Annotation of rpl/lapack/lapack/zlaqr3.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
        !             2:      $                   IHIZ, Z, LDZ, NS, ND, SH, V, LDV, NH, T, LDT,
        !             3:      $                   NV, WV, LDWV, WORK, LWORK )
        !             4: *
        !             5: *  -- LAPACK auxiliary routine (version 3.2.1)                        --
        !             6: *     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..
        !             7: *  -- April 2009                                                      --
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       INTEGER            IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
        !            11:      $                   LDZ, LWORK, N, ND, NH, NS, NV, NW
        !            12:       LOGICAL            WANTT, WANTZ
        !            13: *     ..
        !            14: *     .. Array Arguments ..
        !            15:       COMPLEX*16         H( LDH, * ), SH( * ), T( LDT, * ), V( LDV, * ),
        !            16:      $                   WORK( * ), WV( LDWV, * ), Z( LDZ, * )
        !            17: *     ..
        !            18: *
        !            19: *     ******************************************************************
        !            20: *     Aggressive early deflation:
        !            21: *
        !            22: *     This subroutine accepts as input an upper Hessenberg matrix
        !            23: *     H and performs an unitary similarity transformation
        !            24: *     designed to detect and deflate fully converged eigenvalues from
        !            25: *     a trailing principal submatrix.  On output H has been over-
        !            26: *     written by a new Hessenberg matrix that is a perturbation of
        !            27: *     an unitary similarity transformation of H.  It is to be
        !            28: *     hoped that the final version of H has many zero subdiagonal
        !            29: *     entries.
        !            30: *
        !            31: *     ******************************************************************
        !            32: *     WANTT   (input) LOGICAL
        !            33: *          If .TRUE., then the Hessenberg matrix H is fully updated
        !            34: *          so that the triangular Schur factor may be
        !            35: *          computed (in cooperation with the calling subroutine).
        !            36: *          If .FALSE., then only enough of H is updated to preserve
        !            37: *          the eigenvalues.
        !            38: *
        !            39: *     WANTZ   (input) LOGICAL
        !            40: *          If .TRUE., then the unitary matrix Z is updated so
        !            41: *          so that the unitary Schur factor may be computed
        !            42: *          (in cooperation with the calling subroutine).
        !            43: *          If .FALSE., then Z is not referenced.
        !            44: *
        !            45: *     N       (input) INTEGER
        !            46: *          The order of the matrix H and (if WANTZ is .TRUE.) the
        !            47: *          order of the unitary matrix Z.
        !            48: *
        !            49: *     KTOP    (input) INTEGER
        !            50: *          It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0.
        !            51: *          KBOT and KTOP together determine an isolated block
        !            52: *          along the diagonal of the Hessenberg matrix.
        !            53: *
        !            54: *     KBOT    (input) INTEGER
        !            55: *          It is assumed without a check that either
        !            56: *          KBOT = N or H(KBOT+1,KBOT)=0.  KBOT and KTOP together
        !            57: *          determine an isolated block along the diagonal of the
        !            58: *          Hessenberg matrix.
        !            59: *
        !            60: *     NW      (input) INTEGER
        !            61: *          Deflation window size.  1 .LE. NW .LE. (KBOT-KTOP+1).
        !            62: *
        !            63: *     H       (input/output) COMPLEX*16 array, dimension (LDH,N)
        !            64: *          On input the initial N-by-N section of H stores the
        !            65: *          Hessenberg matrix undergoing aggressive early deflation.
        !            66: *          On output H has been transformed by a unitary
        !            67: *          similarity transformation, perturbed, and the returned
        !            68: *          to Hessenberg form that (it is to be hoped) has some
        !            69: *          zero subdiagonal entries.
        !            70: *
        !            71: *     LDH     (input) integer
        !            72: *          Leading dimension of H just as declared in the calling
        !            73: *          subroutine.  N .LE. LDH
        !            74: *
        !            75: *     ILOZ    (input) INTEGER
        !            76: *     IHIZ    (input) INTEGER
        !            77: *          Specify the rows of Z to which transformations must be
        !            78: *          applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N.
