Annotation of rpl/lapack/lapack/zlaqr4.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZLAQR4( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
        !             2:      $                   IHIZ, Z, LDZ, WORK, LWORK, INFO )
        !             3: *
        !             4: *  -- LAPACK auxiliary routine (version 3.2) --
        !             5: *     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..
        !             6: *     November 2006
        !             7: *
        !             8: *     .. Scalar Arguments ..
        !             9:       INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N
        !            10:       LOGICAL            WANTT, WANTZ
        !            11: *     ..
        !            12: *     .. Array Arguments ..
        !            13:       COMPLEX*16         H( LDH, * ), W( * ), WORK( * ), Z( LDZ, * )
        !            14: *     ..
        !            15: *
        !            16: *     This subroutine implements one level of recursion for ZLAQR0.
        !            17: *     It is a complete implementation of the small bulge multi-shift
        !            18: *     QR algorithm.  It may be called by ZLAQR0 and, for large enough
        !            19: *     deflation window size, it may be called by ZLAQR3.  This
        !            20: *     subroutine is identical to ZLAQR0 except that it calls ZLAQR2
        !            21: *     instead of ZLAQR3.
        !            22: *
        !            23: *     Purpose
        !            24: *     =======
        !            25: *
        !            26: *     ZLAQR4 computes the eigenvalues of a Hessenberg matrix H
        !            27: *     and, optionally, the matrices T and Z from the Schur decomposition
        !            28: *     H = Z T Z**H, where T is an upper triangular matrix (the
        !            29: *     Schur form), and Z is the unitary matrix of Schur vectors.
        !            30: *
        !            31: *     Optionally Z may be postmultiplied into an input unitary
        !            32: *     matrix Q so that this routine can give the Schur factorization
        !            33: *     of a matrix A which has been reduced to the Hessenberg form H
        !            34: *     by the unitary matrix Q:  A = Q*H*Q**H = (QZ)*H*(QZ)**H.
        !            35: *
        !            36: *     Arguments
        !            37: *     =========
        !            38: *
        !            39: *     WANTT   (input) LOGICAL
        !            40: *          = .TRUE. : the full Schur form T is required;
        !            41: *          = .FALSE.: only eigenvalues are required.
        !            42: *
        !            43: *     WANTZ   (input) LOGICAL
        !            44: *          = .TRUE. : the matrix of Schur vectors Z is required;
        !            45: *          = .FALSE.: Schur vectors are not required.
        !            46: *
        !            47: *     N     (input) INTEGER
        !            48: *           The order of the matrix H.  N .GE. 0.
        !            49: *
        !            50: *     ILO   (input) INTEGER
        !            51: *     IHI   (input) INTEGER
        !            52: *           It is assumed that H is already upper triangular in rows
        !            53: *           and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1,
        !            54: *           H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
        !            55: *           previous call to ZGEBAL, and then passed to ZGEHRD when the
        !            56: *           matrix output by ZGEBAL is reduced to Hessenberg form.
        !            57: *           Otherwise, ILO and IHI should be set to 1 and N,
        !            58: *           respectively.  If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
        !            59: *           If N = 0, then ILO = 1 and IHI = 0.
        !            60: *
        !            61: *     H     (input/output) COMPLEX*16 array, dimension (LDH,N)
        !            62: *           On entry, the upper Hessenberg matrix H.
        !            63: *           On exit, if INFO = 0 and WANTT is .TRUE., then H
        !            64: *           contains the upper triangular matrix T from the Schur
        !            65: *           decomposition (the Schur form). If INFO = 0 and WANT is
        !            66: *           .FALSE., then the contents of H are unspecified on exit.
        !            67: *           (The output value of H when INFO.GT.0 is given under the
        !            68: *           description of INFO below.)
        !            69: *
        !            70: *           This subroutine may explicitly set H(i,j) = 0 for i.GT.j and
        !            71: *           j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
        !            72: *
        !            73: *     LDH   (input) INTEGER
        !            74: *           The leading dimension of the array H. LDH .GE. max(1,N).
