File:  [local] / rpl / lapack / lapack / zlaqr2.f
Revision 1.20: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:30 2023 UTC (9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZLAQR2 performs the unitary similarity transformation of a Hessenberg matrix to detect and deflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation).
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZLAQR2 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaqr2.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaqr2.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaqr2.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
   22: *                          IHIZ, Z, LDZ, NS, ND, SH, V, LDV, NH, T, LDT,
   23: *                          NV, WV, LDWV, WORK, LWORK )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       INTEGER            IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
   27: *      $                   LDZ, LWORK, N, ND, NH, NS, NV, NW
   28: *       LOGICAL            WANTT, WANTZ
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       COMPLEX*16         H( LDH, * ), SH( * ), T( LDT, * ), V( LDV, * ),
   32: *      $                   WORK( * ), WV( LDWV, * ), Z( LDZ, * )
   33: *       ..
   34: *
   35: *
   36: *> \par Purpose:
   37: *  =============
   38: *>
   39: *> \verbatim
   40: *>
   41: *>    ZLAQR2 is identical to ZLAQR3 except that it avoids
   42: *>    recursion by calling ZLAHQR instead of ZLAQR4.
   43: *>
   44: *>    Aggressive early deflation:
   45: *>
   46: *>    ZLAQR2 accepts as input an upper Hessenberg matrix
   47: *>    H and performs an unitary similarity transformation
   48: *>    designed to detect and deflate fully converged eigenvalues from
   49: *>    a trailing principal submatrix.  On output H has been over-
   50: *>    written by a new Hessenberg matrix that is a perturbation of
   51: *>    an unitary similarity transformation of H.  It is to be
   52: *>    hoped that the final version of H has many zero subdiagonal
   53: *>    entries.
   54: *>
   55: *> \endverbatim
   56: *
   57: *  Arguments:
   58: *  ==========
   59: *
   60: *> \param[in] WANTT
   61: *> \verbatim
   62: *>          WANTT is LOGICAL
   63: *>          If .TRUE., then the Hessenberg matrix H is fully updated
   64: *>          so that the triangular Schur factor may be
   65: *>          computed (in cooperation with the calling subroutine).
   66: *>          If .FALSE., then only enough of H is updated to preserve
   67: *>          the eigenvalues.
   68: *> \endverbatim
   69: *>
   70: *> \param[in] WANTZ
   71: *> \verbatim
   72: *>          WANTZ is LOGICAL
   73: *>          If .TRUE., then the unitary matrix Z is updated so
   74: *>          so that the unitary Schur factor may be computed
   75: *>          (in cooperation with the calling subroutine).
   76: *>          If .FALSE., then Z is not referenced.
   77: *> \endverbatim
   78: *>
   79: *> \param[in] N
   80: *> \verbatim
   81: *>          N is INTEGER
   82: *>          The order of the matrix H and (if WANTZ is .TRUE.) the
   83: *>          order of the unitary matrix Z.
   84: *> \endverbatim
   85: *>
   86: *> \param[in] KTOP
   87: *> \verbatim
   88: *>          KTOP is INTEGER
   89: *>          It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0.
   90: *>          KBOT and KTOP together determine an isolated block
   91: *>          along the diagonal of the Hessenberg matrix.
   92: *> \endverbatim
   93: *>
   94: *> \param[in] KBOT
   95: *> \verbatim
   96: *>          KBOT is INTEGER
   97: *>          It is assumed without a check that either
   98: *>          KBOT = N or H(KBOT+1,KBOT)=0.  KBOT and KTOP together
   99: *>          determine an isolated block along the diagonal of the
  100: *>          Hessenberg matrix.
  101: *> \endverbatim
  102: *>
  103: *> \param[in] NW
  104: *> \verbatim
  105: *>          NW is INTEGER
  106: *>          Deflation window size.  1 <= NW <= (KBOT-KTOP+1).
  107: *> \endverbatim
  108: *>
  109: *> \param[in,out] H
  110: *> \verbatim
  111: *>          H is COMPLEX*16 array, dimension (LDH,N)
  112: *>          On input the initial N-by-N section of H stores the
  113: *>          Hessenberg matrix undergoing aggressive early deflation.
