File:  [local] / rpl / lapack / lapack / zlaqr0.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Thu May 21 21:46:08 2020 UTC (4 years ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, HEAD
Mise à jour de Lapack.

    1: *> \brief \b ZLAQR0 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Schur decomposition.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZLAQR0 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaqr0.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaqr0.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaqr0.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
   22: *                          IHIZ, Z, LDZ, WORK, LWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N
   26: *       LOGICAL            WANTT, WANTZ
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       COMPLEX*16         H( LDH, * ), W( * ), WORK( * ), Z( LDZ, * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *>    ZLAQR0 computes the eigenvalues of a Hessenberg matrix H
   39: *>    and, optionally, the matrices T and Z from the Schur decomposition
   40: *>    H = Z T Z**H, where T is an upper triangular matrix (the
   41: *>    Schur form), and Z is the unitary matrix of Schur vectors.
   42: *>
   43: *>    Optionally Z may be postmultiplied into an input unitary
   44: *>    matrix Q so that this routine can give the Schur factorization
   45: *>    of a matrix A which has been reduced to the Hessenberg form H
   46: *>    by the unitary matrix Q:  A = Q*H*Q**H = (QZ)*H*(QZ)**H.
   47: *> \endverbatim
   48: *
   49: *  Arguments:
   50: *  ==========
   51: *
   52: *> \param[in] WANTT
   53: *> \verbatim
   54: *>          WANTT is LOGICAL
   55: *>          = .TRUE. : the full Schur form T is required;
   56: *>          = .FALSE.: only eigenvalues are required.
   57: *> \endverbatim
   58: *>
   59: *> \param[in] WANTZ
   60: *> \verbatim
   61: *>          WANTZ is LOGICAL
   62: *>          = .TRUE. : the matrix of Schur vectors Z is required;
   63: *>          = .FALSE.: Schur vectors are not required.
   64: *> \endverbatim
   65: *>
   66: *> \param[in] N
   67: *> \verbatim
   68: *>          N is INTEGER
   69: *>           The order of the matrix H.  N >= 0.
   70: *> \endverbatim
   71: *>
   72: *> \param[in] ILO
   73: *> \verbatim
   74: *>          ILO is INTEGER
   75: *> \endverbatim
   76: *>
   77: *> \param[in] IHI
   78: *> \verbatim
   79: *>          IHI is INTEGER
   80: *>
   81: *>           It is assumed that H is already upper triangular in rows
   82: *>           and columns 1:ILO-1 and IHI+1:N and, if ILO > 1,
   83: *>           H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
   84: *>           previous call to ZGEBAL, and then passed to ZGEHRD when the
   85: *>           matrix output by ZGEBAL is reduced to Hessenberg form.
   86: *>           Otherwise, ILO and IHI should be set to 1 and N,
   87: *>           respectively.  If N > 0, then 1 <= ILO <= IHI <= N.
   88: *>           If N = 0, then ILO = 1 and IHI = 0.
   89: *> \endverbatim
   90: *>
   91: *> \param[in,out] H
   92: *> \verbatim
   93: *>          H is COMPLEX*16 array, dimension (LDH,N)
   94: *>           On entry, the upper Hessenberg matrix H.
   95: *>           On exit, if INFO = 0 and WANTT is .TRUE., then H
   96: *>           contains the upper triangular matrix T from the Schur
   97: *>           decomposition (the Schur form). If INFO = 0 and WANT is
   98: *>           .FALSE., then the contents of H are unspecified on exit.
   99: *>           (The output value of H when INFO > 0 is given under the
  100: *>           description of INFO below.)
  101: *>
  102: *>           This subroutine may explicitly set H(i,j) = 0 for i > j and
  103: *>           j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
  104: *> \endverbatim
  105: *>
  106: *> \param[in] LDH
  107: *> \verbatim
  108: *>          LDH is INTEGER
  109: *>           The leading dimension of the array H. LDH >= max(1,N).
  110: *> \endverbatim
  111: *>
  112: *> \param[out] W
  113: *> \verbatim
  114: *>          W is COMPLEX*16 array, dimension (N)
  115: *>           The computed eigenvalues of H(ILO:IHI,ILO:IHI) are stored
  116: *>           in W(ILO:IHI). If WANTT is .TRUE., then the eigenvalues are
  117: *>           stored in the same order as on the diagonal of the Schur
  118: *>           form returned in H, with W(i) = H(i,i).
