File:  [local] / rpl / lapack / lapack / zlaqr4.f
Revision 1.19: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:30 2023 UTC (9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZLAQR4 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Schur decomposition.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZLAQR4 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaqr4.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaqr4.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaqr4.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLAQR4( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
   22: *                          IHIZ, Z, LDZ, WORK, LWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N
   26: *       LOGICAL            WANTT, WANTZ
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       COMPLEX*16         H( LDH, * ), W( * ), WORK( * ), Z( LDZ, * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *>    ZLAQR4 implements one level of recursion for ZLAQR0.
   39: *>    It is a complete implementation of the small bulge multi-shift
   40: *>    QR algorithm.  It may be called by ZLAQR0 and, for large enough
   41: *>    deflation window size, it may be called by ZLAQR3.  This
   42: *>    subroutine is identical to ZLAQR0 except that it calls ZLAQR2
   43: *>    instead of ZLAQR3.
   44: *>
   45: *>    ZLAQR4 computes the eigenvalues of a Hessenberg matrix H
   46: *>    and, optionally, the matrices T and Z from the Schur decomposition
   47: *>    H = Z T Z**H, where T is an upper triangular matrix (the
   48: *>    Schur form), and Z is the unitary matrix of Schur vectors.
   49: *>
   50: *>    Optionally Z may be postmultiplied into an input unitary
   51: *>    matrix Q so that this routine can give the Schur factorization
   52: *>    of a matrix A which has been reduced to the Hessenberg form H
   53: *>    by the unitary matrix Q:  A = Q*H*Q**H = (QZ)*H*(QZ)**H.
   54: *> \endverbatim
   55: *
   56: *  Arguments:
   57: *  ==========
   58: *
   59: *> \param[in] WANTT
   60: *> \verbatim
   61: *>          WANTT is LOGICAL
   62: *>          = .TRUE. : the full Schur form T is required;
   63: *>          = .FALSE.: only eigenvalues are required.
   64: *> \endverbatim
   65: *>
   66: *> \param[in] WANTZ
   67: *> \verbatim
   68: *>          WANTZ is LOGICAL
   69: *>          = .TRUE. : the matrix of Schur vectors Z is required;
   70: *>          = .FALSE.: Schur vectors are not required.
   71: *> \endverbatim
   72: *>
   73: *> \param[in] N
   74: *> \verbatim
   75: *>          N is INTEGER
   76: *>           The order of the matrix H.  N >= 0.
   77: *> \endverbatim
   78: *>
   79: *> \param[in] ILO
   80: *> \verbatim
   81: *>          ILO is INTEGER
   82: *> \endverbatim
   83: *>
   84: *> \param[in] IHI
   85: *> \verbatim
   86: *>          IHI is INTEGER
   87: *>           It is assumed that H is already upper triangular in rows
   88: *>           and columns 1:ILO-1 and IHI+1:N and, if ILO > 1,
   89: *>           H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
   90: *>           previous call to ZGEBAL, and then passed to ZGEHRD when the
   91: *>           matrix output by ZGEBAL is reduced to Hessenberg form.
   92: *>           Otherwise, ILO and IHI should be set to 1 and N,
   93: *>           respectively.  If N > 0, then 1 <= ILO <= IHI <= N.
   94: *>           If N = 0, then ILO = 1 and IHI = 0.
   95: *> \endverbatim
   96: *>
   97: *> \param[in,out] H
   98: *> \verbatim
   99: *>          H is COMPLEX*16 array, dimension (LDH,N)
  100: *>           On entry, the upper Hessenberg matrix H.
  101: *>           On exit, if INFO = 0 and WANTT is .TRUE., then H
  102: *>           contains the upper triangular matrix T from the Schur
  103: *>           decomposition (the Schur form). If INFO = 0 and WANT is
  104: *>           .FALSE., then the contents of H are unspecified on exit.
  105: *>           (The output value of H when INFO > 0 is given under the
  106: *>           description of INFO below.)