  114: *>          On output H has been transformed by a unitary
  115: *>          similarity transformation, perturbed, and the returned
  116: *>          to Hessenberg form that (it is to be hoped) has some
  117: *>          zero subdiagonal entries.
  118: *> \endverbatim
  119: *>
  120: *> \param[in] LDH
  121: *> \verbatim
  122: *>          LDH is INTEGER
  123: *>          Leading dimension of H just as declared in the calling
  124: *>          subroutine.  N <= LDH
  125: *> \endverbatim
  126: *>
  127: *> \param[in] ILOZ
  128: *> \verbatim
  129: *>          ILOZ is INTEGER
  130: *> \endverbatim
  131: *>
  132: *> \param[in] IHIZ
  133: *> \verbatim
  134: *>          IHIZ is INTEGER
  135: *>          Specify the rows of Z to which transformations must be
  136: *>          applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N.
  137: *> \endverbatim
  138: *>
  139: *> \param[in,out] Z
  140: *> \verbatim
  141: *>          Z is COMPLEX*16 array, dimension (LDZ,N)
  142: *>          IF WANTZ is .TRUE., then on output, the unitary
  143: *>          similarity transformation mentioned above has been
  144: *>          accumulated into Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right.
  145: *>          If WANTZ is .FALSE., then Z is unreferenced.
  146: *> \endverbatim
  147: *>
  148: *> \param[in] LDZ
  149: *> \verbatim
  150: *>          LDZ is INTEGER
  151: *>          The leading dimension of Z just as declared in the
  152: *>          calling subroutine.  1 <= LDZ.
  153: *> \endverbatim
  154: *>
  155: *> \param[out] NS
  156: *> \verbatim
  157: *>          NS is INTEGER
  158: *>          The number of unconverged (ie approximate) eigenvalues
  159: *>          returned in SR and SI that may be used as shifts by the
  160: *>          calling subroutine.
  161: *> \endverbatim
  162: *>
  163: *> \param[out] ND
  164: *> \verbatim
  165: *>          ND is INTEGER
  166: *>          The number of converged eigenvalues uncovered by this
  167: *>          subroutine.
  168: *> \endverbatim
  169: *>
  170: *> \param[out] SH
  171: *> \verbatim
  172: *>          SH is COMPLEX*16 array, dimension (KBOT)
  173: *>          On output, approximate eigenvalues that may
  174: *>          be used for shifts are stored in SH(KBOT-ND-NS+1)
  175: *>          through SR(KBOT-ND).  Converged eigenvalues are
  176: *>          stored in SH(KBOT-ND+1) through SH(KBOT).
  177: *> \endverbatim
  178: *>
  179: *> \param[out] V
  180: *> \verbatim
  181: *>          V is COMPLEX*16 array, dimension (LDV,NW)
  182: *>          An NW-by-NW work array.
  183: *> \endverbatim
  184: *>
  185: *> \param[in] LDV
  186: *> \verbatim
  187: *>          LDV is INTEGER
  188: *>          The leading dimension of V just as declared in the
  189: *>          calling subroutine.  NW <= LDV
  190: *> \endverbatim
  191: *>
  192: *> \param[in] NH
  193: *> \verbatim
  194: *>          NH is INTEGER
  195: *>          The number of columns of T.  NH >= NW.
  196: *> \endverbatim
  197: *>
  198: *> \param[out] T
  199: *> \verbatim
  200: *>          T is COMPLEX*16 array, dimension (LDT,NW)
  201: *> \endverbatim
  202: *>
  203: *> \param[in] LDT
  204: *> \verbatim
  205: *>          LDT is INTEGER
  206: *>          The leading dimension of T just as declared in the
  207: *>          calling subroutine.  NW <= LDT
  208: *> \endverbatim
  209: *>
  210: *> \param[in] NV
  211: *> \verbatim
  212: *>          NV is INTEGER
  213: *>          The number of rows of work array WV available for
  214: *>          workspace.  NV >= NW.
