File:  [local] / rpl / lapack / lapack / zlaqr2.f
Revision 1.12: download - view: text, annotated - select for diffs - revision graph
Fri Dec 14 14:22:51 2012 UTC (11 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_16, rpl-4_1_15, rpl-4_1_14, rpl-4_1_13, rpl-4_1_12, rpl-4_1_11, HEAD
Mise à jour de lapack.

    1: *> \brief \b ZLAQR2 performs the unitary similarity transformation of a Hessenberg matrix to detect and deflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation).
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZLAQR2 + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaqr2.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaqr2.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaqr2.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
   22: *                          IHIZ, Z, LDZ, NS, ND, SH, V, LDV, NH, T, LDT,
   23: *                          NV, WV, LDWV, WORK, LWORK )
   24:    25: *       .. Scalar Arguments ..
   26: *       INTEGER            IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
   27: *      $                   LDZ, LWORK, N, ND, NH, NS, NV, NW
   28: *       LOGICAL            WANTT, WANTZ
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       COMPLEX*16         H( LDH, * ), SH( * ), T( LDT, * ), V( LDV, * ),
   32: *      $                   WORK( * ), WV( LDWV, * ), Z( LDZ, * )
   33: *       ..
   34: *  
   35: *
   36: *> \par Purpose:
   37: *  =============
   38: *>
   39: *> \verbatim
   40: *>
   41: *>    ZLAQR2 is identical to ZLAQR3 except that it avoids
   42: *>    recursion by calling ZLAHQR instead of ZLAQR4.
   43: *>
   44: *>    Aggressive early deflation:
   45: *>
   46: *>    ZLAQR2 accepts as input an upper Hessenberg matrix
   47: *>    H and performs an unitary similarity transformation
   48: *>    designed to detect and deflate fully converged eigenvalues from
   49: *>    a trailing principal submatrix.  On output H has been over-
   50: *>    written by a new Hessenberg matrix that is a perturbation of
   51: *>    an unitary similarity transformation of H.  It is to be
   52: *>    hoped that the final version of H has many zero subdiagonal
   53: *>    entries.
   54: *>
   55: *> \endverbatim
   56: *
   57: *  Arguments:
   58: *  ==========
   59: *
   60: *> \param[in] WANTT
   61: *> \verbatim
   62: *>          WANTT is LOGICAL
   63: *>          If .TRUE., then the Hessenberg matrix H is fully updated
   64: *>          so that the triangular Schur factor may be
   65: *>          computed (in cooperation with the calling subroutine).
   66: *>          If .FALSE., then only enough of H is updated to preserve
   67: *>          the eigenvalues.
   68: *> \endverbatim
   69: *>
   70: *> \param[in] WANTZ
   71: *> \verbatim
   72: *>          WANTZ is LOGICAL
   73: *>          If .TRUE., then the unitary matrix Z is updated so
   74: *>          so that the unitary Schur factor may be computed
   75: *>          (in cooperation with the calling subroutine).
   76: *>          If .FALSE., then Z is not referenced.
   77: *> \endverbatim
   78: *>
   79: *> \param[in] N
   80: *> \verbatim
   81: *>          N is INTEGER
   82: *>          The order of the matrix H and (if WANTZ is .TRUE.) the
   83: *>          order of the unitary matrix Z.
   84: *> \endverbatim
   85: *>
   86: *> \param[in] KTOP
   87: *> \verbatim
   88: *>          KTOP is INTEGER
   89: *>          It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0.
   90: *>          KBOT and KTOP together determine an isolated block
   91: *>          along the diagonal of the Hessenberg matrix.
   92: *> \endverbatim
   93: *>
   94: *> \param[in] KBOT
   95: *> \verbatim
   96: *>          KBOT is INTEGER
   97: *>          It is assumed without a check that either
   98: *>          KBOT = N or H(KBOT+1,KBOT)=0.  KBOT and KTOP together
   99: *>          determine an isolated block along the diagonal of the
  100: *>          Hessenberg matrix.
  101: *> \endverbatim
  102: *>
  103: *> \param[in] NW
  104: *> \verbatim
  105: *>          NW is INTEGER
  106: *>          Deflation window size.  1 .LE. NW .LE. (KBOT-KTOP+1).