        !            75: *
        !            76: *     W        (output) COMPLEX*16 array, dimension (N)
        !            77: *           The computed eigenvalues of H(ILO:IHI,ILO:IHI) are stored
        !            78: *           in W(ILO:IHI). If WANTT is .TRUE., then the eigenvalues are
        !            79: *           stored in the same order as on the diagonal of the Schur
        !            80: *           form returned in H, with W(i) = H(i,i).
        !            81: *
        !            82: *     Z     (input/output) COMPLEX*16 array, dimension (LDZ,IHI)
        !            83: *           If WANTZ is .FALSE., then Z is not referenced.
        !            84: *           If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
        !            85: *           replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
        !            86: *           orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
        !            87: *           (The output value of Z when INFO.GT.0 is given under
        !            88: *           the description of INFO below.)
        !            89: *
        !            90: *     LDZ   (input) INTEGER
        !            91: *           The leading dimension of the array Z.  if WANTZ is .TRUE.
        !            92: *           then LDZ.GE.MAX(1,IHIZ).  Otherwize, LDZ.GE.1.
        !            93: *
        !            94: *     WORK  (workspace/output) COMPLEX*16 array, dimension LWORK
        !            95: *           On exit, if LWORK = -1, WORK(1) returns an estimate of
        !            96: *           the optimal value for LWORK.
        !            97: *
        !            98: *     LWORK (input) INTEGER
        !            99: *           The dimension of the array WORK.  LWORK .GE. max(1,N)
        !           100: *           is sufficient, but LWORK typically as large as 6*N may
        !           101: *           be required for optimal performance.  A workspace query
        !           102: *           to determine the optimal workspace size is recommended.
        !           103: *
        !           104: *           If LWORK = -1, then ZLAQR4 does a workspace query.
        !           105: *           In this case, ZLAQR4 checks the input parameters and
        !           106: *           estimates the optimal workspace size for the given
        !           107: *           values of N, ILO and IHI.  The estimate is returned
        !           108: *           in WORK(1).  No error message related to LWORK is
        !           109: *           issued by XERBLA.  Neither H nor Z are accessed.
        !           110: *
        !           111: *
        !           112: *     INFO  (output) INTEGER
        !           113: *             =  0:  successful exit
        !           114: *           .GT. 0:  if INFO = i, ZLAQR4 failed to compute all of
        !           115: *                the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR
        !           116: *                and WI contain those eigenvalues which have been
        !           117: *                successfully computed.  (Failures are rare.)
        !           118: *
        !           119: *                If INFO .GT. 0 and WANT is .FALSE., then on exit,
        !           120: *                the remaining unconverged eigenvalues are the eigen-
        !           121: *                values of the upper Hessenberg matrix rows and
        !           122: *                columns ILO through INFO of the final, output
        !           123: *                value of H.
        !           124: *
        !           125: *                If INFO .GT. 0 and WANTT is .TRUE., then on exit
        !           126: *
        !           127: *           (*)  (initial value of H)*U  = U*(final value of H)
        !           128: *
        !           129: *                where U is a unitary matrix.  The final
        !           130: *                value of  H is upper Hessenberg and triangular in
        !           131: *                rows and columns INFO+1 through IHI.
        !           132: *
        !           133: *                If INFO .GT. 0 and WANTZ is .TRUE., then on exit
        !           134: *
        !           135: *                  (final value of Z(ILO:IHI,ILOZ:IHIZ)
        !           136: *                   =  (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U
        !           137: *
        !           138: *                where U is the unitary matrix in (*) (regard-
        !           139: *                less of the value of WANTT.)
        !           140: *
        !           141: *                If INFO .GT. 0 and WANTZ is .FALSE., then Z is not
        !           142: *                accessed.
