  487:             ELSE
  488:                JBOT = KBOT
  489:             END IF
  490:             DO 30 J = MAX( KTOP, KRCOL ), JBOT
  491:                MEND = MIN( MBOT, ( J-KRCOL+2 ) / 3 )
  492:                DO 20 M = MTOP, MEND
  493:                   K = KRCOL + 3*( M-1 )
  494:                   REFSUM = DCONJG( V( 1, M ) )*
  495:      $                     ( H( K+1, J )+DCONJG( V( 2, M ) )*
  496:      $                     H( K+2, J )+DCONJG( V( 3, M ) )*H( K+3, J ) )
  497:                   H( K+1, J ) = H( K+1, J ) - REFSUM
  498:                   H( K+2, J ) = H( K+2, J ) - REFSUM*V( 2, M )
  499:                   H( K+3, J ) = H( K+3, J ) - REFSUM*V( 3, M )
  500:    20          CONTINUE
  501:    30       CONTINUE
  502:             IF( BMP22 ) THEN
  503:                K = KRCOL + 3*( M22-1 )
  504:                DO 40 J = MAX( K+1, KTOP ), JBOT
  505:                   REFSUM = DCONJG( V( 1, M22 ) )*
  506:      $                     ( H( K+1, J )+DCONJG( V( 2, M22 ) )*
  507:      $                     H( K+2, J ) )
  508:                   H( K+1, J ) = H( K+1, J ) - REFSUM
  509:                   H( K+2, J ) = H( K+2, J ) - REFSUM*V( 2, M22 )
  510:    40          CONTINUE
  511:             END IF
  512: *
  513: *           ==== Multiply H by reflections from the right.
  514: *           .    Delay filling in the last row until the
  515: *           .    vigilant deflation check is complete. ====
  516: *
  517:             IF( ACCUM ) THEN
  518:                JTOP = MAX( KTOP, INCOL )
  519:             ELSE IF( WANTT ) THEN
  520:                JTOP = 1
  521:             ELSE
  522:                JTOP = KTOP
  523:             END IF
  524:             DO 80 M = MTOP, MBOT
  525:                IF( V( 1, M ).NE.ZERO ) THEN
  526:                   K = KRCOL + 3*( M-1 )
  527:                   DO 50 J = JTOP, MIN( KBOT, K+3 )
  528:                      REFSUM = V( 1, M )*( H( J, K+1 )+V( 2, M )*
  529:      $                        H( J, K+2 )+V( 3, M )*H( J, K+3 ) )
  530:                      H( J, K+1 ) = H( J, K+1 ) - REFSUM
  531:                      H( J, K+2 ) = H( J, K+2 ) -
  532:      $                             REFSUM*DCONJG( V( 2, M ) )
  533:                      H( J, K+3 ) = H( J, K+3 ) -
  534:      $                             REFSUM*DCONJG( V( 3, M ) )
  535:    50             CONTINUE
  536: *
  537:                   IF( ACCUM ) THEN
  538: *
  539: *                    ==== Accumulate U. (If necessary, update Z later
  540: *                    .    with with an efficient matrix-matrix
  541: *                    .    multiply.) ====
  542: *
  543:                      KMS = K - INCOL
  544:                      DO 60 J = MAX( 1, KTOP-INCOL ), KDU
  545:                         REFSUM = V( 1, M )*( U( J, KMS+1 )+V( 2, M )*
  546:      $                           U( J, KMS+2 )+V( 3, M )*U( J, KMS+3 ) )
  547:                         U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM
  548:                         U( J, KMS+2 ) = U( J, KMS+2 ) -
  549:      $                                  REFSUM*DCONJG( V( 2, M ) )
  550:                         U( J, KMS+3 ) = U( J, KMS+3 ) -
  551:      $                                  REFSUM*DCONJG( V( 3, M ) )
  552:    60                CONTINUE
  553:                   ELSE IF( WANTZ ) THEN
