Annotation of rpl/lapack/lapack/zlaqr2.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
        !             2:      $                   IHIZ, Z, LDZ, NS, ND, SH, V, LDV, NH, T, LDT,
        !             3:      $                   NV, WV, LDWV, WORK, LWORK )
        !             4: *
        !             5: *  -- LAPACK auxiliary routine (version 3.2.1)                        --
        !             6: *     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..
        !             7: *  -- April 2009                                                      --
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       INTEGER            IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
        !            11:      $                   LDZ, LWORK, N, ND, NH, NS, NV, NW
        !            12:       LOGICAL            WANTT, WANTZ
        !            13: *     ..
        !            14: *     .. Array Arguments ..
        !            15:       COMPLEX*16         H( LDH, * ), SH( * ), T( LDT, * ), V( LDV, * ),
        !            16:      $                   WORK( * ), WV( LDWV, * ), Z( LDZ, * )
        !            17: *     ..
        !            18: *
        !            19: *     This subroutine is identical to ZLAQR3 except that it avoids
        !            20: *     recursion by calling ZLAHQR instead of ZLAQR4.
        !            21: *
        !            22: *
        !            23: *     ******************************************************************
        !            24: *     Aggressive early deflation:
        !            25: *
        !            26: *     This subroutine accepts as input an upper Hessenberg matrix
        !            27: *     H and performs an unitary similarity transformation
        !            28: *     designed to detect and deflate fully converged eigenvalues from
        !            29: *     a trailing principal submatrix.  On output H has been over-
        !            30: *     written by a new Hessenberg matrix that is a perturbation of
        !            31: *     an unitary similarity transformation of H.  It is to be
        !            32: *     hoped that the final version of H has many zero subdiagonal
        !            33: *     entries.
        !            34: *
        !            35: *     ******************************************************************
        !            36: *     WANTT   (input) LOGICAL
        !            37: *          If .TRUE., then the Hessenberg matrix H is fully updated
        !            38: *          so that the triangular Schur factor may be
        !            39: *          computed (in cooperation with the calling subroutine).
        !            40: *          If .FALSE., then only enough of H is updated to preserve
        !            41: *          the eigenvalues.
        !            42: *
        !            43: *     WANTZ   (input) LOGICAL
        !            44: *          If .TRUE., then the unitary matrix Z is updated so
        !            45: *          so that the unitary Schur factor may be computed
        !            46: *          (in cooperation with the calling subroutine).
        !            47: *          If .FALSE., then Z is not referenced.
        !            48: *
        !            49: *     N       (input) INTEGER
        !            50: *          The order of the matrix H and (if WANTZ is .TRUE.) the
        !            51: *          order of the unitary matrix Z.
        !            52: *
        !            53: *     KTOP    (input) INTEGER
        !            54: *          It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0.
        !            55: *          KBOT and KTOP together determine an isolated block
        !            56: *          along the diagonal of the Hessenberg matrix.
        !            57: *
        !            58: *     KBOT    (input) INTEGER
        !            59: *          It is assumed without a check that either
        !            60: *          KBOT = N or H(KBOT+1,KBOT)=0.  KBOT and KTOP together
        !            61: *          determine an isolated block along the diagonal of the
        !            62: *          Hessenberg matrix.
        !            63: *
        !            64: *     NW      (input) INTEGER
        !            65: *          Deflation window size.  1 .LE. NW .LE. (KBOT-KTOP+1).
        !            66: *
        !            67: *     H       (input/output) COMPLEX*16 array, dimension (LDH,N)
        !            68: *          On input the initial N-by-N section of H stores the
        !            69: *          Hessenberg matrix undergoing aggressive early deflation.
        !            70: *          On output H has been transformed by a unitary
        !            71: *          similarity transformation, perturbed, and the returned
        !            72: *          to Hessenberg form that (it is to be hoped) has some
        !            73: *          zero subdiagonal entries.
        !            74: *
        !            75: *     LDH     (input) integer
        !            76: *          Leading dimension of H just as declared in the calling
        !            77: *          subroutine.  N .LE. LDH
        !            78: *
        !            79: *     ILOZ    (input) INTEGER
        !            80: *     IHIZ    (input) INTEGER
        !            81: *          Specify the rows of Z to which transformations must be
        !            82: *          applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N.
        !            83: *
        !            84: *     Z       (input/output) COMPLEX*16 array, dimension (LDZ,N)
        !            85: *          IF WANTZ is .TRUE., then on output, the unitary
        !            86: *          similarity transformation mentioned above has been
        !            87: *          accumulated into Z(ILOZ:IHIZ,ILO:IHI) from the right.
