File:  [local] / rpl / lapack / lapack / zlaqr4.f
Revision 1.12: download - view: text, annotated - select for diffs - revision graph
Fri Dec 14 14:22:51 2012 UTC (11 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_16, rpl-4_1_15, rpl-4_1_14, rpl-4_1_13, rpl-4_1_12, rpl-4_1_11, HEAD
Mise à jour de lapack.

    1: *> \brief \b ZLAQR4 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Schur decomposition.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZLAQR4 + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaqr4.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaqr4.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaqr4.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLAQR4( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
   22: *                          IHIZ, Z, LDZ, WORK, LWORK, INFO )
   23:    24: *       .. Scalar Arguments ..
   25: *       INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N
   26: *       LOGICAL            WANTT, WANTZ
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       COMPLEX*16         H( LDH, * ), W( * ), WORK( * ), Z( LDZ, * )
   30: *       ..
   31: *  
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *>    ZLAQR4 implements one level of recursion for ZLAQR0.
   39: *>    It is a complete implementation of the small bulge multi-shift
   40: *>    QR algorithm.  It may be called by ZLAQR0 and, for large enough
   41: *>    deflation window size, it may be called by ZLAQR3.  This
   42: *>    subroutine is identical to ZLAQR0 except that it calls ZLAQR2
   43: *>    instead of ZLAQR3.
   44: *>
   45: *>    ZLAQR4 computes the eigenvalues of a Hessenberg matrix H
   46: *>    and, optionally, the matrices T and Z from the Schur decomposition
   47: *>    H = Z T Z**H, where T is an upper triangular matrix (the
   48: *>    Schur form), and Z is the unitary matrix of Schur vectors.
   49: *>
   50: *>    Optionally Z may be postmultiplied into an input unitary
   51: *>    matrix Q so that this routine can give the Schur factorization
   52: *>    of a matrix A which has been reduced to the Hessenberg form H
   53: *>    by the unitary matrix Q:  A = Q*H*Q**H = (QZ)*H*(QZ)**H.
   54: *> \endverbatim
   55: *
   56: *  Arguments:
   57: *  ==========
   58: *
   59: *> \param[in] WANTT
   60: *> \verbatim
   61: *>          WANTT is LOGICAL
   62: *>          = .TRUE. : the full Schur form T is required;
   63: *>          = .FALSE.: only eigenvalues are required.
   64: *> \endverbatim
   65: *>
   66: *> \param[in] WANTZ
   67: *> \verbatim
   68: *>          WANTZ is LOGICAL
   69: *>          = .TRUE. : the matrix of Schur vectors Z is required;
   70: *>          = .FALSE.: Schur vectors are not required.
   71: *> \endverbatim
   72: *>
   73: *> \param[in] N
   74: *> \verbatim
   75: *>          N is INTEGER
   76: *>           The order of the matrix H.  N .GE. 0.
   77: *> \endverbatim
   78: *>
   79: *> \param[in] ILO
   80: *> \verbatim
   81: *>          ILO is INTEGER
   82: *> \endverbatim
   83: *>
   84: *> \param[in] IHI
   85: *> \verbatim
   86: *>          IHI is INTEGER
   87: *>           It is assumed that H is already upper triangular in rows
   88: *>           and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1,
   89: *>           H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
   90: *>           previous call to ZGEBAL, and then passed to ZGEHRD when the
   91: *>           matrix output by ZGEBAL is reduced to Hessenberg form.
   92: *>           Otherwise, ILO and IHI should be set to 1 and N,
   93: *>           respectively.  If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
   94: *>           If N = 0, then ILO = 1 and IHI = 0.
   95: *> \endverbatim
   96: *>
   97: *> \param[in,out] H
   98: *> \verbatim
   99: *>          H is COMPLEX*16 array, dimension (LDH,N)
  100: *>           On entry, the upper Hessenberg matrix H.
