--- rpl/lapack/lapack/zlaqr4.f 2017/06/17 10:54:21 1.15 +++ rpl/lapack/lapack/zlaqr4.f 2023/08/07 08:39:30 1.19 @@ -73,7 +73,7 @@ *> \param[in] N *> \verbatim *> N is INTEGER -*> The order of the matrix H. N .GE. 0. +*> The order of the matrix H. N >= 0. *> \endverbatim *> *> \param[in] ILO @@ -85,12 +85,12 @@ *> \verbatim *> IHI is INTEGER *> It is assumed that H is already upper triangular in rows -*> and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1, +*> and columns 1:ILO-1 and IHI+1:N and, if ILO > 1, *> H(ILO,ILO-1) is zero. ILO and IHI are normally set by a *> previous call to ZGEBAL, and then passed to ZGEHRD when the *> matrix output by ZGEBAL is reduced to Hessenberg form. *> Otherwise, ILO and IHI should be set to 1 and N, -*> respectively. If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N. +*> respectively. If N > 0, then 1 <= ILO <= IHI <= N. *> If N = 0, then ILO = 1 and IHI = 0. *> \endverbatim *> @@ -102,17 +102,17 @@ *> contains the upper triangular matrix T from the Schur *> decomposition (the Schur form). If INFO = 0 and WANT is *> .FALSE., then the contents of H are unspecified on exit. -*> (The output value of H when INFO.GT.0 is given under the +*> (The output value of H when INFO > 0 is given under the *> description of INFO below.) *> -*> This subroutine may explicitly set H(i,j) = 0 for i.GT.j and +*> This subroutine may explicitly set H(i,j) = 0 for i > j and *> j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N. *> \endverbatim *> *> \param[in] LDH *> \verbatim *> LDH is INTEGER -*> The leading dimension of the array H. LDH .GE. max(1,N). +*> The leading dimension of the array H. LDH >= max(1,N). *> \endverbatim *> *> \param[out] W @@ -134,7 +134,7 @@ *> IHIZ is INTEGER *> Specify the rows of Z to which transformations must be *> applied if WANTZ is .TRUE.. -*> 1 .LE. ILOZ .LE. ILO; IHI .LE. IHIZ .LE. N. +*> 1 <= ILOZ <= ILO; IHI <= IHIZ <= N. *> \endverbatim *> *> \param[in,out] Z @@ -144,7 +144,7 @@ *> If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is *> replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the *> orthogonal Schur factor of H(ILO:IHI,ILO:IHI). -*> (The output value of Z when INFO.GT.0 is given under +*> (The output value of Z when INFO > 0 is given under *> the description of INFO below.) *> \endverbatim *> @@ -152,7 +152,7 @@ *> \verbatim *> LDZ is INTEGER *> The leading dimension of the array Z. if WANTZ is .TRUE. -*> then LDZ.GE.MAX(1,IHIZ). Otherwize, LDZ.GE.1. +*> then LDZ >= MAX(1,IHIZ). Otherwise, LDZ >= 1. *> \endverbatim *> *> \param[out] WORK @@ -165,7 +165,7 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. LWORK .GE. max(1,N) +*> The dimension of the array WORK. LWORK >= max(1,N) *> is sufficient, but LWORK typically as large as 6*N may *> be required for optimal performance. A workspace query *> to determine the optimal workspace size is recommended. @@ -182,18 +182,18 @@ *> \verbatim *> INFO is INTEGER *> = 0: successful exit -*> .GT. 0: if INFO = i, ZLAQR4 failed to compute all of +*> > 0: if INFO = i, ZLAQR4 failed to compute all of *> the eigenvalues. Elements 1:ilo-1 and i+1:n of WR *> and WI contain those eigenvalues which have been *> successfully computed. (Failures are rare.) *> -*> If INFO .GT. 0 and WANT is .FALSE., then on exit, +*> If INFO > 0 and WANT is .FALSE., then on exit, *> the remaining unconverged eigenvalues are the eigen- *> values of the upper Hessenberg matrix rows and *> columns ILO through INFO of the final, output *> value of H. *> -*> If INFO .GT. 0 and WANTT is .TRUE., then on exit +*> If INFO > 0 and WANTT is .TRUE., then on exit *> *> (*) (initial value of H)*U = U*(final value of H) *> @@ -201,7 +201,7 @@ *> value of H is upper Hessenberg and triangular in *> rows and columns INFO+1 through IHI. *> -*> If INFO .GT. 0 and WANTZ is .TRUE., then on exit +*> If INFO > 0 and WANTZ is .TRUE., then on exit *> *> (final value of Z(ILO:IHI,ILOZ:IHIZ) *> = (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U @@ -209,7 +209,7 @@ *> where U is the unitary matrix in (*) (regard- *> less of the value of WANTT.) *> -*> If INFO .GT. 0 and WANTZ is .FALSE., then Z is not +*> If INFO > 0 and WANTZ is .FALSE., then Z is not *> accessed. *> \endverbatim * @@ -221,8 +221,6 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \date December 2016 -* *> \ingroup complex16OTHERauxiliary * *> \par Contributors: @@ -247,10 +245,9 @@ SUBROUTINE ZLAQR4( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ, $ IHIZ, Z, LDZ, WORK, LWORK, INFO ) * -* -- LAPACK auxiliary routine (version 3.7.0) -- +* -- LAPACK auxiliary routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* December 2016 * * .. Scalar Arguments .. INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N @@ -268,7 +265,7 @@ * . ZLAHQR because of insufficient subdiagonal scratch space. * . (This is a hard limit.) ==== INTEGER NTINY - PARAMETER ( NTINY = 11 ) + PARAMETER ( NTINY = 15 ) * * ==== Exceptional deflation windows: try to cure rare * . slow convergence by varying the size of the @@ -363,22 +360,22 @@ END IF * * ==== NWR = recommended deflation window size. At this -* . point, N .GT. NTINY = 11, so there is enough +* . point, N .GT. NTINY = 15, so there is enough * . subdiagonal workspace for NWR.GE.2 as required. * . (In fact, there is enough subdiagonal space for -* . NWR.GE.3.) ==== +* . NWR.GE.4.) ==== * NWR = ILAENV( 13, 'ZLAQR4', JBCMPZ, N, ILO, IHI, LWORK ) NWR = MAX( 2, NWR ) NWR = MIN( IHI-ILO+1, ( N-1 ) / 3, NWR ) * * ==== NSR = recommended number of simultaneous shifts. -* . At this point N .GT. NTINY = 11, so there is at +* . At this point N .GT. NTINY = 15, so there is at * . enough subdiagonal workspace for NSR to be even * . and greater than or equal to two as required. ==== * NSR = ILAENV( 15, 'ZLAQR4', JBCMPZ, N, ILO, IHI, LWORK ) - NSR = MIN( NSR, ( N+6 ) / 9, IHI-ILO ) + NSR = MIN( NSR, ( N-3 ) / 6, IHI-ILO ) NSR = MAX( 2, NSR-MOD( NSR, 2 ) ) * * ==== Estimate optimal workspace ==== @@ -426,7 +423,7 @@ * ==== NSMAX = the Largest number of simultaneous shifts * . for which there is sufficient workspace. ==== * - NSMAX = MIN( ( N+6 ) / 9, 2*LWORK / 3 ) + NSMAX = MIN( ( N-3 ) / 6, 2*LWORK / 3 ) NSMAX = NSMAX - MOD( NSMAX, 2 ) * * ==== NDFL: an iteration count restarted at deflation. ==== @@ -566,7 +563,7 @@ * * ==== Got NS/2 or fewer shifts? Use ZLAHQR * . on a trailing principal submatrix to -* . get more. (Since NS.LE.NSMAX.LE.(N+6)/9, +* . get more. (Since NS.LE.NSMAX.LE.(N-3)/6, * . there is enough space below the subdiagonal * . to fit an NS-by-NS scratch array.) ==== * @@ -641,7 +638,7 @@ END IF END IF * -* ==== Use up to NS of the the smallest magnatiude +* ==== Use up to NS of the the smallest magnitude * . shifts. If there aren't NS shifts available, * . then use them all, possibly dropping one to * . make the number of shifts even. ==== @@ -661,7 +658,7 @@ * . (NVE-by-KDU) vertical work WV arrow along * . the left-hand-edge. ==== * - KDU = 3*NS - 3 + KDU = 2*NS KU = N - KDU + 1 KWH = KDU + 1 NHO = ( N-KDU+1-4 ) - ( KDU+1 ) + 1