  107: *>
  108: *>           This subroutine may explicitly set H(i,j) = 0 for i > j and
  109: *>           j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
  110: *> \endverbatim
  111: *>
  112: *> \param[in] LDH
  113: *> \verbatim
  114: *>          LDH is INTEGER
  115: *>           The leading dimension of the array H. LDH >= max(1,N).
  116: *> \endverbatim
  117: *>
  118: *> \param[out] W
  119: *> \verbatim
  120: *>          W is COMPLEX*16 array, dimension (N)
  121: *>           The computed eigenvalues of H(ILO:IHI,ILO:IHI) are stored
  122: *>           in W(ILO:IHI). If WANTT is .TRUE., then the eigenvalues are
  123: *>           stored in the same order as on the diagonal of the Schur
  124: *>           form returned in H, with W(i) = H(i,i).
  125: *> \endverbatim
  126: *>
  127: *> \param[in] ILOZ
  128: *> \verbatim
  129: *>          ILOZ is INTEGER
  130: *> \endverbatim
  131: *>
  132: *> \param[in] IHIZ
  133: *> \verbatim
  134: *>          IHIZ is INTEGER
  135: *>           Specify the rows of Z to which transformations must be
  136: *>           applied if WANTZ is .TRUE..
  137: *>           1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
  138: *> \endverbatim
  139: *>
  140: *> \param[in,out] Z
  141: *> \verbatim
  142: *>          Z is COMPLEX*16 array, dimension (LDZ,IHI)
  143: *>           If WANTZ is .FALSE., then Z is not referenced.
  144: *>           If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
  145: *>           replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
  146: *>           orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
  147: *>           (The output value of Z when INFO > 0 is given under
  148: *>           the description of INFO below.)
  149: *> \endverbatim
  150: *>
  151: *> \param[in] LDZ
  152: *> \verbatim
  153: *>          LDZ is INTEGER
  154: *>           The leading dimension of the array Z.  if WANTZ is .TRUE.
  155: *>           then LDZ >= MAX(1,IHIZ).  Otherwise, LDZ >= 1.
  156: *> \endverbatim
  157: *>
  158: *> \param[out] WORK
  159: *> \verbatim
  160: *>          WORK is COMPLEX*16 array, dimension LWORK
  161: *>           On exit, if LWORK = -1, WORK(1) returns an estimate of
  162: *>           the optimal value for LWORK.
  163: *> \endverbatim
  164: *>
  165: *> \param[in] LWORK
  166: *> \verbatim
  167: *>          LWORK is INTEGER
  168: *>           The dimension of the array WORK.  LWORK >= max(1,N)
  169: *>           is sufficient, but LWORK typically as large as 6*N may
  170: *>           be required for optimal performance.  A workspace query
  171: *>           to determine the optimal workspace size is recommended.
  172: *>
  173: *>           If LWORK = -1, then ZLAQR4 does a workspace query.
  174: *>           In this case, ZLAQR4 checks the input parameters and
  175: *>           estimates the optimal workspace size for the given
  176: *>           values of N, ILO and IHI.  The estimate is returned
  177: *>           in WORK(1).  No error message related to LWORK is
  178: *>           issued by XERBLA.  Neither H nor Z are accessed.
  179: *> \endverbatim
  180: *>
  181: *> \param[out] INFO
  182: *> \verbatim
  183: *>          INFO is INTEGER
  184: *>             =  0:  successful exit
  185: *>             > 0:  if INFO = i, ZLAQR4 failed to compute all of
  186: *>                the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR
  187: *>                and WI contain those eigenvalues which have been
  188: *>                successfully computed.  (Failures are rare.)
  189: *>
  190: *>                If INFO > 0 and WANT is .FALSE., then on exit,
  191: *>                the remaining unconverged eigenvalues are the eigen-
  192: *>                values of the upper Hessenberg matrix rows and
  193: *>                columns ILO through INFO of the final, output
  194: *>                value of H.