  101: *>           On exit, if INFO = 0 and WANTT is .TRUE., then H
  102: *>           contains the upper triangular matrix T from the Schur
  103: *>           decomposition (the Schur form). If INFO = 0 and WANT is
  104: *>           .FALSE., then the contents of H are unspecified on exit.
  105: *>           (The output value of H when INFO.GT.0 is given under the
  106: *>           description of INFO below.)
  107: *>
  108: *>           This subroutine may explicitly set H(i,j) = 0 for i.GT.j and
  109: *>           j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
  110: *> \endverbatim
  111: *>
  112: *> \param[in] LDH
  113: *> \verbatim
  114: *>          LDH is INTEGER
  115: *>           The leading dimension of the array H. LDH .GE. max(1,N).
  116: *> \endverbatim
  117: *>
  118: *> \param[out] W
  119: *> \verbatim
  120: *>          W is COMPLEX*16 array, dimension (N)
  121: *>           The computed eigenvalues of H(ILO:IHI,ILO:IHI) are stored
  122: *>           in W(ILO:IHI). If WANTT is .TRUE., then the eigenvalues are
  123: *>           stored in the same order as on the diagonal of the Schur
  124: *>           form returned in H, with W(i) = H(i,i).
  125: *> \endverbatim
  126: *>
  127: *> \param[in] ILOZ
  128: *> \verbatim
  129: *>          ILOZ is INTEGER
  130: *> \endverbatim
  131: *>
  132: *> \param[in] IHIZ
  133: *> \verbatim
  134: *>          IHIZ is INTEGER
  135: *>           Specify the rows of Z to which transformations must be
  136: *>           applied if WANTZ is .TRUE..
  137: *>           1 .LE. ILOZ .LE. ILO; IHI .LE. IHIZ .LE. N.
  138: *> \endverbatim
  139: *>
  140: *> \param[in,out] Z
  141: *> \verbatim
  142: *>          Z is COMPLEX*16 array, dimension (LDZ,IHI)
  143: *>           If WANTZ is .FALSE., then Z is not referenced.
  144: *>           If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
  145: *>           replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
  146: *>           orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
  147: *>           (The output value of Z when INFO.GT.0 is given under
  148: *>           the description of INFO below.)
  149: *> \endverbatim
  150: *>
  151: *> \param[in] LDZ
  152: *> \verbatim
  153: *>          LDZ is INTEGER
  154: *>           The leading dimension of the array Z.  if WANTZ is .TRUE.
  155: *>           then LDZ.GE.MAX(1,IHIZ).  Otherwize, LDZ.GE.1.
  156: *> \endverbatim
  157: *>
  158: *> \param[out] WORK
  159: *> \verbatim
  160: *>          WORK is COMPLEX*16 array, dimension LWORK
  161: *>           On exit, if LWORK = -1, WORK(1) returns an estimate of
  162: *>           the optimal value for LWORK.
  163: *> \endverbatim
  164: *>
  165: *> \param[in] LWORK
  166: *> \verbatim
  167: *>          LWORK is INTEGER
  168: *>           The dimension of the array WORK.  LWORK .GE. max(1,N)
  169: *>           is sufficient, but LWORK typically as large as 6*N may
  170: *>           be required for optimal performance.  A workspace query
  171: *>           to determine the optimal workspace size is recommended.
  172: *>
  173: *>           If LWORK = -1, then ZLAQR4 does a workspace query.
  174: *>           In this case, ZLAQR4 checks the input parameters and
  175: *>           estimates the optimal workspace size for the given
  176: *>           values of N, ILO and IHI.  The estimate is returned
  177: *>           in WORK(1).  No error message related to LWORK is
  178: *>           issued by XERBLA.  Neither H nor Z are accessed.
  179: *> \endverbatim
  180: *>
  181: *> \param[out] INFO
  182: *> \verbatim
  183: *>          INFO is INTEGER
  184: *>             =  0:  successful exit
  185: *>           .GT. 0:  if INFO = i, ZLAQR4 failed to compute all of
  186: *>                the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR
  187: *>                and WI contain those eigenvalues which have been
  188: *>                successfully computed.  (Failures are rare.)