        !           143: *
        !           144: *     ================================================================
        !           145: *     Based on contributions by
        !           146: *        Karen Braman and Ralph Byers, Department of Mathematics,
        !           147: *        University of Kansas, USA
        !           148: *
        !           149: *     ================================================================
        !           150: *     References:
        !           151: *       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
        !           152: *       Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
        !           153: *       Performance, SIAM Journal of Matrix Analysis, volume 23, pages
        !           154: *       929--947, 2002.
        !           155: *
        !           156: *       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
        !           157: *       Algorithm Part II: Aggressive Early Deflation, SIAM Journal
        !           158: *       of Matrix Analysis, volume 23, pages 948--973, 2002.
        !           159: *
        !           160: *     ================================================================
        !           161: *     .. Parameters ..
        !           162: *
        !           163: *     ==== Matrices of order NTINY or smaller must be processed by
        !           164: *     .    ZLAHQR because of insufficient subdiagonal scratch space.
        !           165: *     .    (This is a hard limit.) ====
        !           166:       INTEGER            NTINY
        !           167:       PARAMETER          ( NTINY = 11 )
        !           168: *
        !           169: *     ==== Exceptional deflation windows:  try to cure rare
        !           170: *     .    slow convergence by varying the size of the
        !           171: *     .    deflation window after KEXNW iterations. ====
        !           172:       INTEGER            KEXNW
        !           173:       PARAMETER          ( KEXNW = 5 )
        !           174: *
        !           175: *     ==== Exceptional shifts: try to cure rare slow convergence
        !           176: *     .    with ad-hoc exceptional shifts every KEXSH iterations.
        !           177: *     .    ====
        !           178:       INTEGER            KEXSH
        !           179:       PARAMETER          ( KEXSH = 6 )
        !           180: *
        !           181: *     ==== The constant WILK1 is used to form the exceptional
        !           182: *     .    shifts. ====
        !           183:       DOUBLE PRECISION   WILK1
        !           184:       PARAMETER          ( WILK1 = 0.75d0 )
        !           185:       COMPLEX*16         ZERO, ONE
        !           186:       PARAMETER          ( ZERO = ( 0.0d0, 0.0d0 ),
        !           187:      $                   ONE = ( 1.0d0, 0.0d0 ) )
        !           188:       DOUBLE PRECISION   TWO
        !           189:       PARAMETER          ( TWO = 2.0d0 )
        !           190: *     ..
        !           191: *     .. Local Scalars ..
        !           192:       COMPLEX*16         AA, BB, CC, CDUM, DD, DET, RTDISC, SWAP, TR2
        !           193:       DOUBLE PRECISION   S
        !           194:       INTEGER            I, INF, IT, ITMAX, K, KACC22, KBOT, KDU, KS,
        !           195:      $                   KT, KTOP, KU, KV, KWH, KWTOP, KWV, LD, LS,
        !           196:      $                   LWKOPT, NDEC, NDFL, NH, NHO, NIBBLE, NMIN, NS,
        !           197:      $                   NSMAX, NSR, NVE, NW, NWMAX, NWR, NWUPBD
        !           198:       LOGICAL            SORTED
        !           199:       CHARACTER          JBCMPZ*2
        !           200: *     ..
        !           201: *     .. External Functions ..
        !           202:       INTEGER            ILAENV
        !           203:       EXTERNAL           ILAENV
        !           204: *     ..
        !           205: *     .. Local Arrays ..
        !           206:       COMPLEX*16         ZDUM( 1, 1 )
        !           207: *     ..
        !           208: *     .. External Subroutines ..
        !           209:       EXTERNAL           ZLACPY, ZLAHQR, ZLAQR2, ZLAQR5
        !           210: *     ..
        !           211: *     .. Intrinsic Functions ..
        !           212:       INTRINSIC          ABS, DBLE, DCMPLX, DIMAG, INT, MAX, MIN, MOD,
        !           213:      $                   SQRT
        !           214: *     ..
        !           215: *     .. Statement Functions ..
        !           216:       DOUBLE PRECISION   CABS1
        !           217: *     ..