        !            88: *          If WANTZ is .FALSE., then Z is unreferenced.
        !            89: *
        !            90: *     LDZ     (input) integer
        !            91: *          The leading dimension of Z just as declared in the
        !            92: *          calling subroutine.  1 .LE. LDZ.
        !            93: *
        !            94: *     NS      (output) integer
        !            95: *          The number of unconverged (ie approximate) eigenvalues
        !            96: *          returned in SR and SI that may be used as shifts by the
        !            97: *          calling subroutine.
        !            98: *
        !            99: *     ND      (output) integer
        !           100: *          The number of converged eigenvalues uncovered by this
        !           101: *          subroutine.
        !           102: *
        !           103: *     SH      (output) COMPLEX*16 array, dimension KBOT
        !           104: *          On output, approximate eigenvalues that may
        !           105: *          be used for shifts are stored in SH(KBOT-ND-NS+1)
        !           106: *          through SR(KBOT-ND).  Converged eigenvalues are
        !           107: *          stored in SH(KBOT-ND+1) through SH(KBOT).
        !           108: *
        !           109: *     V       (workspace) COMPLEX*16 array, dimension (LDV,NW)
        !           110: *          An NW-by-NW work array.
        !           111: *
        !           112: *     LDV     (input) integer scalar
        !           113: *          The leading dimension of V just as declared in the
        !           114: *          calling subroutine.  NW .LE. LDV
        !           115: *
        !           116: *     NH      (input) integer scalar
        !           117: *          The number of columns of T.  NH.GE.NW.
        !           118: *
        !           119: *     T       (workspace) COMPLEX*16 array, dimension (LDT,NW)
        !           120: *
        !           121: *     LDT     (input) integer
        !           122: *          The leading dimension of T just as declared in the
        !           123: *          calling subroutine.  NW .LE. LDT
        !           124: *
        !           125: *     NV      (input) integer
        !           126: *          The number of rows of work array WV available for
        !           127: *          workspace.  NV.GE.NW.
        !           128: *
        !           129: *     WV      (workspace) COMPLEX*16 array, dimension (LDWV,NW)
        !           130: *
        !           131: *     LDWV    (input) integer
        !           132: *          The leading dimension of W just as declared in the
        !           133: *          calling subroutine.  NW .LE. LDV
        !           134: *
        !           135: *     WORK    (workspace) COMPLEX*16 array, dimension LWORK.
        !           136: *          On exit, WORK(1) is set to an estimate of the optimal value
        !           137: *          of LWORK for the given values of N, NW, KTOP and KBOT.
        !           138: *
        !           139: *     LWORK   (input) integer
        !           140: *          The dimension of the work array WORK.  LWORK = 2*NW
        !           141: *          suffices, but greater efficiency may result from larger
        !           142: *          values of LWORK.
        !           143: *
        !           144: *          If LWORK = -1, then a workspace query is assumed; ZLAQR2
        !           145: *          only estimates the optimal workspace size for the given
        !           146: *          values of N, NW, KTOP and KBOT.  The estimate is returned
        !           147: *          in WORK(1).  No error message related to LWORK is issued
        !           148: *          by XERBLA.  Neither H nor Z are accessed.
        !           149: *
        !           150: *     ================================================================
        !           151: *     Based on contributions by
        !           152: *        Karen Braman and Ralph Byers, Department of Mathematics,
        !           153: *        University of Kansas, USA
        !           154: *
        !           155: *     ================================================================
        !           156: *     .. Parameters ..
        !           157:       COMPLEX*16         ZERO, ONE
        !           158:       PARAMETER          ( ZERO = ( 0.0d0, 0.0d0 ),
        !           159:      $                   ONE = ( 1.0d0, 0.0d0 ) )
        !           160:       DOUBLE PRECISION   RZERO, RONE
        !           161:       PARAMETER          ( RZERO = 0.0d0, RONE = 1.0d0 )
        !           162: *     ..
        !           163: *     .. Local Scalars ..
        !           164:       COMPLEX*16         BETA, CDUM, S, TAU
        !           165:       DOUBLE PRECISION   FOO, SAFMAX, SAFMIN, SMLNUM, ULP
        !           166:       INTEGER            I, IFST, ILST, INFO, INFQR, J, JW, KCOL, KLN,
        !           167:      $                   KNT, KROW, KWTOP, LTOP, LWK1, LWK2, LWKOPT
        !           168: *     ..
        !           169: *     .. External Functions ..
        !           170:       DOUBLE PRECISION   DLAMCH
        !           171:       EXTERNAL           DLAMCH
        !           172: *     ..