  195: *>
  196: *>                If INFO > 0 and WANTT is .TRUE., then on exit
  197: *>
  198: *>           (*)  (initial value of H)*U  = U*(final value of H)
  199: *>
  200: *>                where U is a unitary matrix.  The final
  201: *>                value of  H is upper Hessenberg and triangular in
  202: *>                rows and columns INFO+1 through IHI.
  203: *>
  204: *>                If INFO > 0 and WANTZ is .TRUE., then on exit
  205: *>
  206: *>                  (final value of Z(ILO:IHI,ILOZ:IHIZ)
  207: *>                   =  (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U
  208: *>
  209: *>                where U is the unitary matrix in (*) (regard-
  210: *>                less of the value of WANTT.)
  211: *>
  212: *>                If INFO > 0 and WANTZ is .FALSE., then Z is not
  213: *>                accessed.
  214: *> \endverbatim
  215: *
  216: *  Authors:
  217: *  ========
  218: *
  219: *> \author Univ. of Tennessee
  220: *> \author Univ. of California Berkeley
  221: *> \author Univ. of Colorado Denver
  222: *> \author NAG Ltd.
  223: *
  224: *> \ingroup complex16OTHERauxiliary
  225: *
  226: *> \par Contributors:
  227: *  ==================
  228: *>
  229: *>       Karen Braman and Ralph Byers, Department of Mathematics,
  230: *>       University of Kansas, USA
  231: *
  232: *> \par References:
  233: *  ================
  234: *>
  235: *>       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
  236: *>       Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
  237: *>       Performance, SIAM Journal of Matrix Analysis, volume 23, pages
  238: *>       929--947, 2002.
  239: *> \n
  240: *>       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
  241: *>       Algorithm Part II: Aggressive Early Deflation, SIAM Journal
  242: *>       of Matrix Analysis, volume 23, pages 948--973, 2002.
  243: *>
  244: *  =====================================================================
  245:       SUBROUTINE ZLAQR4( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
  246:      $                   IHIZ, Z, LDZ, WORK, LWORK, INFO )
  247: *
  248: *  -- LAPACK auxiliary routine --
  249: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  250: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  251: *
  252: *     .. Scalar Arguments ..
  253:       INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N
  254:       LOGICAL            WANTT, WANTZ
  255: *     ..
  256: *     .. Array Arguments ..
  257:       COMPLEX*16         H( LDH, * ), W( * ), WORK( * ), Z( LDZ, * )
  258: *     ..
  259: *
  260: *  ================================================================
  261: *
  262: *     .. Parameters ..
  263: *
  264: *     ==== Matrices of order NTINY or smaller must be processed by
  265: *     .    ZLAHQR because of insufficient subdiagonal scratch space.
  266: *     .    (This is a hard limit.) ====
  267:       INTEGER            NTINY
  268:       PARAMETER          ( NTINY = 15 )
  269: *
  270: *     ==== Exceptional deflation windows:  try to cure rare
  271: *     .    slow convergence by varying the size of the
  272: *     .    deflation window after KEXNW iterations. ====
  273:       INTEGER            KEXNW
  274:       PARAMETER          ( KEXNW = 5 )
  275: *
  276: *     ==== Exceptional shifts: try to cure rare slow convergence
  277: *     .    with ad-hoc exceptional shifts every KEXSH iterations.
  278: *     .    ====
  279:       INTEGER            KEXSH
  280:       PARAMETER          ( KEXSH = 6 )
  281: *
  282: *     ==== The constant WILK1 is used to form the exceptional
  283: *     .    shifts. ====
  284:       DOUBLE PRECISION   WILK1
  285:       PARAMETER          ( WILK1 = 0.75d0 )
  286:       COMPLEX*16         ZERO, ONE
  287:       PARAMETER          ( ZERO = ( 0.0d0, 0.0d0 ),
  288:      $                   ONE = ( 1.0d0, 0.0d0 ) )
  289:       DOUBLE PRECISION   TWO
  290:       PARAMETER          ( TWO = 2.0d0 )
  291: *     ..