  189: *>
  190: *>                If INFO .GT. 0 and WANT is .FALSE., then on exit,
  191: *>                the remaining unconverged eigenvalues are the eigen-
  192: *>                values of the upper Hessenberg matrix rows and
  193: *>                columns ILO through INFO of the final, output
  194: *>                value of H.
  195: *>
  196: *>                If INFO .GT. 0 and WANTT is .TRUE., then on exit
  197: *>
  198: *>           (*)  (initial value of H)*U  = U*(final value of H)
  199: *>
  200: *>                where U is a unitary matrix.  The final
  201: *>                value of  H is upper Hessenberg and triangular in
  202: *>                rows and columns INFO+1 through IHI.
  203: *>
  204: *>                If INFO .GT. 0 and WANTZ is .TRUE., then on exit
  205: *>
  206: *>                  (final value of Z(ILO:IHI,ILOZ:IHIZ)
  207: *>                   =  (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U
  208: *>
  209: *>                where U is the unitary matrix in (*) (regard-
  210: *>                less of the value of WANTT.)
  211: *>
  212: *>                If INFO .GT. 0 and WANTZ is .FALSE., then Z is not
  213: *>                accessed.
  214: *> \endverbatim
  215: *
  216: *  Authors:
  217: *  ========
  218: *
  219: *> \author Univ. of Tennessee 
  220: *> \author Univ. of California Berkeley 
  221: *> \author Univ. of Colorado Denver 
  222: *> \author NAG Ltd. 
  223: *
  224: *> \date September 2012
  225: *
  226: *> \ingroup complex16OTHERauxiliary
  227: *
  228: *> \par Contributors:
  229: *  ==================
  230: *>
  231: *>       Karen Braman and Ralph Byers, Department of Mathematics,
  232: *>       University of Kansas, USA
  233: *
  234: *> \par References:
  235: *  ================
  236: *>
  237: *>       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
  238: *>       Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
  239: *>       Performance, SIAM Journal of Matrix Analysis, volume 23, pages
  240: *>       929--947, 2002.
  241: *> \n
  242: *>       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
  243: *>       Algorithm Part II: Aggressive Early Deflation, SIAM Journal
  244: *>       of Matrix Analysis, volume 23, pages 948--973, 2002.
  245: *>
  246: *  =====================================================================
  247:       SUBROUTINE ZLAQR4( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
  248:      $                   IHIZ, Z, LDZ, WORK, LWORK, INFO )
  249: *
  250: *  -- LAPACK auxiliary routine (version 3.4.2) --
  251: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  252: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  253: *     September 2012
  254: *
  255: *     .. Scalar Arguments ..
  256:       INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N
  257:       LOGICAL            WANTT, WANTZ
  258: *     ..
  259: *     .. Array Arguments ..
  260:       COMPLEX*16         H( LDH, * ), W( * ), WORK( * ), Z( LDZ, * )
  261: *     ..
  262: *
  263: *  ================================================================
  264: *
  265: *     .. Parameters ..
  266: *
  267: *     ==== Matrices of order NTINY or smaller must be processed by
  268: *     .    ZLAHQR because of insufficient subdiagonal scratch space.
  269: *     .    (This is a hard limit.) ====
  270:       INTEGER            NTINY
  271:       PARAMETER          ( NTINY = 11 )
  272: *
  273: *     ==== Exceptional deflation windows:  try to cure rare
  274: *     .    slow convergence by varying the size of the
  275: *     .    deflation window after KEXNW iterations. ====
  276:       INTEGER            KEXNW
  277:       PARAMETER          ( KEXNW = 5 )
  278: *
  279: *     ==== Exceptional shifts: try to cure rare slow convergence
  280: *     .    with ad-hoc exceptional shifts every KEXSH iterations.