        !           218: *     .. Statement Function definitions ..
        !           219:       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
        !           220: *     ..
        !           221: *     .. Executable Statements ..
        !           222:       INFO = 0
        !           223: *
        !           224: *     ==== Quick return for N = 0: nothing to do. ====
        !           225: *
        !           226:       IF( N.EQ.0 ) THEN
        !           227:          WORK( 1 ) = ONE
        !           228:          RETURN
        !           229:       END IF
        !           230: *
        !           231:       IF( N.LE.NTINY ) THEN
        !           232: *
        !           233: *        ==== Tiny matrices must use ZLAHQR. ====
        !           234: *
        !           235:          LWKOPT = 1
        !           236:          IF( LWORK.NE.-1 )
        !           237:      $      CALL ZLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
        !           238:      $                   IHIZ, Z, LDZ, INFO )
        !           239:       ELSE
        !           240: *
        !           241: *        ==== Use small bulge multi-shift QR with aggressive early
        !           242: *        .    deflation on larger-than-tiny matrices. ====
        !           243: *
        !           244: *        ==== Hope for the best. ====
        !           245: *
        !           246:          INFO = 0
        !           247: *
        !           248: *        ==== Set up job flags for ILAENV. ====
        !           249: *
        !           250:          IF( WANTT ) THEN
        !           251:             JBCMPZ( 1: 1 ) = 'S'
        !           252:          ELSE
        !           253:             JBCMPZ( 1: 1 ) = 'E'
        !           254:          END IF
        !           255:          IF( WANTZ ) THEN
        !           256:             JBCMPZ( 2: 2 ) = 'V'
        !           257:          ELSE
        !           258:             JBCMPZ( 2: 2 ) = 'N'
        !           259:          END IF
        !           260: *
        !           261: *        ==== NWR = recommended deflation window size.  At this
        !           262: *        .    point,  N .GT. NTINY = 11, so there is enough
        !           263: *        .    subdiagonal workspace for NWR.GE.2 as required.
        !           264: *        .    (In fact, there is enough subdiagonal space for
        !           265: *        .    NWR.GE.3.) ====
        !           266: *
        !           267:          NWR = ILAENV( 13, 'ZLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
        !           268:          NWR = MAX( 2, NWR )
        !           269:          NWR = MIN( IHI-ILO+1, ( N-1 ) / 3, NWR )
        !           270: *
        !           271: *        ==== NSR = recommended number of simultaneous shifts.
        !           272: *        .    At this point N .GT. NTINY = 11, so there is at
        !           273: *        .    enough subdiagonal workspace for NSR to be even
        !           274: *        .    and greater than or equal to two as required. ====
        !           275: *
        !           276:          NSR = ILAENV( 15, 'ZLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
        !           277:          NSR = MIN( NSR, ( N+6 ) / 9, IHI-ILO )
        !           278:          NSR = MAX( 2, NSR-MOD( NSR, 2 ) )
        !           279: *
        !           280: *        ==== Estimate optimal workspace ====
        !           281: *
        !           282: *        ==== Workspace query call to ZLAQR2 ====
        !           283: *
        !           284:          CALL ZLAQR2( WANTT, WANTZ, N, ILO, IHI, NWR+1, H, LDH, ILOZ,
        !           285:      $                IHIZ, Z, LDZ, LS, LD, W, H, LDH, N, H, LDH, N, H,
        !           286:      $                LDH, WORK, -1 )
        !           287: *
        !           288: *        ==== Optimal workspace = MAX(ZLAQR5, ZLAQR2) ====
        !           289: *
        !           290:          LWKOPT = MAX( 3*NSR / 2, INT( WORK( 1 ) ) )
        !           291: *
        !           292: *        ==== Quick return in case of workspace query. ====
        !           293: *
        !           294:          IF( LWORK.EQ.-1 ) THEN
        !           295:             WORK( 1 ) = DCMPLX( LWKOPT, 0 )