        !           173: *     .. External Subroutines ..
        !           174:       EXTERNAL           DLABAD, ZCOPY, ZGEHRD, ZGEMM, ZLACPY, ZLAHQR,
        !           175:      $                   ZLARF, ZLARFG, ZLASET, ZTREXC, ZUNMHR
        !           176: *     ..
        !           177: *     .. Intrinsic Functions ..
        !           178:       INTRINSIC          ABS, DBLE, DCMPLX, DCONJG, DIMAG, INT, MAX, MIN
        !           179: *     ..
        !           180: *     .. Statement Functions ..
        !           181:       DOUBLE PRECISION   CABS1
        !           182: *     ..
        !           183: *     .. Statement Function definitions ..
        !           184:       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
        !           185: *     ..
        !           186: *     .. Executable Statements ..
        !           187: *
        !           188: *     ==== Estimate optimal workspace. ====
        !           189: *
        !           190:       JW = MIN( NW, KBOT-KTOP+1 )
        !           191:       IF( JW.LE.2 ) THEN
        !           192:          LWKOPT = 1
        !           193:       ELSE
        !           194: *
        !           195: *        ==== Workspace query call to ZGEHRD ====
        !           196: *
        !           197:          CALL ZGEHRD( JW, 1, JW-1, T, LDT, WORK, WORK, -1, INFO )
        !           198:          LWK1 = INT( WORK( 1 ) )
        !           199: *
        !           200: *        ==== Workspace query call to ZUNMHR ====
        !           201: *
        !           202:          CALL ZUNMHR( 'R', 'N', JW, JW, 1, JW-1, T, LDT, WORK, V, LDV,
        !           203:      $                WORK, -1, INFO )
        !           204:          LWK2 = INT( WORK( 1 ) )
        !           205: *
        !           206: *        ==== Optimal workspace ====
        !           207: *
        !           208:          LWKOPT = JW + MAX( LWK1, LWK2 )
        !           209:       END IF
        !           210: *
        !           211: *     ==== Quick return in case of workspace query. ====
        !           212: *
        !           213:       IF( LWORK.EQ.-1 ) THEN
        !           214:          WORK( 1 ) = DCMPLX( LWKOPT, 0 )
        !           215:          RETURN
        !           216:       END IF
        !           217: *
        !           218: *     ==== Nothing to do ...
        !           219: *     ... for an empty active block ... ====
        !           220:       NS = 0
        !           221:       ND = 0
        !           222:       WORK( 1 ) = ONE
        !           223:       IF( KTOP.GT.KBOT )
        !           224:      $   RETURN
        !           225: *     ... nor for an empty deflation window. ====
        !           226:       IF( NW.LT.1 )
        !           227:      $   RETURN
        !           228: *
        !           229: *     ==== Machine constants ====
        !           230: *
        !           231:       SAFMIN = DLAMCH( 'SAFE MINIMUM' )
        !           232:       SAFMAX = RONE / SAFMIN
        !           233:       CALL DLABAD( SAFMIN, SAFMAX )
        !           234:       ULP = DLAMCH( 'PRECISION' )
        !           235:       SMLNUM = SAFMIN*( DBLE( N ) / ULP )
        !           236: *
        !           237: *     ==== Setup deflation window ====
        !           238: *
        !           239:       JW = MIN( NW, KBOT-KTOP+1 )
        !           240:       KWTOP = KBOT - JW + 1
        !           241:       IF( KWTOP.EQ.KTOP ) THEN
        !           242:          S = ZERO
        !           243:       ELSE
        !           244:          S = H( KWTOP, KWTOP-1 )
        !           245:       END IF
        !           246: *
        !           247:       IF( KBOT.EQ.KWTOP ) THEN
        !           248: *
        !           249: *        ==== 1-by-1 deflation window: not much to do ====
        !           250: *
        !           251:          SH( KWTOP ) = H( KWTOP, KWTOP )
        !           252:          NS = 1
        !           253:          ND = 0
        !           254:          IF( CABS1( S ).LE.MAX( SMLNUM, ULP*CABS1( H( KWTOP,
        !           255:      $       KWTOP ) ) ) ) THEN
        !           256:             NS = 0
        !           257:             ND = 1
        !           258:             IF( KWTOP.GT.KTOP )
        !           259:      $         H( KWTOP, KWTOP-1 ) = ZERO
        !           260:          END IF
        !           261:          WORK( 1 ) = ONE
        !           262:          RETURN
        !           263:       END IF
        !           264: *
        !           265: *     ==== Convert to spike-triangular form.  (In case of a