        !            79: *
        !            80: *     Z       (input/output) COMPLEX*16 array, dimension (LDZ,N)
        !            81: *          IF WANTZ is .TRUE., then on output, the unitary
        !            82: *          similarity transformation mentioned above has been
        !            83: *          accumulated into Z(ILOZ:IHIZ,ILO:IHI) from the right.
        !            84: *          If WANTZ is .FALSE., then Z is unreferenced.
        !            85: *
        !            86: *     LDZ     (input) integer
        !            87: *          The leading dimension of Z just as declared in the
        !            88: *          calling subroutine.  1 .LE. LDZ.
        !            89: *
        !            90: *     NS      (output) integer
        !            91: *          The number of unconverged (ie approximate) eigenvalues
        !            92: *          returned in SR and SI that may be used as shifts by the
        !            93: *          calling subroutine.
        !            94: *
        !            95: *     ND      (output) integer
        !            96: *          The number of converged eigenvalues uncovered by this
        !            97: *          subroutine.
        !            98: *
        !            99: *     SH      (output) COMPLEX*16 array, dimension KBOT
        !           100: *          On output, approximate eigenvalues that may
        !           101: *          be used for shifts are stored in SH(KBOT-ND-NS+1)
        !           102: *          through SR(KBOT-ND).  Converged eigenvalues are
        !           103: *          stored in SH(KBOT-ND+1) through SH(KBOT).
        !           104: *
        !           105: *     V       (workspace) COMPLEX*16 array, dimension (LDV,NW)
        !           106: *          An NW-by-NW work array.
        !           107: *
        !           108: *     LDV     (input) integer scalar
        !           109: *          The leading dimension of V just as declared in the
        !           110: *          calling subroutine.  NW .LE. LDV
        !           111: *
        !           112: *     NH      (input) integer scalar
        !           113: *          The number of columns of T.  NH.GE.NW.
        !           114: *
        !           115: *     T       (workspace) COMPLEX*16 array, dimension (LDT,NW)
        !           116: *
        !           117: *     LDT     (input) integer
        !           118: *          The leading dimension of T just as declared in the
        !           119: *          calling subroutine.  NW .LE. LDT
        !           120: *
        !           121: *     NV      (input) integer
        !           122: *          The number of rows of work array WV available for
        !           123: *          workspace.  NV.GE.NW.
        !           124: *
        !           125: *     WV      (workspace) COMPLEX*16 array, dimension (LDWV,NW)
        !           126: *
        !           127: *     LDWV    (input) integer
        !           128: *          The leading dimension of W just as declared in the
        !           129: *          calling subroutine.  NW .LE. LDV
        !           130: *
        !           131: *     WORK    (workspace) COMPLEX*16 array, dimension LWORK.
        !           132: *          On exit, WORK(1) is set to an estimate of the optimal value
        !           133: *          of LWORK for the given values of N, NW, KTOP and KBOT.
        !           134: *
        !           135: *     LWORK   (input) integer
        !           136: *          The dimension of the work array WORK.  LWORK = 2*NW
        !           137: *          suffices, but greater efficiency may result from larger
        !           138: *          values of LWORK.
        !           139: *
        !           140: *          If LWORK = -1, then a workspace query is assumed; ZLAQR3
        !           141: *          only estimates the optimal workspace size for the given
        !           142: *          values of N, NW, KTOP and KBOT.  The estimate is returned
        !           143: *          in WORK(1).  No error message related to LWORK is issued
        !           144: *          by XERBLA.  Neither H nor Z are accessed.
        !           145: *
        !           146: *     ================================================================
        !           147: *     Based on contributions by
        !           148: *        Karen Braman and Ralph Byers, Department of Mathematics,
        !           149: *        University of Kansas, USA
        !           150: *
        !           151: *     ================================================================
        !           152: *     .. Parameters ..