  119: *> \endverbatim
  120: *>
  121: *> \param[in] ILOZ
  122: *> \verbatim
  123: *>          ILOZ is INTEGER
  124: *> \endverbatim
  125: *>
  126: *> \param[in] IHIZ
  127: *> \verbatim
  128: *>          IHIZ is INTEGER
  129: *>           Specify the rows of Z to which transformations must be
  130: *>           applied if WANTZ is .TRUE..
  131: *>           1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
  132: *> \endverbatim
  133: *>
  134: *> \param[in,out] Z
  135: *> \verbatim
  136: *>          Z is COMPLEX*16 array, dimension (LDZ,IHI)
  137: *>           If WANTZ is .FALSE., then Z is not referenced.
  138: *>           If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
  139: *>           replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
  140: *>           orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
  141: *>           (The output value of Z when INFO > 0 is given under
  142: *>           the description of INFO below.)
  143: *> \endverbatim
  144: *>
  145: *> \param[in] LDZ
  146: *> \verbatim
  147: *>          LDZ is INTEGER
  148: *>           The leading dimension of the array Z.  if WANTZ is .TRUE.
  149: *>           then LDZ >= MAX(1,IHIZ).  Otherwise, LDZ >= 1.
  150: *> \endverbatim
  151: *>
  152: *> \param[out] WORK
  153: *> \verbatim
  154: *>          WORK is COMPLEX*16 array, dimension LWORK
  155: *>           On exit, if LWORK = -1, WORK(1) returns an estimate of
  156: *>           the optimal value for LWORK.
  157: *> \endverbatim
  158: *>
  159: *> \param[in] LWORK
  160: *> \verbatim
  161: *>          LWORK is INTEGER
  162: *>           The dimension of the array WORK.  LWORK >= max(1,N)
  163: *>           is sufficient, but LWORK typically as large as 6*N may
  164: *>           be required for optimal performance.  A workspace query
  165: *>           to determine the optimal workspace size is recommended.
  166: *>
  167: *>           If LWORK = -1, then ZLAQR0 does a workspace query.
  168: *>           In this case, ZLAQR0 checks the input parameters and
  169: *>           estimates the optimal workspace size for the given
  170: *>           values of N, ILO and IHI.  The estimate is returned
  171: *>           in WORK(1).  No error message related to LWORK is
  172: *>           issued by XERBLA.  Neither H nor Z are accessed.
  173: *> \endverbatim
  174: *>
  175: *> \param[out] INFO
  176: *> \verbatim
  177: *>          INFO is INTEGER
  178: *>             = 0:  successful exit
  179: *>             > 0:  if INFO = i, ZLAQR0 failed to compute all of
  180: *>                the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR
  181: *>                and WI contain those eigenvalues which have been
  182: *>                successfully computed.  (Failures are rare.)
  183: *>
  184: *>                If INFO > 0 and WANT is .FALSE., then on exit,
  185: *>                the remaining unconverged eigenvalues are the eigen-
  186: *>                values of the upper Hessenberg matrix rows and
  187: *>                columns ILO through INFO of the final, output
  188: *>                value of H.
  189: *>
  190: *>                If INFO > 0 and WANTT is .TRUE., then on exit
  191: *>
  192: *>           (*)  (initial value of H)*U  = U*(final value of H)
  193: *>
  194: *>                where U is a unitary matrix.  The final
  195: *>                value of  H is upper Hessenberg and triangular in
  196: *>                rows and columns INFO+1 through IHI.
  197: *>
  198: *>                If INFO > 0 and WANTZ is .TRUE., then on exit
  199: *>
  200: *>                  (final value of Z(ILO:IHI,ILOZ:IHIZ)
  201: *>                   =  (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U
  202: *>
  203: *>                where U is the unitary matrix in (*) (regard-
  204: *>                less of the value of WANTT.)
  205: *>
  206: *>                If INFO > 0 and WANTZ is .FALSE., then Z is not
  207: *>                accessed.