        !           296:             RETURN
        !           297:          END IF
        !           298: *
        !           299: *        ==== ZLAHQR/ZLAQR0 crossover point ====
        !           300: *
        !           301:          NMIN = ILAENV( 12, 'ZLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
        !           302:          NMIN = MAX( NTINY, NMIN )
        !           303: *
        !           304: *        ==== Nibble crossover point ====
        !           305: *
        !           306:          NIBBLE = ILAENV( 14, 'ZLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
        !           307:          NIBBLE = MAX( 0, NIBBLE )
        !           308: *
        !           309: *        ==== Accumulate reflections during ttswp?  Use block
        !           310: *        .    2-by-2 structure during matrix-matrix multiply? ====
        !           311: *
        !           312:          KACC22 = ILAENV( 16, 'ZLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
        !           313:          KACC22 = MAX( 0, KACC22 )
        !           314:          KACC22 = MIN( 2, KACC22 )
        !           315: *
        !           316: *        ==== NWMAX = the largest possible deflation window for
        !           317: *        .    which there is sufficient workspace. ====
        !           318: *
        !           319:          NWMAX = MIN( ( N-1 ) / 3, LWORK / 2 )
        !           320:          NW = NWMAX
        !           321: *
        !           322: *        ==== NSMAX = the Largest number of simultaneous shifts
        !           323: *        .    for which there is sufficient workspace. ====
        !           324: *
        !           325:          NSMAX = MIN( ( N+6 ) / 9, 2*LWORK / 3 )
        !           326:          NSMAX = NSMAX - MOD( NSMAX, 2 )
        !           327: *
        !           328: *        ==== NDFL: an iteration count restarted at deflation. ====
        !           329: *
        !           330:          NDFL = 1
        !           331: *
        !           332: *        ==== ITMAX = iteration limit ====
        !           333: *
        !           334:          ITMAX = MAX( 30, 2*KEXSH )*MAX( 10, ( IHI-ILO+1 ) )
        !           335: *
        !           336: *        ==== Last row and column in the active block ====
        !           337: *
        !           338:          KBOT = IHI
        !           339: *
        !           340: *        ==== Main Loop ====
        !           341: *
        !           342:          DO 70 IT = 1, ITMAX
        !           343: *
        !           344: *           ==== Done when KBOT falls below ILO ====
        !           345: *
        !           346:             IF( KBOT.LT.ILO )
        !           347:      $         GO TO 80
        !           348: *
        !           349: *           ==== Locate active block ====
        !           350: *
        !           351:             DO 10 K = KBOT, ILO + 1, -1
        !           352:                IF( H( K, K-1 ).EQ.ZERO )
        !           353:      $            GO TO 20
        !           354:    10       CONTINUE
        !           355:             K = ILO
        !           356:    20       CONTINUE
        !           357:             KTOP = K
        !           358: *
        !           359: *           ==== Select deflation window size:
        !           360: *           .    Typical Case:
        !           361: *           .      If possible and advisable, nibble the entire
        !           362: *           .      active block.  If not, use size MIN(NWR,NWMAX)
        !           363: *           .      or MIN(NWR+1,NWMAX) depending upon which has
        !           364: *           .      the smaller corresponding subdiagonal entry
        !           365: *           .      (a heuristic).
        !           366: *           .
        !           367: *           .    Exceptional Case:
        !           368: *           .      If there have been no deflations in KEXNW or
        !           369: *           .      more iterations, then vary the deflation window
        !           370: *           .      size.   At first, because, larger windows are,
        !           371: *           .      in general, more powerful than smaller ones,
        !           372: *           .      rapidly increase the window to the maximum possible.