  107: *> \endverbatim
  108: *>
  109: *> \param[in,out] H
  110: *> \verbatim
  111: *>          H is COMPLEX*16 array, dimension (LDH,N)
  112: *>          On input the initial N-by-N section of H stores the
  113: *>          Hessenberg matrix undergoing aggressive early deflation.
  114: *>          On output H has been transformed by a unitary
  115: *>          similarity transformation, perturbed, and the returned
  116: *>          to Hessenberg form that (it is to be hoped) has some
  117: *>          zero subdiagonal entries.
  118: *> \endverbatim
  119: *>
  120: *> \param[in] LDH
  121: *> \verbatim
  122: *>          LDH is integer
  123: *>          Leading dimension of H just as declared in the calling
  124: *>          subroutine.  N .LE. LDH
  125: *> \endverbatim
  126: *>
  127: *> \param[in] ILOZ
  128: *> \verbatim
  129: *>          ILOZ is INTEGER
  130: *> \endverbatim
  131: *>
  132: *> \param[in] IHIZ
  133: *> \verbatim
  134: *>          IHIZ is INTEGER
  135: *>          Specify the rows of Z to which transformations must be
  136: *>          applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N.
  137: *> \endverbatim
  138: *>
  139: *> \param[in,out] Z
  140: *> \verbatim
  141: *>          Z is COMPLEX*16 array, dimension (LDZ,N)
  142: *>          IF WANTZ is .TRUE., then on output, the unitary
  143: *>          similarity transformation mentioned above has been
  144: *>          accumulated into Z(ILOZ:IHIZ,ILO:IHI) from the right.
  145: *>          If WANTZ is .FALSE., then Z is unreferenced.
  146: *> \endverbatim
  147: *>
  148: *> \param[in] LDZ
  149: *> \verbatim
  150: *>          LDZ is integer
  151: *>          The leading dimension of Z just as declared in the
  152: *>          calling subroutine.  1 .LE. LDZ.
  153: *> \endverbatim
  154: *>
  155: *> \param[out] NS
  156: *> \verbatim
  157: *>          NS is integer
  158: *>          The number of unconverged (ie approximate) eigenvalues
  159: *>          returned in SR and SI that may be used as shifts by the
  160: *>          calling subroutine.
  161: *> \endverbatim
  162: *>
  163: *> \param[out] ND
  164: *> \verbatim
  165: *>          ND is integer
  166: *>          The number of converged eigenvalues uncovered by this
  167: *>          subroutine.
  168: *> \endverbatim
  169: *>
  170: *> \param[out] SH
  171: *> \verbatim
  172: *>          SH is COMPLEX*16 array, dimension KBOT
  173: *>          On output, approximate eigenvalues that may
  174: *>          be used for shifts are stored in SH(KBOT-ND-NS+1)
  175: *>          through SR(KBOT-ND).  Converged eigenvalues are
  176: *>          stored in SH(KBOT-ND+1) through SH(KBOT).
  177: *> \endverbatim
  178: *>
  179: *> \param[out] V
  180: *> \verbatim
  181: *>          V is COMPLEX*16 array, dimension (LDV,NW)
  182: *>          An NW-by-NW work array.
  183: *> \endverbatim
  184: *>
  185: *> \param[in] LDV
  186: *> \verbatim
  187: *>          LDV is integer scalar
  188: *>          The leading dimension of V just as declared in the
  189: *>          calling subroutine.  NW .LE. LDV
  190: *> \endverbatim
  191: *>
  192: *> \param[in] NH
  193: *> \verbatim
  194: *>          NH is integer scalar
  195: *>          The number of columns of T.  NH.GE.NW.
  196: *> \endverbatim
  197: *>
  198: *> \param[out] T
  199: *> \verbatim
  200: *>          T is COMPLEX*16 array, dimension (LDT,NW)
  201: *> \endverbatim
  202: *>
  203: *> \param[in] LDT
  204: *> \verbatim
  205: *>          LDT is integer
  206: *>          The leading dimension of T just as declared in the
  207: *>          calling subroutine.  NW .LE. LDT
  208: *> \endverbatim
  209: *>
  210: *> \param[in] NV
  211: *> \verbatim
  212: *>          NV is integer
  213: *>          The number of rows of work array WV available for
  214: *>          workspace.  NV.GE.NW.