  208: *> \endverbatim
  209: *
  210: *  Authors:
  211: *  ========
  212: *
  213: *> \author Univ. of Tennessee
  214: *> \author Univ. of California Berkeley
  215: *> \author Univ. of Colorado Denver
  216: *> \author NAG Ltd.
  217: *
  218: *> \date December 2016
  219: *
  220: *> \ingroup complex16OTHERauxiliary
  221: *
  222: *> \par Contributors:
  223: *  ==================
  224: *>
  225: *>       Karen Braman and Ralph Byers, Department of Mathematics,
  226: *>       University of Kansas, USA
  227: *
  228: *> \par References:
  229: *  ================
  230: *>
  231: *>       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
  232: *>       Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
  233: *>       Performance, SIAM Journal of Matrix Analysis, volume 23, pages
  234: *>       929--947, 2002.
  235: *> \n
  236: *>       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
  237: *>       Algorithm Part II: Aggressive Early Deflation, SIAM Journal
  238: *>       of Matrix Analysis, volume 23, pages 948--973, 2002.
  239: *>
  240: *  =====================================================================
  241:       SUBROUTINE ZLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
  242:      $                   IHIZ, Z, LDZ, WORK, LWORK, INFO )
  243: *
  244: *  -- LAPACK auxiliary routine (version 3.7.0) --
  245: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  246: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  247: *     December 2016
  248: *
  249: *     .. Scalar Arguments ..
  250:       INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N
  251:       LOGICAL            WANTT, WANTZ
  252: *     ..
  253: *     .. Array Arguments ..
  254:       COMPLEX*16         H( LDH, * ), W( * ), WORK( * ), Z( LDZ, * )
  255: *     ..
  256: *
  257: *  ================================================================
  258: *
  259: *     .. Parameters ..
  260: *
  261: *     ==== Matrices of order NTINY or smaller must be processed by
  262: *     .    ZLAHQR because of insufficient subdiagonal scratch space.
  263: *     .    (This is a hard limit.) ====
  264:       INTEGER            NTINY
  265:       PARAMETER          ( NTINY = 11 )
  266: *
  267: *     ==== Exceptional deflation windows:  try to cure rare
  268: *     .    slow convergence by varying the size of the
  269: *     .    deflation window after KEXNW iterations. ====
  270:       INTEGER            KEXNW
  271:       PARAMETER          ( KEXNW = 5 )
  272: *
  273: *     ==== Exceptional shifts: try to cure rare slow convergence
  274: *     .    with ad-hoc exceptional shifts every KEXSH iterations.
  275: *     .    ====
  276:       INTEGER            KEXSH
  277:       PARAMETER          ( KEXSH = 6 )
  278: *
  279: *     ==== The constant WILK1 is used to form the exceptional
  280: *     .    shifts. ====
  281:       DOUBLE PRECISION   WILK1
  282:       PARAMETER          ( WILK1 = 0.75d0 )
  283:       COMPLEX*16         ZERO, ONE
  284:       PARAMETER          ( ZERO = ( 0.0d0, 0.0d0 ),
  285:      $                   ONE = ( 1.0d0, 0.0d0 ) )
  286:       DOUBLE PRECISION   TWO
  287:       PARAMETER          ( TWO = 2.0d0 )
  288: *     ..
  289: *     .. Local Scalars ..
  290:       COMPLEX*16         AA, BB, CC, CDUM, DD, DET, RTDISC, SWAP, TR2
  291:       DOUBLE PRECISION   S
  292:       INTEGER            I, INF, IT, ITMAX, K, KACC22, KBOT, KDU, KS,
  293:      $                   KT, KTOP, KU, KV, KWH, KWTOP, KWV, LD, LS,
  294:      $                   LWKOPT, NDEC, NDFL, NH, NHO, NIBBLE, NMIN, NS,
  295:      $                   NSMAX, NSR, NVE, NW, NWMAX, NWR, NWUPBD
  296:       LOGICAL            SORTED
  297:       CHARACTER          JBCMPZ*2
  298: *     ..
  299: *     .. External Functions ..
  300:       INTEGER            ILAENV
  301:       EXTERNAL           ILAENV
  302: *     ..
  303: *     .. Local Arrays ..