        !           153:       COMPLEX*16         ZERO, ONE
        !           154:       PARAMETER          ( ZERO = ( 0.0d0, 0.0d0 ),
        !           155:      $                   ONE = ( 1.0d0, 0.0d0 ) )
        !           156:       DOUBLE PRECISION   RZERO, RONE
        !           157:       PARAMETER          ( RZERO = 0.0d0, RONE = 1.0d0 )
        !           158: *     ..
        !           159: *     .. Local Scalars ..
        !           160:       COMPLEX*16         BETA, CDUM, S, TAU
        !           161:       DOUBLE PRECISION   FOO, SAFMAX, SAFMIN, SMLNUM, ULP
        !           162:       INTEGER            I, IFST, ILST, INFO, INFQR, J, JW, KCOL, KLN,
        !           163:      $                   KNT, KROW, KWTOP, LTOP, LWK1, LWK2, LWK3,
        !           164:      $                   LWKOPT, NMIN
        !           165: *     ..
        !           166: *     .. External Functions ..
        !           167:       DOUBLE PRECISION   DLAMCH
        !           168:       INTEGER            ILAENV
        !           169:       EXTERNAL           DLAMCH, ILAENV
        !           170: *     ..
        !           171: *     .. External Subroutines ..
        !           172:       EXTERNAL           DLABAD, ZCOPY, ZGEHRD, ZGEMM, ZLACPY, ZLAHQR,
        !           173:      $                   ZLAQR4, ZLARF, ZLARFG, ZLASET, ZTREXC, ZUNMHR
        !           174: *     ..
        !           175: *     .. Intrinsic Functions ..
        !           176:       INTRINSIC          ABS, DBLE, DCMPLX, DCONJG, DIMAG, INT, MAX, MIN
        !           177: *     ..
        !           178: *     .. Statement Functions ..
        !           179:       DOUBLE PRECISION   CABS1
        !           180: *     ..
        !           181: *     .. Statement Function definitions ..
        !           182:       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
        !           183: *     ..
        !           184: *     .. Executable Statements ..
        !           185: *
        !           186: *     ==== Estimate optimal workspace. ====
        !           187: *
        !           188:       JW = MIN( NW, KBOT-KTOP+1 )
        !           189:       IF( JW.LE.2 ) THEN
        !           190:          LWKOPT = 1
        !           191:       ELSE
        !           192: *
        !           193: *        ==== Workspace query call to ZGEHRD ====
        !           194: *
        !           195:          CALL ZGEHRD( JW, 1, JW-1, T, LDT, WORK, WORK, -1, INFO )
        !           196:          LWK1 = INT( WORK( 1 ) )
        !           197: *
        !           198: *        ==== Workspace query call to ZUNMHR ====
        !           199: *
        !           200:          CALL ZUNMHR( 'R', 'N', JW, JW, 1, JW-1, T, LDT, WORK, V, LDV,
        !           201:      $                WORK, -1, INFO )
        !           202:          LWK2 = INT( WORK( 1 ) )
        !           203: *
        !           204: *        ==== Workspace query call to ZLAQR4 ====
        !           205: *
        !           206:          CALL ZLAQR4( .true., .true., JW, 1, JW, T, LDT, SH, 1, JW, V,
        !           207:      $                LDV, WORK, -1, INFQR )
        !           208:          LWK3 = INT( WORK( 1 ) )
        !           209: *
        !           210: *        ==== Optimal workspace ====
        !           211: *
        !           212:          LWKOPT = MAX( JW+MAX( LWK1, LWK2 ), LWK3 )
        !           213:       END IF
        !           214: *
        !           215: *     ==== Quick return in case of workspace query. ====
        !           216: *
        !           217:       IF( LWORK.EQ.-1 ) THEN
        !           218:          WORK( 1 ) = DCMPLX( LWKOPT, 0 )
        !           219:          RETURN
        !           220:       END IF
        !           221: *
        !           222: *     ==== Nothing to do ...