  292: *     .. Local Scalars ..
  293:       COMPLEX*16         AA, BB, CC, CDUM, DD, DET, RTDISC, SWAP, TR2
  294:       DOUBLE PRECISION   S
  295:       INTEGER            I, INF, IT, ITMAX, K, KACC22, KBOT, KDU, KS,
  296:      $                   KT, KTOP, KU, KV, KWH, KWTOP, KWV, LD, LS,
  297:      $                   LWKOPT, NDEC, NDFL, NH, NHO, NIBBLE, NMIN, NS,
  298:      $                   NSMAX, NSR, NVE, NW, NWMAX, NWR, NWUPBD
  299:       LOGICAL            SORTED
  300:       CHARACTER          JBCMPZ*2
  301: *     ..
  302: *     .. External Functions ..
  303:       INTEGER            ILAENV
  304:       EXTERNAL           ILAENV
  305: *     ..
  306: *     .. Local Arrays ..
  307:       COMPLEX*16         ZDUM( 1, 1 )
  308: *     ..
  309: *     .. External Subroutines ..
  310:       EXTERNAL           ZLACPY, ZLAHQR, ZLAQR2, ZLAQR5
  311: *     ..
  312: *     .. Intrinsic Functions ..
  313:       INTRINSIC          ABS, DBLE, DCMPLX, DIMAG, INT, MAX, MIN, MOD,
  314:      $                   SQRT
  315: *     ..
  316: *     .. Statement Functions ..
  317:       DOUBLE PRECISION   CABS1
  318: *     ..
  319: *     .. Statement Function definitions ..
  320:       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
  321: *     ..
  322: *     .. Executable Statements ..
  323:       INFO = 0
  324: *
  325: *     ==== Quick return for N = 0: nothing to do. ====
  326: *
  327:       IF( N.EQ.0 ) THEN
  328:          WORK( 1 ) = ONE
  329:          RETURN
  330:       END IF
  331: *
  332:       IF( N.LE.NTINY ) THEN
  333: *
  334: *        ==== Tiny matrices must use ZLAHQR. ====
  335: *
  336:          LWKOPT = 1
  337:          IF( LWORK.NE.-1 )
  338:      $      CALL ZLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
  339:      $                   IHIZ, Z, LDZ, INFO )
  340:       ELSE
  341: *
  342: *        ==== Use small bulge multi-shift QR with aggressive early
  343: *        .    deflation on larger-than-tiny matrices. ====
  344: *
  345: *        ==== Hope for the best. ====
  346: *
  347:          INFO = 0
  348: *
  349: *        ==== Set up job flags for ILAENV. ====
  350: *
  351:          IF( WANTT ) THEN
  352:             JBCMPZ( 1: 1 ) = 'S'
  353:          ELSE
  354:             JBCMPZ( 1: 1 ) = 'E'
  355:          END IF
  356:          IF( WANTZ ) THEN
  357:             JBCMPZ( 2: 2 ) = 'V'
  358:          ELSE
  359:             JBCMPZ( 2: 2 ) = 'N'
  360:          END IF
  361: *
  362: *        ==== NWR = recommended deflation window size.  At this
  363: *        .    point,  N .GT. NTINY = 15, so there is enough
  364: *        .    subdiagonal workspace for NWR.GE.2 as required.
  365: *        .    (In fact, there is enough subdiagonal space for
  366: *        .    NWR.GE.4.) ====
  367: *
  368:          NWR = ILAENV( 13, 'ZLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
  369:          NWR = MAX( 2, NWR )
  370:          NWR = MIN( IHI-ILO+1, ( N-1 ) / 3, NWR )
  371: *
  372: *        ==== NSR = recommended number of simultaneous shifts.