  281: *     .    ====
  282:       INTEGER            KEXSH
  283:       PARAMETER          ( KEXSH = 6 )
  284: *
  285: *     ==== The constant WILK1 is used to form the exceptional
  286: *     .    shifts. ====
  287:       DOUBLE PRECISION   WILK1
  288:       PARAMETER          ( WILK1 = 0.75d0 )
  289:       COMPLEX*16         ZERO, ONE
  290:       PARAMETER          ( ZERO = ( 0.0d0, 0.0d0 ),
  291:      $                   ONE = ( 1.0d0, 0.0d0 ) )
  292:       DOUBLE PRECISION   TWO
  293:       PARAMETER          ( TWO = 2.0d0 )
  294: *     ..
  295: *     .. Local Scalars ..
  296:       COMPLEX*16         AA, BB, CC, CDUM, DD, DET, RTDISC, SWAP, TR2
  297:       DOUBLE PRECISION   S
  298:       INTEGER            I, INF, IT, ITMAX, K, KACC22, KBOT, KDU, KS,
  299:      $                   KT, KTOP, KU, KV, KWH, KWTOP, KWV, LD, LS,
  300:      $                   LWKOPT, NDEC, NDFL, NH, NHO, NIBBLE, NMIN, NS,
  301:      $                   NSMAX, NSR, NVE, NW, NWMAX, NWR, NWUPBD
  302:       LOGICAL            SORTED
  303:       CHARACTER          JBCMPZ*2
  304: *     ..
  305: *     .. External Functions ..
  306:       INTEGER            ILAENV
  307:       EXTERNAL           ILAENV
  308: *     ..
  309: *     .. Local Arrays ..
  310:       COMPLEX*16         ZDUM( 1, 1 )
  311: *     ..
  312: *     .. External Subroutines ..
  313:       EXTERNAL           ZLACPY, ZLAHQR, ZLAQR2, ZLAQR5
  314: *     ..
  315: *     .. Intrinsic Functions ..
  316:       INTRINSIC          ABS, DBLE, DCMPLX, DIMAG, INT, MAX, MIN, MOD,
  317:      $                   SQRT
  318: *     ..
  319: *     .. Statement Functions ..
  320:       DOUBLE PRECISION   CABS1
  321: *     ..
  322: *     .. Statement Function definitions ..
  323:       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
  324: *     ..
  325: *     .. Executable Statements ..
  326:       INFO = 0
  327: *
  328: *     ==== Quick return for N = 0: nothing to do. ====
  329: *
  330:       IF( N.EQ.0 ) THEN
  331:          WORK( 1 ) = ONE
  332:          RETURN
  333:       END IF
  334: *
  335:       IF( N.LE.NTINY ) THEN
  336: *
  337: *        ==== Tiny matrices must use ZLAHQR. ====
  338: *
  339:          LWKOPT = 1
  340:          IF( LWORK.NE.-1 )
  341:      $      CALL ZLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
  342:      $                   IHIZ, Z, LDZ, INFO )
  343:       ELSE
  344: *
  345: *        ==== Use small bulge multi-shift QR with aggressive early
  346: *        .    deflation on larger-than-tiny matrices. ====
  347: *
  348: *        ==== Hope for the best. ====
  349: *
  350:          INFO = 0
  351: *
  352: *        ==== Set up job flags for ILAENV. ====
  353: *
  354:          IF( WANTT ) THEN
  355:             JBCMPZ( 1: 1 ) = 'S'
  356:          ELSE
  357:             JBCMPZ( 1: 1 ) = 'E'
  358:          END IF
  359:          IF( WANTZ ) THEN
  360:             JBCMPZ( 2: 2 ) = 'V'
  361:          ELSE
  362:             JBCMPZ( 2: 2 ) = 'N'
  363:          END IF
  364: *
  365: *        ==== NWR = recommended deflation window size.  At this
  366: *        .    point,  N .GT. NTINY = 11, so there is enough
  367: *        .    subdiagonal workspace for NWR.GE.2 as required.