        !           373: *           .      Then, gradually reduce the window size. ====
        !           374: *
        !           375:             NH = KBOT - KTOP + 1
        !           376:             NWUPBD = MIN( NH, NWMAX )
        !           377:             IF( NDFL.LT.KEXNW ) THEN
        !           378:                NW = MIN( NWUPBD, NWR )
        !           379:             ELSE
        !           380:                NW = MIN( NWUPBD, 2*NW )
        !           381:             END IF
        !           382:             IF( NW.LT.NWMAX ) THEN
        !           383:                IF( NW.GE.NH-1 ) THEN
        !           384:                   NW = NH
        !           385:                ELSE
        !           386:                   KWTOP = KBOT - NW + 1
        !           387:                   IF( CABS1( H( KWTOP, KWTOP-1 ) ).GT.
        !           388:      $                CABS1( H( KWTOP-1, KWTOP-2 ) ) )NW = NW + 1
        !           389:                END IF
        !           390:             END IF
        !           391:             IF( NDFL.LT.KEXNW ) THEN
        !           392:                NDEC = -1
        !           393:             ELSE IF( NDEC.GE.0 .OR. NW.GE.NWUPBD ) THEN
        !           394:                NDEC = NDEC + 1
        !           395:                IF( NW-NDEC.LT.2 )
        !           396:      $            NDEC = 0
        !           397:                NW = NW - NDEC
        !           398:             END IF
        !           399: *
        !           400: *           ==== Aggressive early deflation:
        !           401: *           .    split workspace under the subdiagonal into
        !           402: *           .      - an nw-by-nw work array V in the lower
        !           403: *           .        left-hand-corner,
        !           404: *           .      - an NW-by-at-least-NW-but-more-is-better
        !           405: *           .        (NW-by-NHO) horizontal work array along
        !           406: *           .        the bottom edge,
        !           407: *           .      - an at-least-NW-but-more-is-better (NHV-by-NW)
        !           408: *           .        vertical work array along the left-hand-edge.
        !           409: *           .        ====
        !           410: *
        !           411:             KV = N - NW + 1
        !           412:             KT = NW + 1
        !           413:             NHO = ( N-NW-1 ) - KT + 1
        !           414:             KWV = NW + 2
        !           415:             NVE = ( N-NW ) - KWV + 1
        !           416: *
        !           417: *           ==== Aggressive early deflation ====
        !           418: *
        !           419:             CALL ZLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
        !           420:      $                   IHIZ, Z, LDZ, LS, LD, W, H( KV, 1 ), LDH, NHO,
        !           421:      $                   H( KV, KT ), LDH, NVE, H( KWV, 1 ), LDH, WORK,
        !           422:      $                   LWORK )
        !           423: *
        !           424: *           ==== Adjust KBOT accounting for new deflations. ====
        !           425: *
        !           426:             KBOT = KBOT - LD
        !           427: *
        !           428: *           ==== KS points to the shifts. ====
        !           429: *
        !           430:             KS = KBOT - LS + 1
        !           431: *
        !           432: *           ==== Skip an expensive QR sweep if there is a (partly
        !           433: *           .    heuristic) reason to expect that many eigenvalues
        !           434: *           .    will deflate without it.  Here, the QR sweep is
        !           435: *           .    skipped if many eigenvalues have just been deflated
        !           436: *           .    or if the remaining active block is small.
        !           437: *
        !           438:             IF( ( LD.EQ.0 ) .OR. ( ( 100*LD.LE.NW*NIBBLE ) .AND. ( KBOT-
        !           439:      $          KTOP+1.GT.MIN( NMIN, NWMAX ) ) ) ) THEN
        !           440: *
        !           441: *              ==== NS = nominal number of simultaneous shifts.
        !           442: *              .    This may be lowered (slightly) if ZLAQR2
        !           443: *              .    did not provide that many shifts. ====
        !           444: *
        !           445:                NS = MIN( NSMAX, NSR, MAX( 2, KBOT-KTOP ) )
        !           446:                NS = NS - MOD( NS, 2 )
        !           447: *
        !           448: *              ==== If there have been no deflations
        !           449: *              .    in a multiple of KEXSH iterations,
        !           450: *              .    then try exceptional shifts.