  373: *        .    At this point N .GT. NTINY = 15, so there is at
  374: *        .    enough subdiagonal workspace for NSR to be even
  375: *        .    and greater than or equal to two as required. ====
  376: *
  377:          NSR = ILAENV( 15, 'ZLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
  378:          NSR = MIN( NSR, ( N-3 ) / 6, IHI-ILO )
  379:          NSR = MAX( 2, NSR-MOD( NSR, 2 ) )
  380: *
  381: *        ==== Estimate optimal workspace ====
  382: *
  383: *        ==== Workspace query call to ZLAQR2 ====
  384: *
  385:          CALL ZLAQR2( WANTT, WANTZ, N, ILO, IHI, NWR+1, H, LDH, ILOZ,
  386:      $                IHIZ, Z, LDZ, LS, LD, W, H, LDH, N, H, LDH, N, H,
  387:      $                LDH, WORK, -1 )
  388: *
  389: *        ==== Optimal workspace = MAX(ZLAQR5, ZLAQR2) ====
  390: *
  391:          LWKOPT = MAX( 3*NSR / 2, INT( WORK( 1 ) ) )
  392: *
  393: *        ==== Quick return in case of workspace query. ====
  394: *
  395:          IF( LWORK.EQ.-1 ) THEN
  396:             WORK( 1 ) = DCMPLX( LWKOPT, 0 )
  397:             RETURN
  398:          END IF
  399: *
  400: *        ==== ZLAHQR/ZLAQR0 crossover point ====
  401: *
  402:          NMIN = ILAENV( 12, 'ZLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
  403:          NMIN = MAX( NTINY, NMIN )
  404: *
  405: *        ==== Nibble crossover point ====
  406: *
  407:          NIBBLE = ILAENV( 14, 'ZLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
  408:          NIBBLE = MAX( 0, NIBBLE )
  409: *
  410: *        ==== Accumulate reflections during ttswp?  Use block
  411: *        .    2-by-2 structure during matrix-matrix multiply? ====
  412: *
  413:          KACC22 = ILAENV( 16, 'ZLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
  414:          KACC22 = MAX( 0, KACC22 )
  415:          KACC22 = MIN( 2, KACC22 )
  416: *
  417: *        ==== NWMAX = the largest possible deflation window for
  418: *        .    which there is sufficient workspace. ====
  419: *
  420:          NWMAX = MIN( ( N-1 ) / 3, LWORK / 2 )
  421:          NW = NWMAX
  422: *
  423: *        ==== NSMAX = the Largest number of simultaneous shifts
  424: *        .    for which there is sufficient workspace. ====
  425: *
  426:          NSMAX = MIN( ( N-3 ) / 6, 2*LWORK / 3 )
  427:          NSMAX = NSMAX - MOD( NSMAX, 2 )
  428: *
  429: *        ==== NDFL: an iteration count restarted at deflation. ====
  430: *
  431:          NDFL = 1
  432: *
  433: *        ==== ITMAX = iteration limit ====
  434: *
  435:          ITMAX = MAX( 30, 2*KEXSH )*MAX( 10, ( IHI-ILO+1 ) )
  436: *
  437: *        ==== Last row and column in the active block ====
  438: *
  439:          KBOT = IHI
  440: *
  441: *        ==== Main Loop ====
  442: *
  443:          DO 70 IT = 1, ITMAX
  444: *
  445: *           ==== Done when KBOT falls below ILO ====
  446: *
  447:             IF( KBOT.LT.ILO )
  448:      $         GO TO 80
  449: *
  450: *           ==== Locate active block ====
  451: *
  452:             DO 10 K = KBOT, ILO + 1, -1
  453:                IF( H( K, K-1 ).EQ.ZERO )
  454:      $            GO TO 20
  455:    10       CONTINUE
  456:             K = ILO
  457:    20       CONTINUE
  458:             KTOP = K
  459: *
  460: *           ==== Select deflation window size:
  461: *           .    Typical Case:
  462: *           .      If possible and advisable, nibble the entire
  463: *           .      active block.  If not, use size MIN(NWR,NWMAX)
  464: *           .      or MIN(NWR+1,NWMAX) depending upon which has
  465: *           .      the smaller corresponding subdiagonal entry
  466: *           .      (a heuristic).