  304:       COMPLEX*16         ZDUM( 1, 1 )
  305: *     ..
  306: *     .. External Subroutines ..
  307:       EXTERNAL           ZLACPY, ZLAHQR, ZLAQR3, ZLAQR4, ZLAQR5
  308: *     ..
  309: *     .. Intrinsic Functions ..
  310:       INTRINSIC          ABS, DBLE, DCMPLX, DIMAG, INT, MAX, MIN, MOD,
  311:      $                   SQRT
  312: *     ..
  313: *     .. Statement Functions ..
  314:       DOUBLE PRECISION   CABS1
  315: *     ..
  316: *     .. Statement Function definitions ..
  317:       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
  318: *     ..
  319: *     .. Executable Statements ..
  320:       INFO = 0
  321: *
  322: *     ==== Quick return for N = 0: nothing to do. ====
  323: *
  324:       IF( N.EQ.0 ) THEN
  325:          WORK( 1 ) = ONE
  326:          RETURN
  327:       END IF
  328: *
  329:       IF( N.LE.NTINY ) THEN
  330: *
  331: *        ==== Tiny matrices must use ZLAHQR. ====
  332: *
  333:          LWKOPT = 1
  334:          IF( LWORK.NE.-1 )
  335:      $      CALL ZLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
  336:      $                   IHIZ, Z, LDZ, INFO )
  337:       ELSE
  338: *
  339: *        ==== Use small bulge multi-shift QR with aggressive early
  340: *        .    deflation on larger-than-tiny matrices. ====
  341: *
  342: *        ==== Hope for the best. ====
  343: *
  344:          INFO = 0
  345: *
  346: *        ==== Set up job flags for ILAENV. ====
  347: *
  348:          IF( WANTT ) THEN
  349:             JBCMPZ( 1: 1 ) = 'S'
  350:          ELSE
  351:             JBCMPZ( 1: 1 ) = 'E'
  352:          END IF
  353:          IF( WANTZ ) THEN
  354:             JBCMPZ( 2: 2 ) = 'V'
  355:          ELSE
  356:             JBCMPZ( 2: 2 ) = 'N'
  357:          END IF
  358: *
  359: *        ==== NWR = recommended deflation window size.  At this
  360: *        .    point,  N .GT. NTINY = 11, so there is enough
  361: *        .    subdiagonal workspace for NWR.GE.2 as required.
  362: *        .    (In fact, there is enough subdiagonal space for
  363: *        .    NWR.GE.3.) ====
  364: *
  365:          NWR = ILAENV( 13, 'ZLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
  366:          NWR = MAX( 2, NWR )
  367:          NWR = MIN( IHI-ILO+1, ( N-1 ) / 3, NWR )
  368: *
  369: *        ==== NSR = recommended number of simultaneous shifts.
  370: *        .    At this point N .GT. NTINY = 11, so there is at
  371: *        .    enough subdiagonal workspace for NSR to be even
  372: *        .    and greater than or equal to two as required. ====
  373: *
  374:          NSR = ILAENV( 15, 'ZLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
  375:          NSR = MIN( NSR, ( N+6 ) / 9, IHI-ILO )
  376:          NSR = MAX( 2, NSR-MOD( NSR, 2 ) )
  377: *
  378: *        ==== Estimate optimal workspace ====
  379: *
  380: *        ==== Workspace query call to ZLAQR3 ====
  381: *
  382:          CALL ZLAQR3( WANTT, WANTZ, N, ILO, IHI, NWR+1, H, LDH, ILOZ,
  383:      $                IHIZ, Z, LDZ, LS, LD, W, H, LDH, N, H, LDH, N, H,
  384:      $                LDH, WORK, -1 )
  385: *
  386: *        ==== Optimal workspace = MAX(ZLAQR5, ZLAQR3) ====
  387: *
  388:          LWKOPT = MAX( 3*NSR / 2, INT( WORK( 1 ) ) )
  389: *
  390: *        ==== Quick return in case of workspace query. ====
  391: *
  392:          IF( LWORK.EQ.-1 ) THEN
  393:             WORK( 1 ) = DCMPLX( LWKOPT, 0 )
  394:             RETURN
  395:          END IF
  396: *
  397: *        ==== ZLAHQR/ZLAQR0 crossover point ====