  215: *> \endverbatim
  216: *>
  217: *> \param[out] WV
  218: *> \verbatim
  219: *>          WV is COMPLEX*16 array, dimension (LDWV,NW)
  220: *> \endverbatim
  221: *>
  222: *> \param[in] LDWV
  223: *> \verbatim
  224: *>          LDWV is INTEGER
  225: *>          The leading dimension of W just as declared in the
  226: *>          calling subroutine.  NW <= LDV
  227: *> \endverbatim
  228: *>
  229: *> \param[out] WORK
  230: *> \verbatim
  231: *>          WORK is COMPLEX*16 array, dimension (LWORK)
  232: *>          On exit, WORK(1) is set to an estimate of the optimal value
  233: *>          of LWORK for the given values of N, NW, KTOP and KBOT.
  234: *> \endverbatim
  235: *>
  236: *> \param[in] LWORK
  237: *> \verbatim
  238: *>          LWORK is INTEGER
  239: *>          The dimension of the work array WORK.  LWORK = 2*NW
  240: *>          suffices, but greater efficiency may result from larger
  241: *>          values of LWORK.
  242: *>
  243: *>          If LWORK = -1, then a workspace query is assumed; ZLAQR2
  244: *>          only estimates the optimal workspace size for the given
  245: *>          values of N, NW, KTOP and KBOT.  The estimate is returned
  246: *>          in WORK(1).  No error message related to LWORK is issued
  247: *>          by XERBLA.  Neither H nor Z are accessed.
  248: *> \endverbatim
  249: *
  250: *  Authors:
  251: *  ========
  252: *
  253: *> \author Univ. of Tennessee
  254: *> \author Univ. of California Berkeley
  255: *> \author Univ. of Colorado Denver
  256: *> \author NAG Ltd.
  257: *
  258: *> \ingroup complex16OTHERauxiliary
  259: *
  260: *> \par Contributors:
  261: *  ==================
  262: *>
  263: *>       Karen Braman and Ralph Byers, Department of Mathematics,
  264: *>       University of Kansas, USA
  265: *>
  266: *  =====================================================================
  267:       SUBROUTINE ZLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
  268:      $                   IHIZ, Z, LDZ, NS, ND, SH, V, LDV, NH, T, LDT,
  269:      $                   NV, WV, LDWV, WORK, LWORK )
  270: *
  271: *  -- LAPACK auxiliary routine --
  272: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  273: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  274: *
  275: *     .. Scalar Arguments ..
  276:       INTEGER            IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
  277:      $                   LDZ, LWORK, N, ND, NH, NS, NV, NW
  278:       LOGICAL            WANTT, WANTZ
  279: *     ..
  280: *     .. Array Arguments ..
  281:       COMPLEX*16         H( LDH, * ), SH( * ), T( LDT, * ), V( LDV, * ),
  282:      $                   WORK( * ), WV( LDWV, * ), Z( LDZ, * )
  283: *     ..
  284: *
  285: *  ================================================================
  286: *
  287: *     .. Parameters ..
  288:       COMPLEX*16         ZERO, ONE
  289:       PARAMETER          ( ZERO = ( 0.0d0, 0.0d0 ),
  290:      $                   ONE = ( 1.0d0, 0.0d0 ) )
  291:       DOUBLE PRECISION   RZERO, RONE
  292:       PARAMETER          ( RZERO = 0.0d0, RONE = 1.0d0 )
  293: *     ..
  294: *     .. Local Scalars ..
  295:       COMPLEX*16         BETA, CDUM, S, TAU
  296:       DOUBLE PRECISION   FOO, SAFMAX, SAFMIN, SMLNUM, ULP
  297:       INTEGER            I, IFST, ILST, INFO, INFQR, J, JW, KCOL, KLN,
  298:      $                   KNT, KROW, KWTOP, LTOP, LWK1, LWK2, LWKOPT
  299: *     ..
  300: *     .. External Functions ..
  301:       DOUBLE PRECISION   DLAMCH
  302:       EXTERNAL           DLAMCH
  303: *     ..
  304: *     .. External Subroutines ..