  215: *> \endverbatim
  216: *>
  217: *> \param[out] WV
  218: *> \verbatim
  219: *>          WV is COMPLEX*16 array, dimension (LDWV,NW)
  220: *> \endverbatim
  221: *>
  222: *> \param[in] LDWV
  223: *> \verbatim
  224: *>          LDWV is integer
  225: *>          The leading dimension of W just as declared in the
  226: *>          calling subroutine.  NW .LE. LDV
  227: *> \endverbatim
  228: *>
  229: *> \param[out] WORK
  230: *> \verbatim
  231: *>          WORK is COMPLEX*16 array, dimension LWORK.
  232: *>          On exit, WORK(1) is set to an estimate of the optimal value
  233: *>          of LWORK for the given values of N, NW, KTOP and KBOT.
  234: *> \endverbatim
  235: *>
  236: *> \param[in] LWORK
  237: *> \verbatim
  238: *>          LWORK is integer
  239: *>          The dimension of the work array WORK.  LWORK = 2*NW
  240: *>          suffices, but greater efficiency may result from larger
  241: *>          values of LWORK.
  242: *>
  243: *>          If LWORK = -1, then a workspace query is assumed; ZLAQR2
  244: *>          only estimates the optimal workspace size for the given
  245: *>          values of N, NW, KTOP and KBOT.  The estimate is returned
  246: *>          in WORK(1).  No error message related to LWORK is issued
  247: *>          by XERBLA.  Neither H nor Z are accessed.
  248: *> \endverbatim
  249: *
  250: *  Authors:
  251: *  ========
  252: *
  253: *> \author Univ. of Tennessee 
  254: *> \author Univ. of California Berkeley 
  255: *> \author Univ. of Colorado Denver 
  256: *> \author NAG Ltd. 
  257: *
  258: *> \date September 2012
  259: *
  260: *> \ingroup complex16OTHERauxiliary
  261: *
  262: *> \par Contributors:
  263: *  ==================
  264: *>
  265: *>       Karen Braman and Ralph Byers, Department of Mathematics,
  266: *>       University of Kansas, USA
  267: *>
  268: *  =====================================================================
  269:       SUBROUTINE ZLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
  270:      $                   IHIZ, Z, LDZ, NS, ND, SH, V, LDV, NH, T, LDT,
  271:      $                   NV, WV, LDWV, WORK, LWORK )
  272: *
  273: *  -- LAPACK auxiliary routine (version 3.4.2) --
  274: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  275: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  276: *     September 2012
  277: *
  278: *     .. Scalar Arguments ..
  279:       INTEGER            IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
  280:      $                   LDZ, LWORK, N, ND, NH, NS, NV, NW
  281:       LOGICAL            WANTT, WANTZ
  282: *     ..
  283: *     .. Array Arguments ..
  284:       COMPLEX*16         H( LDH, * ), SH( * ), T( LDT, * ), V( LDV, * ),
  285:      $                   WORK( * ), WV( LDWV, * ), Z( LDZ, * )
  286: *     ..
  287: *
  288: *  ================================================================
  289: *
  290: *     .. Parameters ..
  291:       COMPLEX*16         ZERO, ONE
  292:       PARAMETER          ( ZERO = ( 0.0d0, 0.0d0 ),
  293:      $                   ONE = ( 1.0d0, 0.0d0 ) )
  294:       DOUBLE PRECISION   RZERO, RONE
  295:       PARAMETER          ( RZERO = 0.0d0, RONE = 1.0d0 )
  296: *     ..
  297: *     .. Local Scalars ..
  298:       COMPLEX*16         BETA, CDUM, S, TAU
  299:       DOUBLE PRECISION   FOO, SAFMAX, SAFMIN, SMLNUM, ULP
  300:       INTEGER            I, IFST, ILST, INFO, INFQR, J, JW, KCOL, KLN,
  301:      $                   KNT, KROW, KWTOP, LTOP, LWK1, LWK2, LWKOPT
  302: *     ..