  398: *
  399:          NMIN = ILAENV( 12, 'ZLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
  400:          NMIN = MAX( NTINY, NMIN )
  401: *
  402: *        ==== Nibble crossover point ====
  403: *
  404:          NIBBLE = ILAENV( 14, 'ZLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
  405:          NIBBLE = MAX( 0, NIBBLE )
  406: *
  407: *        ==== Accumulate reflections during ttswp?  Use block
  408: *        .    2-by-2 structure during matrix-matrix multiply? ====
  409: *
  410:          KACC22 = ILAENV( 16, 'ZLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
  411:          KACC22 = MAX( 0, KACC22 )
  412:          KACC22 = MIN( 2, KACC22 )
  413: *
  414: *        ==== NWMAX = the largest possible deflation window for
  415: *        .    which there is sufficient workspace. ====
  416: *
  417:          NWMAX = MIN( ( N-1 ) / 3, LWORK / 2 )
  418:          NW = NWMAX
  419: *
  420: *        ==== NSMAX = the Largest number of simultaneous shifts
  421: *        .    for which there is sufficient workspace. ====
  422: *
  423:          NSMAX = MIN( ( N+6 ) / 9, 2*LWORK / 3 )
  424:          NSMAX = NSMAX - MOD( NSMAX, 2 )
  425: *
  426: *        ==== NDFL: an iteration count restarted at deflation. ====
  427: *
  428:          NDFL = 1
  429: *
  430: *        ==== ITMAX = iteration limit ====
  431: *
  432:          ITMAX = MAX( 30, 2*KEXSH )*MAX( 10, ( IHI-ILO+1 ) )
  433: *
  434: *        ==== Last row and column in the active block ====
  435: *
  436:          KBOT = IHI
  437: *
  438: *        ==== Main Loop ====
  439: *
  440:          DO 70 IT = 1, ITMAX
  441: *
  442: *           ==== Done when KBOT falls below ILO ====
  443: *
  444:             IF( KBOT.LT.ILO )
  445:      $         GO TO 80
  446: *
  447: *           ==== Locate active block ====
  448: *
  449:             DO 10 K = KBOT, ILO + 1, -1
  450:                IF( H( K, K-1 ).EQ.ZERO )
  451:      $            GO TO 20
  452:    10       CONTINUE
  453:             K = ILO
  454:    20       CONTINUE
  455:             KTOP = K
  456: *
  457: *           ==== Select deflation window size:
  458: *           .    Typical Case:
  459: *           .      If possible and advisable, nibble the entire
  460: *           .      active block.  If not, use size MIN(NWR,NWMAX)
  461: *           .      or MIN(NWR+1,NWMAX) depending upon which has
  462: *           .      the smaller corresponding subdiagonal entry
  463: *           .      (a heuristic).
  464: *           .
  465: *           .    Exceptional Case:
  466: *           .      If there have been no deflations in KEXNW or
  467: *           .      more iterations, then vary the deflation window
  468: *           .      size.   At first, because, larger windows are,
  469: *           .      in general, more powerful than smaller ones,
  470: *           .      rapidly increase the window to the maximum possible.
  471: *           .      Then, gradually reduce the window size. ====
  472: *
  473:             NH = KBOT - KTOP + 1
  474:             NWUPBD = MIN( NH, NWMAX )
  475:             IF( NDFL.LT.KEXNW ) THEN
  476:                NW = MIN( NWUPBD, NWR )
  477:             ELSE
  478:                NW = MIN( NWUPBD, 2*NW )
  479:             END IF
  480:             IF( NW.LT.NWMAX ) THEN
  481:                IF( NW.GE.NH-1 ) THEN
  482:                   NW = NH
  483:                ELSE
  484:                   KWTOP = KBOT - NW + 1
  485:                   IF( CABS1( H( KWTOP, KWTOP-1 ) ).GT.