  467: *           .
  468: *           .    Exceptional Case:
  469: *           .      If there have been no deflations in KEXNW or
  470: *           .      more iterations, then vary the deflation window
  471: *           .      size.   At first, because, larger windows are,
  472: *           .      in general, more powerful than smaller ones,
  473: *           .      rapidly increase the window to the maximum possible.
  474: *           .      Then, gradually reduce the window size. ====
  475: *
  476:             NH = KBOT - KTOP + 1
  477:             NWUPBD = MIN( NH, NWMAX )
  478:             IF( NDFL.LT.KEXNW ) THEN
  479:                NW = MIN( NWUPBD, NWR )
  480:             ELSE
  481:                NW = MIN( NWUPBD, 2*NW )
  482:             END IF
  483:             IF( NW.LT.NWMAX ) THEN
  484:                IF( NW.GE.NH-1 ) THEN
  485:                   NW = NH
  486:                ELSE
  487:                   KWTOP = KBOT - NW + 1
  488:                   IF( CABS1( H( KWTOP, KWTOP-1 ) ).GT.
  489:      $                CABS1( H( KWTOP-1, KWTOP-2 ) ) )NW = NW + 1
  490:                END IF
  491:             END IF
  492:             IF( NDFL.LT.KEXNW ) THEN
  493:                NDEC = -1
  494:             ELSE IF( NDEC.GE.0 .OR. NW.GE.NWUPBD ) THEN
  495:                NDEC = NDEC + 1
  496:                IF( NW-NDEC.LT.2 )
  497:      $            NDEC = 0
  498:                NW = NW - NDEC
  499:             END IF
  500: *
  501: *           ==== Aggressive early deflation:
  502: *           .    split workspace under the subdiagonal into
  503: *           .      - an nw-by-nw work array V in the lower
  504: *           .        left-hand-corner,
  505: *           .      - an NW-by-at-least-NW-but-more-is-better
  506: *           .        (NW-by-NHO) horizontal work array along
  507: *           .        the bottom edge,
  508: *           .      - an at-least-NW-but-more-is-better (NHV-by-NW)
  509: *           .        vertical work array along the left-hand-edge.
  510: *           .        ====
  511: *
  512:             KV = N - NW + 1
  513:             KT = NW + 1
  514:             NHO = ( N-NW-1 ) - KT + 1
  515:             KWV = NW + 2
  516:             NVE = ( N-NW ) - KWV + 1
  517: *
  518: *           ==== Aggressive early deflation ====
  519: *
  520:             CALL ZLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
  521:      $                   IHIZ, Z, LDZ, LS, LD, W, H( KV, 1 ), LDH, NHO,
  522:      $                   H( KV, KT ), LDH, NVE, H( KWV, 1 ), LDH, WORK,
  523:      $                   LWORK )
  524: *
  525: *           ==== Adjust KBOT accounting for new deflations. ====
  526: *
  527:             KBOT = KBOT - LD
  528: *
  529: *           ==== KS points to the shifts. ====
  530: *
  531:             KS = KBOT - LS + 1
  532: *
  533: *           ==== Skip an expensive QR sweep if there is a (partly
  534: *           .    heuristic) reason to expect that many eigenvalues
  535: *           .    will deflate without it.  Here, the QR sweep is
  536: *           .    skipped if many eigenvalues have just been deflated
  537: *           .    or if the remaining active block is small.
  538: *
  539:             IF( ( LD.EQ.0 ) .OR. ( ( 100*LD.LE.NW*NIBBLE ) .AND. ( KBOT-
  540:      $          KTOP+1.GT.MIN( NMIN, NWMAX ) ) ) ) THEN
  541: *
  542: *              ==== NS = nominal number of simultaneous shifts.