        !           266: *     .    rare QR failure, this routine continues to do
        !           267: *     .    aggressive early deflation using that part of
        !           268: *     .    the deflation window that converged using INFQR
        !           269: *     .    here and there to keep track.) ====
        !           270: *
        !           271:       CALL ZLACPY( 'U', JW, JW, H( KWTOP, KWTOP ), LDH, T, LDT )
        !           272:       CALL ZCOPY( JW-1, H( KWTOP+1, KWTOP ), LDH+1, T( 2, 1 ), LDT+1 )
        !           273: *
        !           274:       CALL ZLASET( 'A', JW, JW, ZERO, ONE, V, LDV )
        !           275:       CALL ZLAHQR( .true., .true., JW, 1, JW, T, LDT, SH( KWTOP ), 1,
        !           276:      $             JW, V, LDV, INFQR )
        !           277: *
        !           278: *     ==== Deflation detection loop ====
        !           279: *
        !           280:       NS = JW
        !           281:       ILST = INFQR + 1
        !           282:       DO 10 KNT = INFQR + 1, JW
        !           283: *
        !           284: *        ==== Small spike tip deflation test ====
        !           285: *
        !           286:          FOO = CABS1( T( NS, NS ) )
        !           287:          IF( FOO.EQ.RZERO )
        !           288:      $      FOO = CABS1( S )
        !           289:          IF( CABS1( S )*CABS1( V( 1, NS ) ).LE.MAX( SMLNUM, ULP*FOO ) )
        !           290:      $        THEN
        !           291: *
        !           292: *           ==== One more converged eigenvalue ====
        !           293: *
        !           294:             NS = NS - 1
        !           295:          ELSE
        !           296: *
        !           297: *           ==== One undeflatable eigenvalue.  Move it up out of the
        !           298: *           .    way.   (ZTREXC can not fail in this case.) ====
        !           299: *
        !           300:             IFST = NS
        !           301:             CALL ZTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, INFO )
        !           302:             ILST = ILST + 1
        !           303:          END IF
        !           304:    10 CONTINUE
        !           305: *
        !           306: *        ==== Return to Hessenberg form ====
        !           307: *
        !           308:       IF( NS.EQ.0 )
        !           309:      $   S = ZERO
        !           310: *
        !           311:       IF( NS.LT.JW ) THEN
        !           312: *
        !           313: *        ==== sorting the diagonal of T improves accuracy for
        !           314: *        .    graded matrices.  ====
        !           315: *
        !           316:          DO 30 I = INFQR + 1, NS
        !           317:             IFST = I
        !           318:             DO 20 J = I + 1, NS
        !           319:                IF( CABS1( T( J, J ) ).GT.CABS1( T( IFST, IFST ) ) )
        !           320:      $            IFST = J
        !           321:    20       CONTINUE
        !           322:             ILST = I
        !           323:             IF( IFST.NE.ILST )
        !           324:      $         CALL ZTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, INFO )
        !           325:    30    CONTINUE
        !           326:       END IF
        !           327: *
        !           328: *     ==== Restore shift/eigenvalue array from T ====
        !           329: *
        !           330:       DO 40 I = INFQR + 1, JW
        !           331:          SH( KWTOP+I-1 ) = T( I, I )
        !           332:    40 CONTINUE
        !           333: *
        !           334: *
        !           335:       IF( NS.LT.JW .OR. S.EQ.ZERO ) THEN
        !           336:          IF( NS.GT.1 .AND. S.NE.ZERO ) THEN
        !           337: *
        !           338: *           ==== Reflect spike back into lower triangle ====
        !           339: *
        !           340:             CALL ZCOPY( NS, V, LDV, WORK, 1 )
        !           341:             DO 50 I = 1, NS
        !           342:                WORK( I ) = DCONJG( WORK( I ) )
        !           343:    50       CONTINUE
        !           344:             BETA = WORK( 1 )
        !           345:             CALL ZLARFG( NS, BETA, WORK( 2 ), 1, TAU )
        !           346:             WORK( 1 ) = ONE
        !           347: *
        !           348:             CALL ZLASET( 'L', JW-2, JW-2, ZERO, ZERO, T( 3, 1 ), LDT )
        !           349: *
        !           350:             CALL ZLARF( 'L', NS, JW, WORK, 1, DCONJG( TAU ), T, LDT,
        !           351:      $                  WORK( JW+1 ) )