  368: *        .    (In fact, there is enough subdiagonal space for
  369: *        .    NWR.GE.3.) ====
  370: *
  371:          NWR = ILAENV( 13, 'ZLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
  372:          NWR = MAX( 2, NWR )
  373:          NWR = MIN( IHI-ILO+1, ( N-1 ) / 3, NWR )
  374: *
  375: *        ==== NSR = recommended number of simultaneous shifts.
  376: *        .    At this point N .GT. NTINY = 11, so there is at
  377: *        .    enough subdiagonal workspace for NSR to be even
  378: *        .    and greater than or equal to two as required. ====
  379: *
  380:          NSR = ILAENV( 15, 'ZLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
  381:          NSR = MIN( NSR, ( N+6 ) / 9, IHI-ILO )
  382:          NSR = MAX( 2, NSR-MOD( NSR, 2 ) )
  383: *
  384: *        ==== Estimate optimal workspace ====
  385: *
  386: *        ==== Workspace query call to ZLAQR2 ====
  387: *
  388:          CALL ZLAQR2( WANTT, WANTZ, N, ILO, IHI, NWR+1, H, LDH, ILOZ,
  389:      $                IHIZ, Z, LDZ, LS, LD, W, H, LDH, N, H, LDH, N, H,
  390:      $                LDH, WORK, -1 )
  391: *
  392: *        ==== Optimal workspace = MAX(ZLAQR5, ZLAQR2) ====
  393: *
  394:          LWKOPT = MAX( 3*NSR / 2, INT( WORK( 1 ) ) )
  395: *
  396: *        ==== Quick return in case of workspace query. ====
  397: *
  398:          IF( LWORK.EQ.-1 ) THEN
  399:             WORK( 1 ) = DCMPLX( LWKOPT, 0 )
  400:             RETURN
  401:          END IF
  402: *
  403: *        ==== ZLAHQR/ZLAQR0 crossover point ====
  404: *
  405:          NMIN = ILAENV( 12, 'ZLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
  406:          NMIN = MAX( NTINY, NMIN )
  407: *
  408: *        ==== Nibble crossover point ====
  409: *
  410:          NIBBLE = ILAENV( 14, 'ZLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
  411:          NIBBLE = MAX( 0, NIBBLE )
  412: *
  413: *        ==== Accumulate reflections during ttswp?  Use block
  414: *        .    2-by-2 structure during matrix-matrix multiply? ====
  415: *
  416:          KACC22 = ILAENV( 16, 'ZLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
  417:          KACC22 = MAX( 0, KACC22 )
  418:          KACC22 = MIN( 2, KACC22 )
  419: *
  420: *        ==== NWMAX = the largest possible deflation window for
  421: *        .    which there is sufficient workspace. ====
  422: *
  423:          NWMAX = MIN( ( N-1 ) / 3, LWORK / 2 )
  424:          NW = NWMAX
  425: *
  426: *        ==== NSMAX = the Largest number of simultaneous shifts
  427: *        .    for which there is sufficient workspace. ====
  428: *
  429:          NSMAX = MIN( ( N+6 ) / 9, 2*LWORK / 3 )
  430:          NSMAX = NSMAX - MOD( NSMAX, 2 )
  431: *
  432: *        ==== NDFL: an iteration count restarted at deflation. ====
  433: *
  434:          NDFL = 1
  435: *
  436: *        ==== ITMAX = iteration limit ====
  437: *
  438:          ITMAX = MAX( 30, 2*KEXSH )*MAX( 10, ( IHI-ILO+1 ) )
  439: *
  440: *        ==== Last row and column in the active block ====
  441: *
  442:          KBOT = IHI
  443: *
  444: *        ==== Main Loop ====
  445: *
  446:          DO 70 IT = 1, ITMAX
  447: *
  448: *           ==== Done when KBOT falls below ILO ====
  449: *
  450:             IF( KBOT.LT.ILO )
  451:      $         GO TO 80
  452: *
  453: *           ==== Locate active block ====
  454: *
  455:             DO 10 K = KBOT, ILO + 1, -1
  456:                IF( H( K, K-1 ).EQ.ZERO )
  457:      $            GO TO 20
  458:    10       CONTINUE
  459:             K = ILO
  460:    20       CONTINUE
  461:             KTOP = K
  462: *
  463: *           ==== Select deflation window size:
  464: *           .    Typical Case:
  465: *           .      If possible and advisable, nibble the entire
  466: *           .      active block.  If not, use size MIN(NWR,NWMAX)
  467: *           .      or MIN(NWR+1,NWMAX) depending upon which has
  468: *           .      the smaller corresponding subdiagonal entry
  469: *           .      (a heuristic).