  543: *              .    This may be lowered (slightly) if ZLAQR2
  544: *              .    did not provide that many shifts. ====
  545: *
  546:                NS = MIN( NSMAX, NSR, MAX( 2, KBOT-KTOP ) )
  547:                NS = NS - MOD( NS, 2 )
  548: *
  549: *              ==== If there have been no deflations
  550: *              .    in a multiple of KEXSH iterations,
  551: *              .    then try exceptional shifts.
  552: *              .    Otherwise use shifts provided by
  553: *              .    ZLAQR2 above or from the eigenvalues
  554: *              .    of a trailing principal submatrix. ====
  555: *
  556:                IF( MOD( NDFL, KEXSH ).EQ.0 ) THEN
  557:                   KS = KBOT - NS + 1
  558:                   DO 30 I = KBOT, KS + 1, -2
  559:                      W( I ) = H( I, I ) + WILK1*CABS1( H( I, I-1 ) )
  560:                      W( I-1 ) = W( I )
  561:    30             CONTINUE
  562:                ELSE
  563: *
  564: *                 ==== Got NS/2 or fewer shifts? Use ZLAHQR
  565: *                 .    on a trailing principal submatrix to
  566: *                 .    get more. (Since NS.LE.NSMAX.LE.(N-3)/6,
  567: *                 .    there is enough space below the subdiagonal
  568: *                 .    to fit an NS-by-NS scratch array.) ====
  569: *
  570:                   IF( KBOT-KS+1.LE.NS / 2 ) THEN
  571:                      KS = KBOT - NS + 1
  572:                      KT = N - NS + 1
  573:                      CALL ZLACPY( 'A', NS, NS, H( KS, KS ), LDH,
  574:      $                            H( KT, 1 ), LDH )
  575:                      CALL ZLAHQR( .false., .false., NS, 1, NS,
  576:      $                            H( KT, 1 ), LDH, W( KS ), 1, 1, ZDUM,
  577:      $                            1, INF )
  578:                      KS = KS + INF
  579: *
  580: *                    ==== In case of a rare QR failure use
  581: *                    .    eigenvalues of the trailing 2-by-2
  582: *                    .    principal submatrix.  Scale to avoid
  583: *                    .    overflows, underflows and subnormals.
  584: *                    .    (The scale factor S can not be zero,
  585: *                    .    because H(KBOT,KBOT-1) is nonzero.) ====
  586: *
  587:                      IF( KS.GE.KBOT ) THEN
  588:                         S = CABS1( H( KBOT-1, KBOT-1 ) ) +
  589:      $                      CABS1( H( KBOT, KBOT-1 ) ) +
  590:      $                      CABS1( H( KBOT-1, KBOT ) ) +
  591:      $                      CABS1( H( KBOT, KBOT ) )
  592:                         AA = H( KBOT-1, KBOT-1 ) / S
  593:                         CC = H( KBOT, KBOT-1 ) / S
  594:                         BB = H( KBOT-1, KBOT ) / S
  595:                         DD = H( KBOT, KBOT ) / S
  596:                         TR2 = ( AA+DD ) / TWO
  597:                         DET = ( AA-TR2 )*( DD-TR2 ) - BB*CC
  598:                         RTDISC = SQRT( -DET )
  599:                         W( KBOT-1 ) = ( TR2+RTDISC )*S
  600:                         W( KBOT ) = ( TR2-RTDISC )*S
  601: *
  602:                         KS = KBOT - 1
  603:                      END IF
  604:                   END IF
  605: *
  606:                   IF( KBOT-KS+1.GT.NS ) THEN
  607: *
  608: *                    ==== Sort the shifts (Helps a little) ====
  609: *
  610:                      SORTED = .false.