        !           352:             CALL ZLARF( 'R', NS, NS, WORK, 1, TAU, T, LDT,
        !           353:      $                  WORK( JW+1 ) )
        !           354:             CALL ZLARF( 'R', JW, NS, WORK, 1, TAU, V, LDV,
        !           355:      $                  WORK( JW+1 ) )
        !           356: *
        !           357:             CALL ZGEHRD( JW, 1, NS, T, LDT, WORK, WORK( JW+1 ),
        !           358:      $                   LWORK-JW, INFO )
        !           359:          END IF
        !           360: *
        !           361: *        ==== Copy updated reduced window into place ====
        !           362: *
        !           363:          IF( KWTOP.GT.1 )
        !           364:      $      H( KWTOP, KWTOP-1 ) = S*DCONJG( V( 1, 1 ) )
        !           365:          CALL ZLACPY( 'U', JW, JW, T, LDT, H( KWTOP, KWTOP ), LDH )
        !           366:          CALL ZCOPY( JW-1, T( 2, 1 ), LDT+1, H( KWTOP+1, KWTOP ),
        !           367:      $               LDH+1 )
        !           368: *
        !           369: *        ==== Accumulate orthogonal matrix in order update
        !           370: *        .    H and Z, if requested.  ====
        !           371: *
        !           372:          IF( NS.GT.1 .AND. S.NE.ZERO )
        !           373:      $      CALL ZUNMHR( 'R', 'N', JW, NS, 1, NS, T, LDT, WORK, V, LDV,
        !           374:      $                   WORK( JW+1 ), LWORK-JW, INFO )
        !           375: *
        !           376: *        ==== Update vertical slab in H ====
        !           377: *
        !           378:          IF( WANTT ) THEN
        !           379:             LTOP = 1
        !           380:          ELSE
        !           381:             LTOP = KTOP
        !           382:          END IF
        !           383:          DO 60 KROW = LTOP, KWTOP - 1, NV
        !           384:             KLN = MIN( NV, KWTOP-KROW )
        !           385:             CALL ZGEMM( 'N', 'N', KLN, JW, JW, ONE, H( KROW, KWTOP ),
        !           386:      $                  LDH, V, LDV, ZERO, WV, LDWV )
        !           387:             CALL ZLACPY( 'A', KLN, JW, WV, LDWV, H( KROW, KWTOP ), LDH )
        !           388:    60    CONTINUE
        !           389: *
        !           390: *        ==== Update horizontal slab in H ====
        !           391: *
        !           392:          IF( WANTT ) THEN
        !           393:             DO 70 KCOL = KBOT + 1, N, NH
        !           394:                KLN = MIN( NH, N-KCOL+1 )
        !           395:                CALL ZGEMM( 'C', 'N', JW, KLN, JW, ONE, V, LDV,
        !           396:      $                     H( KWTOP, KCOL ), LDH, ZERO, T, LDT )
        !           397:                CALL ZLACPY( 'A', JW, KLN, T, LDT, H( KWTOP, KCOL ),
        !           398:      $                      LDH )
        !           399:    70       CONTINUE
        !           400:          END IF
        !           401: *
        !           402: *        ==== Update vertical slab in Z ====
        !           403: *
        !           404:          IF( WANTZ ) THEN
        !           405:             DO 80 KROW = ILOZ, IHIZ, NV
        !           406:                KLN = MIN( NV, IHIZ-KROW+1 )
        !           407:                CALL ZGEMM( 'N', 'N', KLN, JW, JW, ONE, Z( KROW, KWTOP ),
        !           408:      $                     LDZ, V, LDV, ZERO, WV, LDWV )
        !           409:                CALL ZLACPY( 'A', KLN, JW, WV, LDWV, Z( KROW, KWTOP ),
        !           410:      $                      LDZ )
        !           411:    80       CONTINUE
        !           412:          END IF
        !           413:       END IF
        !           414: *
        !           415: *     ==== Return the number of deflations ... ====
        !           416: *
        !           417:       ND = JW - NS
        !           418: *
        !           419: *     ==== ... and the number of shifts. (Subtracting
        !           420: *     .    INFQR from the spike length takes care
        !           421: *     .    of the case of a rare QR failure while
        !           422: *     .    calculating eigenvalues of the deflation
        !           423: *     .    window.)  ====
        !           424: *
        !           425:       NS = NS - INFQR
        !           426: *
        !           427: *      ==== Return optimal workspace. ====
        !           428: *
        !           429:       WORK( 1 ) = DCMPLX( LWKOPT, 0 )
        !           430: *
        !           431: *     ==== End of ZLAQR2 ====
        !           432: *
        !           433:       END

CVSweb interface <joel.bertrand@systella.fr>