  303: *     .. External Functions ..
  304:       DOUBLE PRECISION   DLAMCH
  305:       EXTERNAL           DLAMCH
  306: *     ..
  307: *     .. External Subroutines ..
  308:       EXTERNAL           DLABAD, ZCOPY, ZGEHRD, ZGEMM, ZLACPY, ZLAHQR,
  309:      $                   ZLARF, ZLARFG, ZLASET, ZTREXC, ZUNMHR
  310: *     ..
  311: *     .. Intrinsic Functions ..
  312:       INTRINSIC          ABS, DBLE, DCMPLX, DCONJG, DIMAG, INT, MAX, MIN
  313: *     ..
  314: *     .. Statement Functions ..
  315:       DOUBLE PRECISION   CABS1
  316: *     ..
  317: *     .. Statement Function definitions ..
  318:       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
  319: *     ..
  320: *     .. Executable Statements ..
  321: *
  322: *     ==== Estimate optimal workspace. ====
  323: *
  324:       JW = MIN( NW, KBOT-KTOP+1 )
  325:       IF( JW.LE.2 ) THEN
  326:          LWKOPT = 1
  327:       ELSE
  328: *
  329: *        ==== Workspace query call to ZGEHRD ====
  330: *
  331:          CALL ZGEHRD( JW, 1, JW-1, T, LDT, WORK, WORK, -1, INFO )
  332:          LWK1 = INT( WORK( 1 ) )
  333: *
  334: *        ==== Workspace query call to ZUNMHR ====
  335: *
  336:          CALL ZUNMHR( 'R', 'N', JW, JW, 1, JW-1, T, LDT, WORK, V, LDV,
  337:      $                WORK, -1, INFO )
  338:          LWK2 = INT( WORK( 1 ) )
  339: *
  340: *        ==== Optimal workspace ====
  341: *
  342:          LWKOPT = JW + MAX( LWK1, LWK2 )
  343:       END IF
  344: *
  345: *     ==== Quick return in case of workspace query. ====
  346: *
  347:       IF( LWORK.EQ.-1 ) THEN
  348:          WORK( 1 ) = DCMPLX( LWKOPT, 0 )
  349:          RETURN
  350:       END IF
  351: *
  352: *     ==== Nothing to do ...
  353: *     ... for an empty active block ... ====
  354:       NS = 0
  355:       ND = 0
  356:       WORK( 1 ) = ONE
  357:       IF( KTOP.GT.KBOT )
  358:      $   RETURN
  359: *     ... nor for an empty deflation window. ====
  360:       IF( NW.LT.1 )
  361:      $   RETURN
  362: *
  363: *     ==== Machine constants ====
  364: *
  365:       SAFMIN = DLAMCH( 'SAFE MINIMUM' )
  366:       SAFMAX = RONE / SAFMIN
  367:       CALL DLABAD( SAFMIN, SAFMAX )
  368:       ULP = DLAMCH( 'PRECISION' )
  369:       SMLNUM = SAFMIN*( DBLE( N ) / ULP )
  370: *
  371: *     ==== Setup deflation window ====
  372: *
  373:       JW = MIN( NW, KBOT-KTOP+1 )
  374:       KWTOP = KBOT - JW + 1
  375:       IF( KWTOP.EQ.KTOP ) THEN
  376:          S = ZERO
  377:       ELSE
  378:          S = H( KWTOP, KWTOP-1 )
  379:       END IF
  380: *
  381:       IF( KBOT.EQ.KWTOP ) THEN
  382: *
  383: *        ==== 1-by-1 deflation window: not much to do ====
  384: *
  385:          SH( KWTOP ) = H( KWTOP, KWTOP )
  386:          NS = 1
  387:          ND = 0
  388:          IF( CABS1( S ).LE.MAX( SMLNUM, ULP*CABS1( H( KWTOP,
  389:      $       KWTOP ) ) ) ) THEN
  390:             NS = 0
  391:             ND = 1
  392:             IF( KWTOP.GT.KTOP )
  393:      $         H( KWTOP, KWTOP-1 ) = ZERO
  394:          END IF
  395:          WORK( 1 ) = ONE
  396:          RETURN
  397:       END IF
  398: *
  399: *     ==== Convert to spike-triangular form.  (In case of a