        !           223: *     ... for an empty active block ... ====
        !           224:       NS = 0
        !           225:       ND = 0
        !           226:       WORK( 1 ) = ONE
        !           227:       IF( KTOP.GT.KBOT )
        !           228:      $   RETURN
        !           229: *     ... nor for an empty deflation window. ====
        !           230:       IF( NW.LT.1 )
        !           231:      $   RETURN
        !           232: *
        !           233: *     ==== Machine constants ====
        !           234: *
        !           235:       SAFMIN = DLAMCH( 'SAFE MINIMUM' )
        !           236:       SAFMAX = RONE / SAFMIN
        !           237:       CALL DLABAD( SAFMIN, SAFMAX )
        !           238:       ULP = DLAMCH( 'PRECISION' )
        !           239:       SMLNUM = SAFMIN*( DBLE( N ) / ULP )
        !           240: *
        !           241: *     ==== Setup deflation window ====
        !           242: *
        !           243:       JW = MIN( NW, KBOT-KTOP+1 )
        !           244:       KWTOP = KBOT - JW + 1
        !           245:       IF( KWTOP.EQ.KTOP ) THEN
        !           246:          S = ZERO
        !           247:       ELSE
        !           248:          S = H( KWTOP, KWTOP-1 )
        !           249:       END IF
        !           250: *
        !           251:       IF( KBOT.EQ.KWTOP ) THEN
        !           252: *
        !           253: *        ==== 1-by-1 deflation window: not much to do ====
        !           254: *
        !           255:          SH( KWTOP ) = H( KWTOP, KWTOP )
        !           256:          NS = 1
        !           257:          ND = 0
        !           258:          IF( CABS1( S ).LE.MAX( SMLNUM, ULP*CABS1( H( KWTOP,
        !           259:      $       KWTOP ) ) ) ) THEN
        !           260:             NS = 0
        !           261:             ND = 1
        !           262:             IF( KWTOP.GT.KTOP )
        !           263:      $         H( KWTOP, KWTOP-1 ) = ZERO
        !           264:          END IF
        !           265:          WORK( 1 ) = ONE
        !           266:          RETURN
        !           267:       END IF
        !           268: *
        !           269: *     ==== Convert to spike-triangular form.  (In case of a
        !           270: *     .    rare QR failure, this routine continues to do
        !           271: *     .    aggressive early deflation using that part of
        !           272: *     .    the deflation window that converged using INFQR
        !           273: *     .    here and there to keep track.) ====
        !           274: *
        !           275:       CALL ZLACPY( 'U', JW, JW, H( KWTOP, KWTOP ), LDH, T, LDT )
        !           276:       CALL ZCOPY( JW-1, H( KWTOP+1, KWTOP ), LDH+1, T( 2, 1 ), LDT+1 )
        !           277: *
        !           278:       CALL ZLASET( 'A', JW, JW, ZERO, ONE, V, LDV )
        !           279:       NMIN = ILAENV( 12, 'ZLAQR3', 'SV', JW, 1, JW, LWORK )
        !           280:       IF( JW.GT.NMIN ) THEN
        !           281:          CALL ZLAQR4( .true., .true., JW, 1, JW, T, LDT, SH( KWTOP ), 1,
        !           282:      $                JW, V, LDV, WORK, LWORK, INFQR )
        !           283:       ELSE
        !           284:          CALL ZLAHQR( .true., .true., JW, 1, JW, T, LDT, SH( KWTOP ), 1,
        !           285:      $                JW, V, LDV, INFQR )
        !           286:       END IF
        !           287: *
        !           288: *     ==== Deflation detection loop ====
        !           289: *
        !           290:       NS = JW
        !           291:       ILST = INFQR + 1
        !           292:       DO 10 KNT = INFQR + 1, JW
        !           293: *
        !           294: *        ==== Small spike tip deflation test ====
        !           295: *
        !           296:          FOO = CABS1( T( NS, NS ) )
        !           297:          IF( FOO.EQ.RZERO )
        !           298:      $      FOO = CABS1( S )