        !           451: *              .    Otherwise use shifts provided by
        !           452: *              .    ZLAQR2 above or from the eigenvalues
        !           453: *              .    of a trailing principal submatrix. ====
        !           454: *
        !           455:                IF( MOD( NDFL, KEXSH ).EQ.0 ) THEN
        !           456:                   KS = KBOT - NS + 1
        !           457:                   DO 30 I = KBOT, KS + 1, -2
        !           458:                      W( I ) = H( I, I ) + WILK1*CABS1( H( I, I-1 ) )
        !           459:                      W( I-1 ) = W( I )
        !           460:    30             CONTINUE
        !           461:                ELSE
        !           462: *
        !           463: *                 ==== Got NS/2 or fewer shifts? Use ZLAHQR
        !           464: *                 .    on a trailing principal submatrix to
        !           465: *                 .    get more. (Since NS.LE.NSMAX.LE.(N+6)/9,
        !           466: *                 .    there is enough space below the subdiagonal
        !           467: *                 .    to fit an NS-by-NS scratch array.) ====
        !           468: *
        !           469:                   IF( KBOT-KS+1.LE.NS / 2 ) THEN
        !           470:                      KS = KBOT - NS + 1
        !           471:                      KT = N - NS + 1
        !           472:                      CALL ZLACPY( 'A', NS, NS, H( KS, KS ), LDH,
        !           473:      $                            H( KT, 1 ), LDH )
        !           474:                      CALL ZLAHQR( .false., .false., NS, 1, NS,
        !           475:      $                            H( KT, 1 ), LDH, W( KS ), 1, 1, ZDUM,
        !           476:      $                            1, INF )
        !           477:                      KS = KS + INF
        !           478: *
        !           479: *                    ==== In case of a rare QR failure use
        !           480: *                    .    eigenvalues of the trailing 2-by-2
        !           481: *                    .    principal submatrix.  Scale to avoid
        !           482: *                    .    overflows, underflows and subnormals.
        !           483: *                    .    (The scale factor S can not be zero,
        !           484: *                    .    because H(KBOT,KBOT-1) is nonzero.) ====
        !           485: *
        !           486:                      IF( KS.GE.KBOT ) THEN
        !           487:                         S = CABS1( H( KBOT-1, KBOT-1 ) ) +
        !           488:      $                      CABS1( H( KBOT, KBOT-1 ) ) +
        !           489:      $                      CABS1( H( KBOT-1, KBOT ) ) +
        !           490:      $                      CABS1( H( KBOT, KBOT ) )
        !           491:                         AA = H( KBOT-1, KBOT-1 ) / S
        !           492:                         CC = H( KBOT, KBOT-1 ) / S
        !           493:                         BB = H( KBOT-1, KBOT ) / S
        !           494:                         DD = H( KBOT, KBOT ) / S
        !           495:                         TR2 = ( AA+DD ) / TWO
        !           496:                         DET = ( AA-TR2 )*( DD-TR2 ) - BB*CC
        !           497:                         RTDISC = SQRT( -DET )
        !           498:                         W( KBOT-1 ) = ( TR2+RTDISC )*S
        !           499:                         W( KBOT ) = ( TR2-RTDISC )*S
        !           500: *
        !           501:                         KS = KBOT - 1
        !           502:                      END IF
        !           503:                   END IF
        !           504: *
        !           505:                   IF( KBOT-KS+1.GT.NS ) THEN
        !           506: *
        !           507: *                    ==== Sort the shifts (Helps a little) ====
        !           508: *
        !           509:                      SORTED = .false.
        !           510:                      DO 50 K = KBOT, KS + 1, -1
        !           511:                         IF( SORTED )
        !           512:      $                     GO TO 60
        !           513:                         SORTED = .true.
        !           514:                         DO 40 I = KS, K - 1
        !           515:                            IF( CABS1( W( I ) ).LT.CABS1( W( I+1 ) ) )
        !           516:      $                          THEN
        !           517:                               SORTED = .false.