  554: *
  555: *                    ==== U is not accumulated, so update Z
  556: *                    .    now by multiplying by reflections
  557: *                    .    from the right. ====
  558: *
  559:                      DO 70 J = ILOZ, IHIZ
  560:                         REFSUM = V( 1, M )*( Z( J, K+1 )+V( 2, M )*
  561:      $                           Z( J, K+2 )+V( 3, M )*Z( J, K+3 ) )
  562:                         Z( J, K+1 ) = Z( J, K+1 ) - REFSUM
  563:                         Z( J, K+2 ) = Z( J, K+2 ) -
  564:      $                                REFSUM*DCONJG( V( 2, M ) )
  565:                         Z( J, K+3 ) = Z( J, K+3 ) -
  566:      $                                REFSUM*DCONJG( V( 3, M ) )
  567:    70                CONTINUE
  568:                   END IF
  569:                END IF
  570:    80       CONTINUE
  571: *
  572: *           ==== Special case: 2-by-2 reflection (if needed) ====
  573: *
  574:             K = KRCOL + 3*( M22-1 )
  575:             IF( BMP22 ) THEN
  576:                IF ( V( 1, M22 ).NE.ZERO ) THEN
  577:                   DO 90 J = JTOP, MIN( KBOT, K+3 )
  578:                      REFSUM = V( 1, M22 )*( H( J, K+1 )+V( 2, M22 )*
  579:      $                        H( J, K+2 ) )
  580:                      H( J, K+1 ) = H( J, K+1 ) - REFSUM
  581:                      H( J, K+2 ) = H( J, K+2 ) -
  582:      $                             REFSUM*DCONJG( V( 2, M22 ) )
  583:    90             CONTINUE
  584: *
  585:                   IF( ACCUM ) THEN
  586:                      KMS = K - INCOL
  587:                      DO 100 J = MAX( 1, KTOP-INCOL ), KDU
  588:                         REFSUM = V( 1, M22 )*( U( J, KMS+1 )+
  589:      $                           V( 2, M22 )*U( J, KMS+2 ) )
  590:                         U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM
  591:                         U( J, KMS+2 ) = U( J, KMS+2 ) -
  592:      $                                  REFSUM*DCONJG( V( 2, M22 ) )
  593:   100                CONTINUE
  594:                   ELSE IF( WANTZ ) THEN
  595:                      DO 110 J = ILOZ, IHIZ
  596:                         REFSUM = V( 1, M22 )*( Z( J, K+1 )+V( 2, M22 )*
  597:      $                           Z( J, K+2 ) )
  598:                         Z( J, K+1 ) = Z( J, K+1 ) - REFSUM
  599:                         Z( J, K+2 ) = Z( J, K+2 ) -
  600:      $                                REFSUM*DCONJG( V( 2, M22 ) )
  601:   110                CONTINUE
  602:                   END IF
  603:                END IF
  604:             END IF
  605: *
  606: *           ==== Vigilant deflation check ====
  607: *
  608:             MSTART = MTOP
  609:             IF( KRCOL+3*( MSTART-1 ).LT.KTOP )
  610:      $         MSTART = MSTART + 1
  611:             MEND = MBOT
  612:             IF( BMP22 )
  613:      $         MEND = MEND + 1
  614:             IF( KRCOL.EQ.KBOT-2 )
  615:      $         MEND = MEND + 1
  616:             DO 120 M = MSTART, MEND
  617:                K = MIN( KBOT-1, KRCOL+3*( M-1 ) )
  618: *
  619: *              ==== The following convergence test requires that
  620: *              .    the tradition small-compared-to-nearby-diagonals
  621: *              .    criterion and the Ahues & Tisseur (LAWN 122, 1997)