  486:      $                CABS1( H( KWTOP-1, KWTOP-2 ) ) )NW = NW + 1
  487:                END IF
  488:             END IF
  489:             IF( NDFL.LT.KEXNW ) THEN
  490:                NDEC = -1
  491:             ELSE IF( NDEC.GE.0 .OR. NW.GE.NWUPBD ) THEN
  492:                NDEC = NDEC + 1
  493:                IF( NW-NDEC.LT.2 )
  494:      $            NDEC = 0
  495:                NW = NW - NDEC
  496:             END IF
  497: *
  498: *           ==== Aggressive early deflation:
  499: *           .    split workspace under the subdiagonal into
  500: *           .      - an nw-by-nw work array V in the lower
  501: *           .        left-hand-corner,
  502: *           .      - an NW-by-at-least-NW-but-more-is-better
  503: *           .        (NW-by-NHO) horizontal work array along
  504: *           .        the bottom edge,
  505: *           .      - an at-least-NW-but-more-is-better (NHV-by-NW)
  506: *           .        vertical work array along the left-hand-edge.
  507: *           .        ====
  508: *
  509:             KV = N - NW + 1
  510:             KT = NW + 1
  511:             NHO = ( N-NW-1 ) - KT + 1
  512:             KWV = NW + 2
  513:             NVE = ( N-NW ) - KWV + 1
  514: *
  515: *           ==== Aggressive early deflation ====
  516: *
  517:             CALL ZLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
  518:      $                   IHIZ, Z, LDZ, LS, LD, W, H( KV, 1 ), LDH, NHO,
  519:      $                   H( KV, KT ), LDH, NVE, H( KWV, 1 ), LDH, WORK,
  520:      $                   LWORK )
  521: *
  522: *           ==== Adjust KBOT accounting for new deflations. ====
  523: *
  524:             KBOT = KBOT - LD
  525: *
  526: *           ==== KS points to the shifts. ====
  527: *
  528:             KS = KBOT - LS + 1
  529: *
  530: *           ==== Skip an expensive QR sweep if there is a (partly
  531: *           .    heuristic) reason to expect that many eigenvalues
  532: *           .    will deflate without it.  Here, the QR sweep is
  533: *           .    skipped if many eigenvalues have just been deflated
  534: *           .    or if the remaining active block is small.
  535: *
  536:             IF( ( LD.EQ.0 ) .OR. ( ( 100*LD.LE.NW*NIBBLE ) .AND. ( KBOT-
  537:      $          KTOP+1.GT.MIN( NMIN, NWMAX ) ) ) ) THEN
  538: *
  539: *              ==== NS = nominal number of simultaneous shifts.
  540: *              .    This may be lowered (slightly) if ZLAQR3
  541: *              .    did not provide that many shifts. ====
  542: *
  543:                NS = MIN( NSMAX, NSR, MAX( 2, KBOT-KTOP ) )
  544:                NS = NS - MOD( NS, 2 )
  545: *
  546: *              ==== If there have been no deflations
  547: *              .    in a multiple of KEXSH iterations,
  548: *              .    then try exceptional shifts.
  549: *              .    Otherwise use shifts provided by
  550: *              .    ZLAQR3 above or from the eigenvalues
  551: *              .    of a trailing principal submatrix. ====
  552: *
  553:                IF( MOD( NDFL, KEXSH ).EQ.0 ) THEN
  554:                   KS = KBOT - NS + 1
  555:                   DO 30 I = KBOT, KS + 1, -2
  556:                      W( I ) = H( I, I ) + WILK1*CABS1( H( I, I-1 ) )
  557:                      W( I-1 ) = W( I )
  558:    30             CONTINUE
  559:                ELSE
  560: *
  561: *                 ==== Got NS/2 or fewer shifts? Use ZLAQR4 or
  562: *                 .    ZLAHQR on a trailing principal submatrix to
  563: *                 .    get more. (Since NS.LE.NSMAX.LE.(N+6)/9,
  564: *                 .    there is enough space below the subdiagonal
  565: *                 .    to fit an NS-by-NS scratch array.) ====
  566: *
  567:                   IF( KBOT-KS+1.LE.NS / 2 ) THEN
  568:                      KS = KBOT - NS + 1
  569:                      KT = N - NS + 1
  570:                      CALL ZLACPY( 'A', NS, NS, H( KS, KS ), LDH,
  571:      $                            H( KT, 1 ), LDH )
  572:                      IF( NS.GT.NMIN ) THEN
  573:                         CALL ZLAQR4( .false., .false., NS, 1, NS,
  574:      $                               H( KT, 1 ), LDH, W( KS ), 1, 1,
  575:      $                               ZDUM, 1, WORK, LWORK, INF )
  576:                      ELSE
  577:                         CALL ZLAHQR( .false., .false., NS, 1, NS,
  578:      $                               H( KT, 1 ), LDH, W( KS ), 1, 1,
  579:      $                               ZDUM, 1, INF )
  580:                      END IF
  581:                      KS = KS + INF
  582: *
  583: *                    ==== In case of a rare QR failure use
  584: *                    .    eigenvalues of the trailing 2-by-2
  585: *                    .    principal submatrix.  Scale to avoid
  586: *                    .    overflows, underflows and subnormals.