        !           518:                               SWAP = W( I )
        !           519:                               W( I ) = W( I+1 )
        !           520:                               W( I+1 ) = SWAP
        !           521:                            END IF
        !           522:    40                   CONTINUE
        !           523:    50                CONTINUE
        !           524:    60                CONTINUE
        !           525:                   END IF
        !           526:                END IF
        !           527: *
        !           528: *              ==== If there are only two shifts, then use
        !           529: *              .    only one.  ====
        !           530: *
        !           531:                IF( KBOT-KS+1.EQ.2 ) THEN
        !           532:                   IF( CABS1( W( KBOT )-H( KBOT, KBOT ) ).LT.
        !           533:      $                CABS1( W( KBOT-1 )-H( KBOT, KBOT ) ) ) THEN
        !           534:                      W( KBOT-1 ) = W( KBOT )
        !           535:                   ELSE
        !           536:                      W( KBOT ) = W( KBOT-1 )
        !           537:                   END IF
        !           538:                END IF
        !           539: *
        !           540: *              ==== Use up to NS of the the smallest magnatiude
        !           541: *              .    shifts.  If there aren't NS shifts available,
        !           542: *              .    then use them all, possibly dropping one to
        !           543: *              .    make the number of shifts even. ====
        !           544: *
        !           545:                NS = MIN( NS, KBOT-KS+1 )
        !           546:                NS = NS - MOD( NS, 2 )
        !           547:                KS = KBOT - NS + 1
        !           548: *
        !           549: *              ==== Small-bulge multi-shift QR sweep:
        !           550: *              .    split workspace under the subdiagonal into
        !           551: *              .    - a KDU-by-KDU work array U in the lower
        !           552: *              .      left-hand-corner,
        !           553: *              .    - a KDU-by-at-least-KDU-but-more-is-better
        !           554: *              .      (KDU-by-NHo) horizontal work array WH along
        !           555: *              .      the bottom edge,
        !           556: *              .    - and an at-least-KDU-but-more-is-better-by-KDU
        !           557: *              .      (NVE-by-KDU) vertical work WV arrow along
        !           558: *              .      the left-hand-edge. ====
        !           559: *
        !           560:                KDU = 3*NS - 3
        !           561:                KU = N - KDU + 1
        !           562:                KWH = KDU + 1
        !           563:                NHO = ( N-KDU+1-4 ) - ( KDU+1 ) + 1
        !           564:                KWV = KDU + 4
        !           565:                NVE = N - KDU - KWV + 1
        !           566: *
        !           567: *              ==== Small-bulge multi-shift QR sweep ====
        !           568: *
        !           569:                CALL ZLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NS,
        !           570:      $                      W( KS ), H, LDH, ILOZ, IHIZ, Z, LDZ, WORK,
        !           571:      $                      3, H( KU, 1 ), LDH, NVE, H( KWV, 1 ), LDH,
        !           572:      $                      NHO, H( KU, KWH ), LDH )
        !           573:             END IF
        !           574: *
        !           575: *           ==== Note progress (or the lack of it). ====
        !           576: *
        !           577:             IF( LD.GT.0 ) THEN
        !           578:                NDFL = 1
        !           579:             ELSE
        !           580:                NDFL = NDFL + 1
        !           581:             END IF
        !           582: *
        !           583: *           ==== End of main loop ====
        !           584:    70    CONTINUE
        !           585: *
        !           586: *        ==== Iteration limit exceeded.  Set INFO to show where
        !           587: *        .    the problem occurred and exit. ====
        !           588: *
        !           589:          INFO = KBOT
        !           590:    80    CONTINUE
        !           591:       END IF
        !           592: *
        !           593: *     ==== Return the optimal value of LWORK. ====
        !           594: *
        !           595:       WORK( 1 ) = DCMPLX( LWKOPT, 0 )
        !           596: *
        !           597: *     ==== End of ZLAQR4 ====
        !           598: *
        !           599:       END

CVSweb interface <joel.bertrand@systella.fr>