  622: *              .    criteria both be satisfied.  The latter improves
  623: *              .    accuracy in some examples. Falling back on an
  624: *              .    alternate convergence criterion when TST1 or TST2
  625: *              .    is zero (as done here) is traditional but probably
  626: *              .    unnecessary. ====
  627: *
  628:                IF( H( K+1, K ).NE.ZERO ) THEN
  629:                   TST1 = CABS1( H( K, K ) ) + CABS1( H( K+1, K+1 ) )
  630:                   IF( TST1.EQ.RZERO ) THEN
  631:                      IF( K.GE.KTOP+1 )
  632:      $                  TST1 = TST1 + CABS1( H( K, K-1 ) )
  633:                      IF( K.GE.KTOP+2 )
  634:      $                  TST1 = TST1 + CABS1( H( K, K-2 ) )
  635:                      IF( K.GE.KTOP+3 )
  636:      $                  TST1 = TST1 + CABS1( H( K, K-3 ) )
  637:                      IF( K.LE.KBOT-2 )
  638:      $                  TST1 = TST1 + CABS1( H( K+2, K+1 ) )
  639:                      IF( K.LE.KBOT-3 )
  640:      $                  TST1 = TST1 + CABS1( H( K+3, K+1 ) )
  641:                      IF( K.LE.KBOT-4 )
  642:      $                  TST1 = TST1 + CABS1( H( K+4, K+1 ) )
  643:                   END IF
  644:                   IF( CABS1( H( K+1, K ) ).LE.MAX( SMLNUM, ULP*TST1 ) )
  645:      $                 THEN
  646:                      H12 = MAX( CABS1( H( K+1, K ) ),
  647:      $                     CABS1( H( K, K+1 ) ) )
  648:                      H21 = MIN( CABS1( H( K+1, K ) ),
  649:      $                     CABS1( H( K, K+1 ) ) )
  650:                      H11 = MAX( CABS1( H( K+1, K+1 ) ),
  651:      $                     CABS1( H( K, K )-H( K+1, K+1 ) ) )
  652:                      H22 = MIN( CABS1( H( K+1, K+1 ) ),
  653:      $                     CABS1( H( K, K )-H( K+1, K+1 ) ) )
  654:                      SCL = H11 + H12
  655:                      TST2 = H22*( H11 / SCL )
  656: *
  657:                      IF( TST2.EQ.RZERO .OR. H21*( H12 / SCL ).LE.
  658:      $                   MAX( SMLNUM, ULP*TST2 ) )H( K+1, K ) = ZERO
  659:                   END IF
  660:                END IF
  661:   120       CONTINUE
  662: *
  663: *           ==== Fill in the last row of each bulge. ====
  664: *
  665:             MEND = MIN( NBMPS, ( KBOT-KRCOL-1 ) / 3 )
  666:             DO 130 M = MTOP, MEND
  667:                K = KRCOL + 3*( M-1 )
  668:                REFSUM = V( 1, M )*V( 3, M )*H( K+4, K+3 )
  669:                H( K+4, K+1 ) = -REFSUM
  670:                H( K+4, K+2 ) = -REFSUM*DCONJG( V( 2, M ) )
  671:                H( K+4, K+3 ) = H( K+4, K+3 ) -
  672:      $                         REFSUM*DCONJG( V( 3, M ) )
  673:   130       CONTINUE
  674: *
  675: *           ==== End of near-the-diagonal bulge chase. ====
  676: *
  677:   140    CONTINUE
  678: *
  679: *        ==== Use U (if accumulated) to update far-from-diagonal
  680: *        .    entries in H.  If required, use U to update Z as
  681: *        .    well. ====
  682: *
  683:          IF( ACCUM ) THEN
  684:             IF( WANTT ) THEN
  685:                JTOP = 1
  686:                JBOT = N
  687:             ELSE
  688:                JTOP = KTOP
  689:                JBOT = KBOT
  690:             END IF
  691:             IF( ( .NOT.BLK22 ) .OR. ( INCOL.LT.KTOP ) .OR.