  611:                      DO 50 K = KBOT, KS + 1, -1
  612:                         IF( SORTED )
  613:      $                     GO TO 60
  614:                         SORTED = .true.
  615:                         DO 40 I = KS, K - 1
  616:                            IF( CABS1( W( I ) ).LT.CABS1( W( I+1 ) ) )
  617:      $                          THEN
  618:                               SORTED = .false.
  619:                               SWAP = W( I )
  620:                               W( I ) = W( I+1 )
  621:                               W( I+1 ) = SWAP
  622:                            END IF
  623:    40                   CONTINUE
  624:    50                CONTINUE
  625:    60                CONTINUE
  626:                   END IF
  627:                END IF
  628: *
  629: *              ==== If there are only two shifts, then use
  630: *              .    only one.  ====
  631: *
  632:                IF( KBOT-KS+1.EQ.2 ) THEN
  633:                   IF( CABS1( W( KBOT )-H( KBOT, KBOT ) ).LT.
  634:      $                CABS1( W( KBOT-1 )-H( KBOT, KBOT ) ) ) THEN
  635:                      W( KBOT-1 ) = W( KBOT )
  636:                   ELSE
  637:                      W( KBOT ) = W( KBOT-1 )
  638:                   END IF
  639:                END IF
  640: *
  641: *              ==== Use up to NS of the the smallest magnitude
  642: *              .    shifts.  If there aren't NS shifts available,
  643: *              .    then use them all, possibly dropping one to
  644: *              .    make the number of shifts even. ====
  645: *
  646:                NS = MIN( NS, KBOT-KS+1 )
  647:                NS = NS - MOD( NS, 2 )
  648:                KS = KBOT - NS + 1
  649: *
  650: *              ==== Small-bulge multi-shift QR sweep:
  651: *              .    split workspace under the subdiagonal into
  652: *              .    - a KDU-by-KDU work array U in the lower
  653: *              .      left-hand-corner,
  654: *              .    - a KDU-by-at-least-KDU-but-more-is-better
  655: *              .      (KDU-by-NHo) horizontal work array WH along
  656: *              .      the bottom edge,
  657: *              .    - and an at-least-KDU-but-more-is-better-by-KDU
  658: *              .      (NVE-by-KDU) vertical work WV arrow along
  659: *              .      the left-hand-edge. ====
  660: *
  661:                KDU = 2*NS
  662:                KU = N - KDU + 1
  663:                KWH = KDU + 1
  664:                NHO = ( N-KDU+1-4 ) - ( KDU+1 ) + 1
  665:                KWV = KDU + 4
  666:                NVE = N - KDU - KWV + 1
  667: *
  668: *              ==== Small-bulge multi-shift QR sweep ====
  669: *
  670:                CALL ZLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NS,
  671:      $                      W( KS ), H, LDH, ILOZ, IHIZ, Z, LDZ, WORK,
  672:      $                      3, H( KU, 1 ), LDH, NVE, H( KWV, 1 ), LDH,
  673:      $                      NHO, H( KU, KWH ), LDH )
  674:             END IF
  675: *
  676: *           ==== Note progress (or the lack of it). ====
  677: *
  678:             IF( LD.GT.0 ) THEN
  679:                NDFL = 1
  680:             ELSE
  681:                NDFL = NDFL + 1
  682:             END IF
  683: *
  684: *           ==== End of main loop ====
  685:    70    CONTINUE
  686: *
  687: *        ==== Iteration limit exceeded.  Set INFO to show where
  688: *        .    the problem occurred and exit. ====
  689: *
  690:          INFO = KBOT
  691:    80    CONTINUE
  692:       END IF
  693: *
  694: *     ==== Return the optimal value of LWORK. ====
  695: *
  696:       WORK( 1 ) = DCMPLX( LWKOPT, 0 )
  697: *
  698: *     ==== End of ZLAQR4 ====
  699: *
  700:       END

CVSweb interface <joel.bertrand@systella.fr>