  470: *           .
  471: *           .    Exceptional Case:
  472: *           .      If there have been no deflations in KEXNW or
  473: *           .      more iterations, then vary the deflation window
  474: *           .      size.   At first, because, larger windows are,
  475: *           .      in general, more powerful than smaller ones,
  476: *           .      rapidly increase the window to the maximum possible.
  477: *           .      Then, gradually reduce the window size. ====
  478: *
  479:             NH = KBOT - KTOP + 1
  480:             NWUPBD = MIN( NH, NWMAX )
  481:             IF( NDFL.LT.KEXNW ) THEN
  482:                NW = MIN( NWUPBD, NWR )
  483:             ELSE
  484:                NW = MIN( NWUPBD, 2*NW )
  485:             END IF
  486:             IF( NW.LT.NWMAX ) THEN
  487:                IF( NW.GE.NH-1 ) THEN
  488:                   NW = NH
  489:                ELSE
  490:                   KWTOP = KBOT - NW + 1
  491:                   IF( CABS1( H( KWTOP, KWTOP-1 ) ).GT.
  492:      $                CABS1( H( KWTOP-1, KWTOP-2 ) ) )NW = NW + 1
  493:                END IF
  494:             END IF
  495:             IF( NDFL.LT.KEXNW ) THEN
  496:                NDEC = -1
  497:             ELSE IF( NDEC.GE.0 .OR. NW.GE.NWUPBD ) THEN
  498:                NDEC = NDEC + 1
  499:                IF( NW-NDEC.LT.2 )
  500:      $            NDEC = 0
  501:                NW = NW - NDEC
  502:             END IF
  503: *
  504: *           ==== Aggressive early deflation:
  505: *           .    split workspace under the subdiagonal into
  506: *           .      - an nw-by-nw work array V in the lower
  507: *           .        left-hand-corner,
  508: *           .      - an NW-by-at-least-NW-but-more-is-better
  509: *           .        (NW-by-NHO) horizontal work array along
  510: *           .        the bottom edge,
  511: *           .      - an at-least-NW-but-more-is-better (NHV-by-NW)
  512: *           .        vertical work array along the left-hand-edge.
  513: *           .        ====
  514: *
  515:             KV = N - NW + 1
  516:             KT = NW + 1
  517:             NHO = ( N-NW-1 ) - KT + 1
  518:             KWV = NW + 2
  519:             NVE = ( N-NW ) - KWV + 1
  520: *
  521: *           ==== Aggressive early deflation ====
  522: *
  523:             CALL ZLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
  524:      $                   IHIZ, Z, LDZ, LS, LD, W, H( KV, 1 ), LDH, NHO,
  525:      $                   H( KV, KT ), LDH, NVE, H( KWV, 1 ), LDH, WORK,
  526:      $                   LWORK )
  527: *
  528: *           ==== Adjust KBOT accounting for new deflations. ====
  529: *
  530:             KBOT = KBOT - LD
  531: *
  532: *           ==== KS points to the shifts. ====
  533: *
  534:             KS = KBOT - LS + 1
  535: *
  536: *           ==== Skip an expensive QR sweep if there is a (partly
  537: *           .    heuristic) reason to expect that many eigenvalues
  538: *           .    will deflate without it.  Here, the QR sweep is
  539: *           .    skipped if many eigenvalues have just been deflated
  540: *           .    or if the remaining active block is small.