  305:       EXTERNAL           DLABAD, ZCOPY, ZGEHRD, ZGEMM, ZLACPY, ZLAHQR,
  306:      $                   ZLARF, ZLARFG, ZLASET, ZTREXC, ZUNMHR
  307: *     ..
  308: *     .. Intrinsic Functions ..
  309:       INTRINSIC          ABS, DBLE, DCMPLX, DCONJG, DIMAG, INT, MAX, MIN
  310: *     ..
  311: *     .. Statement Functions ..
  312:       DOUBLE PRECISION   CABS1
  313: *     ..
  314: *     .. Statement Function definitions ..
  315:       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
  316: *     ..
  317: *     .. Executable Statements ..
  318: *
  319: *     ==== Estimate optimal workspace. ====
  320: *
  321:       JW = MIN( NW, KBOT-KTOP+1 )
  322:       IF( JW.LE.2 ) THEN
  323:          LWKOPT = 1
  324:       ELSE
  325: *
  326: *        ==== Workspace query call to ZGEHRD ====
  327: *
  328:          CALL ZGEHRD( JW, 1, JW-1, T, LDT, WORK, WORK, -1, INFO )
  329:          LWK1 = INT( WORK( 1 ) )
  330: *
  331: *        ==== Workspace query call to ZUNMHR ====
  332: *
  333:          CALL ZUNMHR( 'R', 'N', JW, JW, 1, JW-1, T, LDT, WORK, V, LDV,
  334:      $                WORK, -1, INFO )
  335:          LWK2 = INT( WORK( 1 ) )
  336: *
  337: *        ==== Optimal workspace ====
  338: *
  339:          LWKOPT = JW + MAX( LWK1, LWK2 )
  340:       END IF
  341: *
  342: *     ==== Quick return in case of workspace query. ====
  343: *
  344:       IF( LWORK.EQ.-1 ) THEN
  345:          WORK( 1 ) = DCMPLX( LWKOPT, 0 )
  346:          RETURN
  347:       END IF
  348: *
  349: *     ==== Nothing to do ...
  350: *     ... for an empty active block ... ====
  351:       NS = 0
  352:       ND = 0
  353:       WORK( 1 ) = ONE
  354:       IF( KTOP.GT.KBOT )
  355:      $   RETURN
  356: *     ... nor for an empty deflation window. ====
  357:       IF( NW.LT.1 )
  358:      $   RETURN
  359: *
  360: *     ==== Machine constants ====
  361: *
  362:       SAFMIN = DLAMCH( 'SAFE MINIMUM' )
  363:       SAFMAX = RONE / SAFMIN
  364:       CALL DLABAD( SAFMIN, SAFMAX )
  365:       ULP = DLAMCH( 'PRECISION' )
  366:       SMLNUM = SAFMIN*( DBLE( N ) / ULP )
  367: *
  368: *     ==== Setup deflation window ====
  369: *
  370:       JW = MIN( NW, KBOT-KTOP+1 )
  371:       KWTOP = KBOT - JW + 1
  372:       IF( KWTOP.EQ.KTOP ) THEN
  373:          S = ZERO
  374:       ELSE
  375:          S = H( KWTOP, KWTOP-1 )
  376:       END IF
  377: *
  378:       IF( KBOT.EQ.KWTOP ) THEN
  379: *
  380: *        ==== 1-by-1 deflation window: not much to do ====
  381: *
  382:          SH( KWTOP ) = H( KWTOP, KWTOP )
  383:          NS = 1
  384:          ND = 0
  385:          IF( CABS1( S ).LE.MAX( SMLNUM, ULP*CABS1( H( KWTOP,
  386:      $       KWTOP ) ) ) ) THEN
  387:             NS = 0
  388:             ND = 1
  389:             IF( KWTOP.GT.KTOP )
  390:      $         H( KWTOP, KWTOP-1 ) = ZERO
  391:          END IF
  392:          WORK( 1 ) = ONE
  393:          RETURN
  394:       END IF
  395: *
  396: *     ==== Convert to spike-triangular form.  (In case of a
  397: *     .    rare QR failure, this routine continues to do
  398: *     .    aggressive early deflation using that part of