  400: *     .    rare QR failure, this routine continues to do
  401: *     .    aggressive early deflation using that part of
  402: *     .    the deflation window that converged using INFQR
  403: *     .    here and there to keep track.) ====
  404: *
  405:       CALL ZLACPY( 'U', JW, JW, H( KWTOP, KWTOP ), LDH, T, LDT )
  406:       CALL ZCOPY( JW-1, H( KWTOP+1, KWTOP ), LDH+1, T( 2, 1 ), LDT+1 )
  407: *
  408:       CALL ZLASET( 'A', JW, JW, ZERO, ONE, V, LDV )
  409:       CALL ZLAHQR( .true., .true., JW, 1, JW, T, LDT, SH( KWTOP ), 1,
  410:      $             JW, V, LDV, INFQR )
  411: *
  412: *     ==== Deflation detection loop ====
  413: *
  414:       NS = JW
  415:       ILST = INFQR + 1
  416:       DO 10 KNT = INFQR + 1, JW
  417: *
  418: *        ==== Small spike tip deflation test ====
  419: *
  420:          FOO = CABS1( T( NS, NS ) )
  421:          IF( FOO.EQ.RZERO )
  422:      $      FOO = CABS1( S )
  423:          IF( CABS1( S )*CABS1( V( 1, NS ) ).LE.MAX( SMLNUM, ULP*FOO ) )
  424:      $        THEN
  425: *
  426: *           ==== One more converged eigenvalue ====
  427: *
  428:             NS = NS - 1
  429:          ELSE
  430: *
  431: *           ==== One undeflatable eigenvalue.  Move it up out of the
  432: *           .    way.   (ZTREXC can not fail in this case.) ====
  433: *
  434:             IFST = NS
  435:             CALL ZTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, INFO )
  436:             ILST = ILST + 1
  437:          END IF
  438:    10 CONTINUE
  439: *
  440: *        ==== Return to Hessenberg form ====
  441: *
  442:       IF( NS.EQ.0 )
  443:      $   S = ZERO
  444: *
  445:       IF( NS.LT.JW ) THEN
  446: *
  447: *        ==== sorting the diagonal of T improves accuracy for
  448: *        .    graded matrices.  ====
  449: *
  450:          DO 30 I = INFQR + 1, NS
  451:             IFST = I
  452:             DO 20 J = I + 1, NS
  453:                IF( CABS1( T( J, J ) ).GT.CABS1( T( IFST, IFST ) ) )
  454:      $            IFST = J
  455:    20       CONTINUE
  456:             ILST = I
  457:             IF( IFST.NE.ILST )
  458:      $         CALL ZTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, INFO )
  459:    30    CONTINUE
  460:       END IF
  461: *
  462: *     ==== Restore shift/eigenvalue array from T ====
  463: *
  464:       DO 40 I = INFQR + 1, JW
  465:          SH( KWTOP+I-1 ) = T( I, I )
  466:    40 CONTINUE
  467: *
  468: *
  469:       IF( NS.LT.JW .OR. S.EQ.ZERO ) THEN
  470:          IF( NS.GT.1 .AND. S.NE.ZERO ) THEN
  471: *
  472: *           ==== Reflect spike back into lower triangle ====
  473: *
  474:             CALL ZCOPY( NS, V, LDV, WORK, 1 )
  475:             DO 50 I = 1, NS
  476:                WORK( I ) = DCONJG( WORK( I ) )
  477:    50       CONTINUE
  478:             BETA = WORK( 1 )
  479:             CALL ZLARFG( NS, BETA, WORK( 2 ), 1, TAU )
  480:             WORK( 1 ) = ONE
  481: *
  482:             CALL ZLASET( 'L', JW-2, JW-2, ZERO, ZERO, T( 3, 1 ), LDT )
  483: *
  484:             CALL ZLARF( 'L', NS, JW, WORK, 1, DCONJG( TAU ), T, LDT,
  485:      $                  WORK( JW+1 ) )
  486:             CALL ZLARF( 'R', NS, NS, WORK, 1, TAU, T, LDT,