  541: *
  542:             IF( ( LD.EQ.0 ) .OR. ( ( 100*LD.LE.NW*NIBBLE ) .AND. ( KBOT-
  543:      $          KTOP+1.GT.MIN( NMIN, NWMAX ) ) ) ) THEN
  544: *
  545: *              ==== NS = nominal number of simultaneous shifts.
  546: *              .    This may be lowered (slightly) if ZLAQR2
  547: *              .    did not provide that many shifts. ====
  548: *
  549:                NS = MIN( NSMAX, NSR, MAX( 2, KBOT-KTOP ) )
  550:                NS = NS - MOD( NS, 2 )
  551: *
  552: *              ==== If there have been no deflations
  553: *              .    in a multiple of KEXSH iterations,
  554: *              .    then try exceptional shifts.
  555: *              .    Otherwise use shifts provided by
  556: *              .    ZLAQR2 above or from the eigenvalues
  557: *              .    of a trailing principal submatrix. ====
  558: *
  559:                IF( MOD( NDFL, KEXSH ).EQ.0 ) THEN
  560:                   KS = KBOT - NS + 1
  561:                   DO 30 I = KBOT, KS + 1, -2
  562:                      W( I ) = H( I, I ) + WILK1*CABS1( H( I, I-1 ) )
  563:                      W( I-1 ) = W( I )
  564:    30             CONTINUE
  565:                ELSE
  566: *
  567: *                 ==== Got NS/2 or fewer shifts? Use ZLAHQR
  568: *                 .    on a trailing principal submatrix to
  569: *                 .    get more. (Since NS.LE.NSMAX.LE.(N+6)/9,
  570: *                 .    there is enough space below the subdiagonal
  571: *                 .    to fit an NS-by-NS scratch array.) ====
  572: *
  573:                   IF( KBOT-KS+1.LE.NS / 2 ) THEN
  574:                      KS = KBOT - NS + 1
  575:                      KT = N - NS + 1
  576:                      CALL ZLACPY( 'A', NS, NS, H( KS, KS ), LDH,
  577:      $                            H( KT, 1 ), LDH )
  578:                      CALL ZLAHQR( .false., .false., NS, 1, NS,
  579:      $                            H( KT, 1 ), LDH, W( KS ), 1, 1, ZDUM,
  580:      $                            1, INF )
  581:                      KS = KS + INF
  582: *
  583: *                    ==== In case of a rare QR failure use
  584: *                    .    eigenvalues of the trailing 2-by-2
  585: *                    .    principal submatrix.  Scale to avoid
  586: *                    .    overflows, underflows and subnormals.
  587: *                    .    (The scale factor S can not be zero,
  588: *                    .    because H(KBOT,KBOT-1) is nonzero.) ====
  589: *
  590:                      IF( KS.GE.KBOT ) THEN
  591:                         S = CABS1( H( KBOT-1, KBOT-1 ) ) +
  592:      $                      CABS1( H( KBOT, KBOT-1 ) ) +
  593:      $                      CABS1( H( KBOT-1, KBOT ) ) +
  594:      $                      CABS1( H( KBOT, KBOT ) )
  595:                         AA = H( KBOT-1, KBOT-1 ) / S
  596:                         CC = H( KBOT, KBOT-1 ) / S
  597:                         BB = H( KBOT-1, KBOT ) / S
  598:                         DD = H( KBOT, KBOT ) / S
  599:                         TR2 = ( AA+DD ) / TWO
  600:                         DET = ( AA-TR2 )*( DD-TR2 ) - BB*CC
  601:                         RTDISC = SQRT( -DET )
  602:                         W( KBOT-1 ) = ( TR2+RTDISC )*S
  603:                         W( KBOT ) = ( TR2-RTDISC )*S
  604: *
  605:                         KS = KBOT - 1
  606:                      END IF
  607:                   END IF
  608: *
  609:                   IF( KBOT-KS+1.GT.NS ) THEN
  610: *
  611: *                    ==== Sort the shifts (Helps a little) ====
  612: *
  613:                      SORTED = .false.