  399: *     .    the deflation window that converged using INFQR
  400: *     .    here and there to keep track.) ====
  401: *
  402:       CALL ZLACPY( 'U', JW, JW, H( KWTOP, KWTOP ), LDH, T, LDT )
  403:       CALL ZCOPY( JW-1, H( KWTOP+1, KWTOP ), LDH+1, T( 2, 1 ), LDT+1 )
  404: *
  405:       CALL ZLASET( 'A', JW, JW, ZERO, ONE, V, LDV )
  406:       CALL ZLAHQR( .true., .true., JW, 1, JW, T, LDT, SH( KWTOP ), 1,
  407:      $             JW, V, LDV, INFQR )
  408: *
  409: *     ==== Deflation detection loop ====
  410: *
  411:       NS = JW
  412:       ILST = INFQR + 1
  413:       DO 10 KNT = INFQR + 1, JW
  414: *
  415: *        ==== Small spike tip deflation test ====
  416: *
  417:          FOO = CABS1( T( NS, NS ) )
  418:          IF( FOO.EQ.RZERO )
  419:      $      FOO = CABS1( S )
  420:          IF( CABS1( S )*CABS1( V( 1, NS ) ).LE.MAX( SMLNUM, ULP*FOO ) )
  421:      $        THEN
  422: *
  423: *           ==== One more converged eigenvalue ====
  424: *
  425:             NS = NS - 1
  426:          ELSE
  427: *
  428: *           ==== One undeflatable eigenvalue.  Move it up out of the
  429: *           .    way.   (ZTREXC can not fail in this case.) ====
  430: *
  431:             IFST = NS
  432:             CALL ZTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, INFO )
  433:             ILST = ILST + 1
  434:          END IF
  435:    10 CONTINUE
  436: *
  437: *        ==== Return to Hessenberg form ====
  438: *
  439:       IF( NS.EQ.0 )
  440:      $   S = ZERO
  441: *
  442:       IF( NS.LT.JW ) THEN
  443: *
  444: *        ==== sorting the diagonal of T improves accuracy for
  445: *        .    graded matrices.  ====
  446: *
  447:          DO 30 I = INFQR + 1, NS
  448:             IFST = I
  449:             DO 20 J = I + 1, NS
  450:                IF( CABS1( T( J, J ) ).GT.CABS1( T( IFST, IFST ) ) )
  451:      $            IFST = J
  452:    20       CONTINUE
  453:             ILST = I
  454:             IF( IFST.NE.ILST )
  455:      $         CALL ZTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, INFO )
  456:    30    CONTINUE
  457:       END IF
  458: *
  459: *     ==== Restore shift/eigenvalue array from T ====
  460: *
  461:       DO 40 I = INFQR + 1, JW
  462:          SH( KWTOP+I-1 ) = T( I, I )
  463:    40 CONTINUE
  464: *
  465: *
  466:       IF( NS.LT.JW .OR. S.EQ.ZERO ) THEN
  467:          IF( NS.GT.1 .AND. S.NE.ZERO ) THEN
  468: *
  469: *           ==== Reflect spike back into lower triangle ====
  470: *
  471:             CALL ZCOPY( NS, V, LDV, WORK, 1 )
  472:             DO 50 I = 1, NS
  473:                WORK( I ) = DCONJG( WORK( I ) )
  474:    50       CONTINUE
  475:             BETA = WORK( 1 )
  476:             CALL ZLARFG( NS, BETA, WORK( 2 ), 1, TAU )
  477:             WORK( 1 ) = ONE
  478: *
  479:             CALL ZLASET( 'L', JW-2, JW-2, ZERO, ZERO, T( 3, 1 ), LDT )
  480: *
  481:             CALL ZLARF( 'L', NS, JW, WORK, 1, DCONJG( TAU ), T, LDT,
  482:      $                  WORK( JW+1 ) )
  483:             CALL ZLARF( 'R', NS, NS, WORK, 1, TAU, T, LDT,
  484:      $                  WORK( JW+1 ) )