        !           299:          IF( CABS1( S )*CABS1( V( 1, NS ) ).LE.MAX( SMLNUM, ULP*FOO ) )
        !           300:      $        THEN
        !           301: *
        !           302: *           ==== One more converged eigenvalue ====
        !           303: *
        !           304:             NS = NS - 1
        !           305:          ELSE
        !           306: *
        !           307: *           ==== One undeflatable eigenvalue.  Move it up out of the
        !           308: *           .    way.   (ZTREXC can not fail in this case.) ====
        !           309: *
        !           310:             IFST = NS
        !           311:             CALL ZTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, INFO )
        !           312:             ILST = ILST + 1
        !           313:          END IF
        !           314:    10 CONTINUE
        !           315: *
        !           316: *        ==== Return to Hessenberg form ====
        !           317: *
        !           318:       IF( NS.EQ.0 )
        !           319:      $   S = ZERO
        !           320: *
        !           321:       IF( NS.LT.JW ) THEN
        !           322: *
        !           323: *        ==== sorting the diagonal of T improves accuracy for
        !           324: *        .    graded matrices.  ====
        !           325: *
        !           326:          DO 30 I = INFQR + 1, NS
        !           327:             IFST = I
        !           328:             DO 20 J = I + 1, NS
        !           329:                IF( CABS1( T( J, J ) ).GT.CABS1( T( IFST, IFST ) ) )
        !           330:      $            IFST = J
        !           331:    20       CONTINUE
        !           332:             ILST = I
        !           333:             IF( IFST.NE.ILST )
        !           334:      $         CALL ZTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, INFO )
        !           335:    30    CONTINUE
        !           336:       END IF
        !           337: *
        !           338: *     ==== Restore shift/eigenvalue array from T ====
        !           339: *
        !           340:       DO 40 I = INFQR + 1, JW
        !           341:          SH( KWTOP+I-1 ) = T( I, I )
        !           342:    40 CONTINUE
        !           343: *
        !           344: *
        !           345:       IF( NS.LT.JW .OR. S.EQ.ZERO ) THEN
        !           346:          IF( NS.GT.1 .AND. S.NE.ZERO ) THEN
        !           347: *
        !           348: *           ==== Reflect spike back into lower triangle ====
        !           349: *
        !           350:             CALL ZCOPY( NS, V, LDV, WORK, 1 )
        !           351:             DO 50 I = 1, NS
        !           352:                WORK( I ) = DCONJG( WORK( I ) )
        !           353:    50       CONTINUE
        !           354:             BETA = WORK( 1 )
        !           355:             CALL ZLARFG( NS, BETA, WORK( 2 ), 1, TAU )
        !           356:             WORK( 1 ) = ONE
        !           357: *
        !           358:             CALL ZLASET( 'L', JW-2, JW-2, ZERO, ZERO, T( 3, 1 ), LDT )
        !           359: *
        !           360:             CALL ZLARF( 'L', NS, JW, WORK, 1, DCONJG( TAU ), T, LDT,
        !           361:      $                  WORK( JW+1 ) )
        !           362:             CALL ZLARF( 'R', NS, NS, WORK, 1, TAU, T, LDT,
        !           363:      $                  WORK( JW+1 ) )
        !           364:             CALL ZLARF( 'R', JW, NS, WORK, 1, TAU, V, LDV,
        !           365:      $                  WORK( JW+1 ) )
        !           366: *
        !           367:             CALL ZGEHRD( JW, 1, NS, T, LDT, WORK, WORK( JW+1 ),
        !           368:      $                   LWORK-JW, INFO )
        !           369:          END IF
        !           370: *
        !           371: *        ==== Copy updated reduced window into place ====
        !           372: *
        !           373:          IF( KWTOP.GT.1 )