  614:                      DO 50 K = KBOT, KS + 1, -1
  615:                         IF( SORTED )
  616:      $                     GO TO 60
  617:                         SORTED = .true.
  618:                         DO 40 I = KS, K - 1
  619:                            IF( CABS1( W( I ) ).LT.CABS1( W( I+1 ) ) )
  620:      $                          THEN
  621:                               SORTED = .false.
  622:                               SWAP = W( I )
  623:                               W( I ) = W( I+1 )
  624:                               W( I+1 ) = SWAP
  625:                            END IF
  626:    40                   CONTINUE
  627:    50                CONTINUE
  628:    60                CONTINUE
  629:                   END IF
  630:                END IF
  631: *
  632: *              ==== If there are only two shifts, then use
  633: *              .    only one.  ====
  634: *
  635:                IF( KBOT-KS+1.EQ.2 ) THEN
  636:                   IF( CABS1( W( KBOT )-H( KBOT, KBOT ) ).LT.
  637:      $                CABS1( W( KBOT-1 )-H( KBOT, KBOT ) ) ) THEN
  638:                      W( KBOT-1 ) = W( KBOT )
  639:                   ELSE
  640:                      W( KBOT ) = W( KBOT-1 )
  641:                   END IF
  642:                END IF
  643: *
  644: *              ==== Use up to NS of the the smallest magnatiude
  645: *              .    shifts.  If there aren't NS shifts available,
  646: *              .    then use them all, possibly dropping one to
  647: *              .    make the number of shifts even. ====
  648: *
  649:                NS = MIN( NS, KBOT-KS+1 )
  650:                NS = NS - MOD( NS, 2 )
  651:                KS = KBOT - NS + 1
  652: *
  653: *              ==== Small-bulge multi-shift QR sweep:
  654: *              .    split workspace under the subdiagonal into
  655: *              .    - a KDU-by-KDU work array U in the lower
  656: *              .      left-hand-corner,
  657: *              .    - a KDU-by-at-least-KDU-but-more-is-better
  658: *              .      (KDU-by-NHo) horizontal work array WH along
  659: *              .      the bottom edge,
  660: *              .    - and an at-least-KDU-but-more-is-better-by-KDU
  661: *              .      (NVE-by-KDU) vertical work WV arrow along
  662: *              .      the left-hand-edge. ====
  663: *
  664:                KDU = 3*NS - 3
  665:                KU = N - KDU + 1
  666:                KWH = KDU + 1
  667:                NHO = ( N-KDU+1-4 ) - ( KDU+1 ) + 1
  668:                KWV = KDU + 4
  669:                NVE = N - KDU - KWV + 1
  670: *
  671: *              ==== Small-bulge multi-shift QR sweep ====
  672: *
  673:                CALL ZLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NS,
  674:      $                      W( KS ), H, LDH, ILOZ, IHIZ, Z, LDZ, WORK,
  675:      $                      3, H( KU, 1 ), LDH, NVE, H( KWV, 1 ), LDH,
  676:      $                      NHO, H( KU, KWH ), LDH )
  677:             END IF
  678: *
  679: *           ==== Note progress (or the lack of it). ====
  680: *
  681:             IF( LD.GT.0 ) THEN
  682:                NDFL = 1
  683:             ELSE
  684:                NDFL = NDFL + 1
  685:             END IF
  686: *
  687: *           ==== End of main loop ====
  688:    70    CONTINUE
  689: *
  690: *        ==== Iteration limit exceeded.  Set INFO to show where
  691: *        .    the problem occurred and exit. ====
  692: *
  693:          INFO = KBOT
  694:    80    CONTINUE
  695:       END IF
  696: *
  697: *     ==== Return the optimal value of LWORK. ====
  698: *
  699:       WORK( 1 ) = DCMPLX( LWKOPT, 0 )
  700: *
  701: *     ==== End of ZLAQR4 ====
  702: *
  703:       END

CVSweb interface <joel.bertrand@systella.fr>