  485:             CALL ZLARF( 'R', JW, NS, WORK, 1, TAU, V, LDV,
  486:      $                  WORK( JW+1 ) )
  487: *
  488:             CALL ZGEHRD( JW, 1, NS, T, LDT, WORK, WORK( JW+1 ),
  489:      $                   LWORK-JW, INFO )
  490:          END IF
  491: *
  492: *        ==== Copy updated reduced window into place ====
  493: *
  494:          IF( KWTOP.GT.1 )
  495:      $      H( KWTOP, KWTOP-1 ) = S*DCONJG( V( 1, 1 ) )
  496:          CALL ZLACPY( 'U', JW, JW, T, LDT, H( KWTOP, KWTOP ), LDH )
  497:          CALL ZCOPY( JW-1, T( 2, 1 ), LDT+1, H( KWTOP+1, KWTOP ),
  498:      $               LDH+1 )
  499: *
  500: *        ==== Accumulate orthogonal matrix in order update
  501: *        .    H and Z, if requested.  ====
  502: *
  503:          IF( NS.GT.1 .AND. S.NE.ZERO )
  504:      $      CALL ZUNMHR( 'R', 'N', JW, NS, 1, NS, T, LDT, WORK, V, LDV,
  505:      $                   WORK( JW+1 ), LWORK-JW, INFO )
  506: *
  507: *        ==== Update vertical slab in H ====
  508: *
  509:          IF( WANTT ) THEN
  510:             LTOP = 1
  511:          ELSE
  512:             LTOP = KTOP
  513:          END IF
  514:          DO 60 KROW = LTOP, KWTOP - 1, NV
  515:             KLN = MIN( NV, KWTOP-KROW )
  516:             CALL ZGEMM( 'N', 'N', KLN, JW, JW, ONE, H( KROW, KWTOP ),
  517:      $                  LDH, V, LDV, ZERO, WV, LDWV )
  518:             CALL ZLACPY( 'A', KLN, JW, WV, LDWV, H( KROW, KWTOP ), LDH )
  519:    60    CONTINUE
  520: *
  521: *        ==== Update horizontal slab in H ====
  522: *
  523:          IF( WANTT ) THEN
  524:             DO 70 KCOL = KBOT + 1, N, NH
  525:                KLN = MIN( NH, N-KCOL+1 )
  526:                CALL ZGEMM( 'C', 'N', JW, KLN, JW, ONE, V, LDV,
  527:      $                     H( KWTOP, KCOL ), LDH, ZERO, T, LDT )
  528:                CALL ZLACPY( 'A', JW, KLN, T, LDT, H( KWTOP, KCOL ),
  529:      $                      LDH )
  530:    70       CONTINUE
  531:          END IF
  532: *
  533: *        ==== Update vertical slab in Z ====
  534: *
  535:          IF( WANTZ ) THEN
  536:             DO 80 KROW = ILOZ, IHIZ, NV
  537:                KLN = MIN( NV, IHIZ-KROW+1 )
  538:                CALL ZGEMM( 'N', 'N', KLN, JW, JW, ONE, Z( KROW, KWTOP ),
  539:      $                     LDZ, V, LDV, ZERO, WV, LDWV )
  540:                CALL ZLACPY( 'A', KLN, JW, WV, LDWV, Z( KROW, KWTOP ),
  541:      $                      LDZ )
  542:    80       CONTINUE
  543:          END IF
  544:       END IF
  545: *
  546: *     ==== Return the number of deflations ... ====
  547: *
  548:       ND = JW - NS
  549: *
  550: *     ==== ... and the number of shifts. (Subtracting
  551: *     .    INFQR from the spike length takes care
  552: *     .    of the case of a rare QR failure while
  553: *     .    calculating eigenvalues of the deflation
  554: *     .    window.)  ====
  555: *
  556:       NS = NS - INFQR
  557: *
  558: *      ==== Return optimal workspace. ====
  559: *
  560:       WORK( 1 ) = DCMPLX( LWKOPT, 0 )
  561: *
  562: *     ==== End of ZLAQR2 ====
  563: *
  564:       END

CVSweb interface <joel.bertrand@systella.fr>