  692:      $          ( NDCOL.GT.KBOT ) .OR. ( NS.LE.2 ) ) THEN
  693: *
  694: *              ==== Updates not exploiting the 2-by-2 block
  695: *              .    structure of U.  K1 and NU keep track of
  696: *              .    the location and size of U in the special
  697: *              .    cases of introducing bulges and chasing
  698: *              .    bulges off the bottom.  In these special
  699: *              .    cases and in case the number of shifts
  700: *              .    is NS = 2, there is no 2-by-2 block
  701: *              .    structure to exploit.  ====
  702: *
  703:                K1 = MAX( 1, KTOP-INCOL )
  704:                NU = ( KDU-MAX( 0, NDCOL-KBOT ) ) - K1 + 1
  705: *
  706: *              ==== Horizontal Multiply ====
  707: *
  708:                DO 150 JCOL = MIN( NDCOL, KBOT ) + 1, JBOT, NH
  709:                   JLEN = MIN( NH, JBOT-JCOL+1 )
  710:                   CALL ZGEMM( 'C', 'N', NU, JLEN, NU, ONE, U( K1, K1 ),
  711:      $                        LDU, H( INCOL+K1, JCOL ), LDH, ZERO, WH,
  712:      $                        LDWH )
  713:                   CALL ZLACPY( 'ALL', NU, JLEN, WH, LDWH,
  714:      $                         H( INCOL+K1, JCOL ), LDH )
  715:   150          CONTINUE
  716: *
  717: *              ==== Vertical multiply ====
  718: *
  719:                DO 160 JROW = JTOP, MAX( KTOP, INCOL ) - 1, NV
  720:                   JLEN = MIN( NV, MAX( KTOP, INCOL )-JROW )
  721:                   CALL ZGEMM( 'N', 'N', JLEN, NU, NU, ONE,
  722:      $                        H( JROW, INCOL+K1 ), LDH, U( K1, K1 ),
  723:      $                        LDU, ZERO, WV, LDWV )
  724:                   CALL ZLACPY( 'ALL', JLEN, NU, WV, LDWV,
  725:      $                         H( JROW, INCOL+K1 ), LDH )
  726:   160          CONTINUE
  727: *
  728: *              ==== Z multiply (also vertical) ====
  729: *
  730:                IF( WANTZ ) THEN
  731:                   DO 170 JROW = ILOZ, IHIZ, NV
  732:                      JLEN = MIN( NV, IHIZ-JROW+1 )
  733:                      CALL ZGEMM( 'N', 'N', JLEN, NU, NU, ONE,
  734:      $                           Z( JROW, INCOL+K1 ), LDZ, U( K1, K1 ),
  735:      $                           LDU, ZERO, WV, LDWV )
  736:                      CALL ZLACPY( 'ALL', JLEN, NU, WV, LDWV,
  737:      $                            Z( JROW, INCOL+K1 ), LDZ )
  738:   170             CONTINUE
  739:                END IF
  740:             ELSE
  741: *
  742: *              ==== Updates exploiting U's 2-by-2 block structure.