  487:      $                  WORK( JW+1 ) )
  488:             CALL ZLARF( 'R', JW, NS, WORK, 1, TAU, V, LDV,
  489:      $                  WORK( JW+1 ) )
  490: *
  491:             CALL ZGEHRD( JW, 1, NS, T, LDT, WORK, WORK( JW+1 ),
  492:      $                   LWORK-JW, INFO )
  493:          END IF
  494: *
  495: *        ==== Copy updated reduced window into place ====
  496: *
  497:          IF( KWTOP.GT.1 )
  498:      $      H( KWTOP, KWTOP-1 ) = S*DCONJG( V( 1, 1 ) )
  499:          CALL ZLACPY( 'U', JW, JW, T, LDT, H( KWTOP, KWTOP ), LDH )
  500:          CALL ZCOPY( JW-1, T( 2, 1 ), LDT+1, H( KWTOP+1, KWTOP ),
  501:      $               LDH+1 )
  502: *
  503: *        ==== Accumulate orthogonal matrix in order update
  504: *        .    H and Z, if requested.  ====
  505: *
  506:          IF( NS.GT.1 .AND. S.NE.ZERO )
  507:      $      CALL ZUNMHR( 'R', 'N', JW, NS, 1, NS, T, LDT, WORK, V, LDV,
  508:      $                   WORK( JW+1 ), LWORK-JW, INFO )
  509: *
  510: *        ==== Update vertical slab in H ====
  511: *
  512:          IF( WANTT ) THEN
  513:             LTOP = 1
  514:          ELSE
  515:             LTOP = KTOP
  516:          END IF
  517:          DO 60 KROW = LTOP, KWTOP - 1, NV
  518:             KLN = MIN( NV, KWTOP-KROW )
  519:             CALL ZGEMM( 'N', 'N', KLN, JW, JW, ONE, H( KROW, KWTOP ),
  520:      $                  LDH, V, LDV, ZERO, WV, LDWV )
  521:             CALL ZLACPY( 'A', KLN, JW, WV, LDWV, H( KROW, KWTOP ), LDH )
  522:    60    CONTINUE
  523: *
  524: *        ==== Update horizontal slab in H ====
  525: *
  526:          IF( WANTT ) THEN
  527:             DO 70 KCOL = KBOT + 1, N, NH
  528:                KLN = MIN( NH, N-KCOL+1 )
  529:                CALL ZGEMM( 'C', 'N', JW, KLN, JW, ONE, V, LDV,
  530:      $                     H( KWTOP, KCOL ), LDH, ZERO, T, LDT )
  531:                CALL ZLACPY( 'A', JW, KLN, T, LDT, H( KWTOP, KCOL ),
  532:      $                      LDH )
  533:    70       CONTINUE
  534:          END IF
  535: *
  536: *        ==== Update vertical slab in Z ====
  537: *
  538:          IF( WANTZ ) THEN
  539:             DO 80 KROW = ILOZ, IHIZ, NV
  540:                KLN = MIN( NV, IHIZ-KROW+1 )
  541:                CALL ZGEMM( 'N', 'N', KLN, JW, JW, ONE, Z( KROW, KWTOP ),
  542:      $                     LDZ, V, LDV, ZERO, WV, LDWV )
  543:                CALL ZLACPY( 'A', KLN, JW, WV, LDWV, Z( KROW, KWTOP ),
  544:      $                      LDZ )
  545:    80       CONTINUE
  546:          END IF
  547:       END IF
  548: *
  549: *     ==== Return the number of deflations ... ====
  550: *
  551:       ND = JW - NS
  552: *
  553: *     ==== ... and the number of shifts. (Subtracting
  554: *     .    INFQR from the spike length takes care
  555: *     .    of the case of a rare QR failure while
  556: *     .    calculating eigenvalues of the deflation
  557: *     .    window.)  ====
  558: *
  559:       NS = NS - INFQR
  560: *
  561: *      ==== Return optimal workspace. ====
  562: *
  563:       WORK( 1 ) = DCMPLX( LWKOPT, 0 )
  564: *
  565: *     ==== End of ZLAQR2 ====
  566: *
  567:       END

CVSweb interface <joel.bertrand@systella.fr>