        !           374:      $      H( KWTOP, KWTOP-1 ) = S*DCONJG( V( 1, 1 ) )
        !           375:          CALL ZLACPY( 'U', JW, JW, T, LDT, H( KWTOP, KWTOP ), LDH )
        !           376:          CALL ZCOPY( JW-1, T( 2, 1 ), LDT+1, H( KWTOP+1, KWTOP ),
        !           377:      $               LDH+1 )
        !           378: *
        !           379: *        ==== Accumulate orthogonal matrix in order update
        !           380: *        .    H and Z, if requested.  ====
        !           381: *
        !           382:          IF( NS.GT.1 .AND. S.NE.ZERO )
        !           383:      $      CALL ZUNMHR( 'R', 'N', JW, NS, 1, NS, T, LDT, WORK, V, LDV,
        !           384:      $                   WORK( JW+1 ), LWORK-JW, INFO )
        !           385: *
        !           386: *        ==== Update vertical slab in H ====
        !           387: *
        !           388:          IF( WANTT ) THEN
        !           389:             LTOP = 1
        !           390:          ELSE
        !           391:             LTOP = KTOP
        !           392:          END IF
        !           393:          DO 60 KROW = LTOP, KWTOP - 1, NV
        !           394:             KLN = MIN( NV, KWTOP-KROW )
        !           395:             CALL ZGEMM( 'N', 'N', KLN, JW, JW, ONE, H( KROW, KWTOP ),
        !           396:      $                  LDH, V, LDV, ZERO, WV, LDWV )
        !           397:             CALL ZLACPY( 'A', KLN, JW, WV, LDWV, H( KROW, KWTOP ), LDH )
        !           398:    60    CONTINUE
        !           399: *
        !           400: *        ==== Update horizontal slab in H ====
        !           401: *
        !           402:          IF( WANTT ) THEN
        !           403:             DO 70 KCOL = KBOT + 1, N, NH
        !           404:                KLN = MIN( NH, N-KCOL+1 )
        !           405:                CALL ZGEMM( 'C', 'N', JW, KLN, JW, ONE, V, LDV,
        !           406:      $                     H( KWTOP, KCOL ), LDH, ZERO, T, LDT )
        !           407:                CALL ZLACPY( 'A', JW, KLN, T, LDT, H( KWTOP, KCOL ),
        !           408:      $                      LDH )
        !           409:    70       CONTINUE
        !           410:          END IF
        !           411: *
        !           412: *        ==== Update vertical slab in Z ====
        !           413: *
        !           414:          IF( WANTZ ) THEN
        !           415:             DO 80 KROW = ILOZ, IHIZ, NV
        !           416:                KLN = MIN( NV, IHIZ-KROW+1 )
        !           417:                CALL ZGEMM( 'N', 'N', KLN, JW, JW, ONE, Z( KROW, KWTOP ),
        !           418:      $                     LDZ, V, LDV, ZERO, WV, LDWV )
        !           419:                CALL ZLACPY( 'A', KLN, JW, WV, LDWV, Z( KROW, KWTOP ),
        !           420:      $                      LDZ )
        !           421:    80       CONTINUE
        !           422:          END IF
        !           423:       END IF
        !           424: *
        !           425: *     ==== Return the number of deflations ... ====
        !           426: *
        !           427:       ND = JW - NS
        !           428: *
        !           429: *     ==== ... and the number of shifts. (Subtracting
        !           430: *     .    INFQR from the spike length takes care
        !           431: *     .    of the case of a rare QR failure while
        !           432: *     .    calculating eigenvalues of the deflation
        !           433: *     .    window.)  ====
        !           434: *
        !           435:       NS = NS - INFQR
        !           436: *
        !           437: *      ==== Return optimal workspace. ====
        !           438: *
        !           439:       WORK( 1 ) = DCMPLX( LWKOPT, 0 )
        !           440: *
        !           441: *     ==== End of ZLAQR3 ====
        !           442: *
        !           443:       END

CVSweb interface <joel.bertrand@systella.fr>