  743: *              .    (I2, I4, J2, J4 are the last rows and columns
  744: *              .    of the blocks.) ====
  745: *
  746:                I2 = ( KDU+1 ) / 2
  747:                I4 = KDU
  748:                J2 = I4 - I2
  749:                J4 = KDU
  750: *
  751: *              ==== KZS and KNZ deal with the band of zeros
  752: *              .    along the diagonal of one of the triangular
  753: *              .    blocks. ====
  754: *
  755:                KZS = ( J4-J2 ) - ( NS+1 )
  756:                KNZ = NS + 1
  757: *
  758: *              ==== Horizontal multiply ====
  759: *
  760:                DO 180 JCOL = MIN( NDCOL, KBOT ) + 1, JBOT, NH
  761:                   JLEN = MIN( NH, JBOT-JCOL+1 )
  762: *
  763: *                 ==== Copy bottom of H to top+KZS of scratch ====
  764: *                  (The first KZS rows get multiplied by zero.) ====
  765: *
  766:                   CALL ZLACPY( 'ALL', KNZ, JLEN, H( INCOL+1+J2, JCOL ),
  767:      $                         LDH, WH( KZS+1, 1 ), LDWH )
  768: *
  769: *                 ==== Multiply by U21**H ====
  770: *
  771:                   CALL ZLASET( 'ALL', KZS, JLEN, ZERO, ZERO, WH, LDWH )
  772:                   CALL ZTRMM( 'L', 'U', 'C', 'N', KNZ, JLEN, ONE,
  773:      $                        U( J2+1, 1+KZS ), LDU, WH( KZS+1, 1 ),
  774:      $                        LDWH )
  775: *
  776: *                 ==== Multiply top of H by U11**H ====
  777: *
  778:                   CALL ZGEMM( 'C', 'N', I2, JLEN, J2, ONE, U, LDU,
  779:      $                        H( INCOL+1, JCOL ), LDH, ONE, WH, LDWH )
  780: *
  781: *                 ==== Copy top of H to bottom of WH ====
  782: *
  783:                   CALL ZLACPY( 'ALL', J2, JLEN, H( INCOL+1, JCOL ), LDH,
  784:      $                         WH( I2+1, 1 ), LDWH )
  785: *
  786: *                 ==== Multiply by U21**H ====
  787: *
  788:                   CALL ZTRMM( 'L', 'L', 'C', 'N', J2, JLEN, ONE,
  789:      $                        U( 1, I2+1 ), LDU, WH( I2+1, 1 ), LDWH )
  790: *
  791: *                 ==== Multiply by U22 ====
  792: *
  793:                   CALL ZGEMM( 'C', 'N', I4-I2, JLEN, J4-J2, ONE,
  794:      $                        U( J2+1, I2+1 ), LDU,
  795:      $                        H( INCOL+1+J2, JCOL ), LDH, ONE,
  796:      $                        WH( I2+1, 1 ), LDWH )
  797: *
  798: *                 ==== Copy it back ====
  799: *
  800:                   CALL ZLACPY( 'ALL', KDU, JLEN, WH, LDWH,
  801:      $                         H( INCOL+1, JCOL ), LDH )
  802:   180          CONTINUE
  803: *
  804: *              ==== Vertical multiply ====
  805: *
  806:                DO 190 JROW = JTOP, MAX( INCOL, KTOP ) - 1, NV
  807:                   JLEN = MIN( NV, MAX( INCOL, KTOP )-JROW )
  808: *
  809: *                 ==== Copy right of H to scratch (the first KZS
  810: *                 .    columns get multiplied by zero) ====
  811: *
  812:                   CALL ZLACPY( 'ALL', JLEN, KNZ, H( JROW, INCOL+1+J2 ),
  813:      $                         LDH, WV( 1, 1+KZS ), LDWV )
  814: *
  815: *                 ==== Multiply by U21 ====
  816: *
  817:                   CALL ZLASET( 'ALL', JLEN, KZS, ZERO, ZERO, WV, LDWV )
  818:                   CALL ZTRMM( 'R', 'U', 'N', 'N', JLEN, KNZ, ONE,
  819:      $                        U( J2+1, 1+KZS ), LDU, WV( 1, 1+KZS ),
  820:      $                        LDWV )
  821: *
  822: *                 ==== Multiply by U11 ====
  823: *
  824:                   CALL ZGEMM( 'N', 'N', JLEN, I2, J2, ONE,
  825:      $                        H( JROW, INCOL+1 ), LDH, U, LDU, ONE, WV,
  826:      $                        LDWV )
  827: *
  828: *                 ==== Copy left of H to right of scratch ====
  829: *
  830:                   CALL ZLACPY( 'ALL', JLEN, J2, H( JROW, INCOL+1 ), LDH,
  831:      $                         WV( 1, 1+I2 ), LDWV )
  832: *
  833: *                 ==== Multiply by U21 ====
  834: *
  835:                   CALL ZTRMM( 'R', 'L', 'N', 'N', JLEN, I4-I2, ONE,
  836:      $                        U( 1, I2+1 ), LDU, WV( 1, 1+I2 ), LDWV )
  837: *
  838: *                 ==== Multiply by U22 ====
  839: *
  840:                   CALL ZGEMM( 'N', 'N', JLEN, I4-I2, J4-J2, ONE,
  841:      $                        H( JROW, INCOL+1+J2 ), LDH,
  842:      $                        U( J2+1, I2+1 ), LDU, ONE, WV( 1, 1+I2 ),
  843:      $                        LDWV )
  844: *
  845: *                 ==== Copy it back ====
  846: *
  847:                   CALL ZLACPY( 'ALL', JLEN, KDU, WV, LDWV,
  848:      $                         H( JROW, INCOL+1 ), LDH )
  849:   190          CONTINUE
  850: *
  851: *              ==== Multiply Z (also vertical) ====
  852: *
  853:                IF( WANTZ ) THEN
  854:                   DO 200 JROW = ILOZ, IHIZ, NV
  855:                      JLEN = MIN( NV, IHIZ-JROW+1 )
  856: *
  857: *                    ==== Copy right of Z to left of scratch (first
  858: *                    .     KZS columns get multiplied by zero) ====
  859: *
  860:                      CALL ZLACPY( 'ALL', JLEN, KNZ,
  861:      $                            Z( JROW, INCOL+1+J2 ), LDZ,
  862:      $                            WV( 1, 1+KZS ), LDWV )
  863: *
  864: *                    ==== Multiply by U12 ====
  865: *
  866:                      CALL ZLASET( 'ALL', JLEN, KZS, ZERO, ZERO, WV,
  867:      $                            LDWV )
  868:                      CALL ZTRMM( 'R', 'U', 'N', 'N', JLEN, KNZ, ONE,
  869:      $                           U( J2+1, 1+KZS ), LDU, WV( 1, 1+KZS ),
  870:      $                           LDWV )
  871: *
  872: *                    ==== Multiply by U11 ====
  873: *
  874:                      CALL ZGEMM( 'N', 'N', JLEN, I2, J2, ONE,
  875:      $                           Z( JROW, INCOL+1 ), LDZ, U, LDU, ONE,
  876:      $                           WV, LDWV )
  877: *
  878: *                    ==== Copy left of Z to right of scratch ====
  879: *
  880:                      CALL ZLACPY( 'ALL', JLEN, J2, Z( JROW, INCOL+1 ),
  881:      $                            LDZ, WV( 1, 1+I2 ), LDWV )
  882: *
  883: *                    ==== Multiply by U21 ====
  884: *
  885:                      CALL ZTRMM( 'R', 'L', 'N', 'N', JLEN, I4-I2, ONE,
  886:      $                           U( 1, I2+1 ), LDU, WV( 1, 1+I2 ),
  887:      $                           LDWV )
  888: *
  889: *                    ==== Multiply by U22 ====
  890: *
  891:                      CALL ZGEMM( 'N', 'N', JLEN, I4-I2, J4-J2, ONE,
  892:      $                           Z( JROW, INCOL+1+J2 ), LDZ,
  893:      $                           U( J2+1, I2+1 ), LDU, ONE,
  894:      $                           WV( 1, 1+I2 ), LDWV )
  895: *
  896: *                    ==== Copy the result back to Z ====
  897: *
  898:                      CALL ZLACPY( 'ALL', JLEN, KDU, WV, LDWV,
  899:      $                            Z( JROW, INCOL+1 ), LDZ )
  900:   200             CONTINUE
  901:                END IF
  902:             END IF
  903:          END IF
  904:   210 CONTINUE
  905: *
  906: *     ==== End of ZLAQR5 ====
  907: *
  908:       END

CVSweb interface <joel.bertrand@systella.fr>