  587: *                    .    (The scale factor S can not be zero,
  588: *                    .    because H(KBOT,KBOT-1) is nonzero.) ====
  589: *
  590:                      IF( KS.GE.KBOT ) THEN
  591:                         S = CABS1( H( KBOT-1, KBOT-1 ) ) +
  592:      $                      CABS1( H( KBOT, KBOT-1 ) ) +
  593:      $                      CABS1( H( KBOT-1, KBOT ) ) +
  594:      $                      CABS1( H( KBOT, KBOT ) )
  595:                         AA = H( KBOT-1, KBOT-1 ) / S
  596:                         CC = H( KBOT, KBOT-1 ) / S
  597:                         BB = H( KBOT-1, KBOT ) / S
  598:                         DD = H( KBOT, KBOT ) / S
  599:                         TR2 = ( AA+DD ) / TWO
  600:                         DET = ( AA-TR2 )*( DD-TR2 ) - BB*CC
  601:                         RTDISC = SQRT( -DET )
  602:                         W( KBOT-1 ) = ( TR2+RTDISC )*S
  603:                         W( KBOT ) = ( TR2-RTDISC )*S
  604: *
  605:                         KS = KBOT - 1
  606:                      END IF
  607:                   END IF
  608: *
  609:                   IF( KBOT-KS+1.GT.NS ) THEN
  610: *
  611: *                    ==== Sort the shifts (Helps a little) ====
  612: *
  613:                      SORTED = .false.
  614:                      DO 50 K = KBOT, KS + 1, -1
  615:                         IF( SORTED )
  616:      $                     GO TO 60
  617:                         SORTED = .true.
  618:                         DO 40 I = KS, K - 1
  619:                            IF( CABS1( W( I ) ).LT.CABS1( W( I+1 ) ) )
  620:      $                          THEN
  621:                               SORTED = .false.
  622:                               SWAP = W( I )
  623:                               W( I ) = W( I+1 )
  624:                               W( I+1 ) = SWAP
  625:                            END IF
  626:    40                   CONTINUE
  627:    50                CONTINUE
  628:    60                CONTINUE
  629:                   END IF
  630:                END IF
  631: *
  632: *              ==== If there are only two shifts, then use
  633: *              .    only one.  ====
  634: *
  635:                IF( KBOT-KS+1.EQ.2 ) THEN
  636:                   IF( CABS1( W( KBOT )-H( KBOT, KBOT ) ).LT.
  637:      $                CABS1( W( KBOT-1 )-H( KBOT, KBOT ) ) ) THEN
  638:                      W( KBOT-1 ) = W( KBOT )
  639:                   ELSE
  640:                      W( KBOT ) = W( KBOT-1 )
  641:                   END IF
  642:                END IF
  643: *
  644: *              ==== Use up to NS of the the smallest magnitude
  645: *              .    shifts.  If there aren't NS shifts available,
  646: *              .    then use them all, possibly dropping one to
  647: *              .    make the number of shifts even. ====
  648: *
  649:                NS = MIN( NS, KBOT-KS+1 )
  650:                NS = NS - MOD( NS, 2 )
  651:                KS = KBOT - NS + 1
  652: *
  653: *              ==== Small-bulge multi-shift QR sweep:
  654: *              .    split workspace under the subdiagonal into
  655: *              .    - a KDU-by-KDU work array U in the lower
  656: *              .      left-hand-corner,
  657: *              .    - a KDU-by-at-least-KDU-but-more-is-better
  658: *              .      (KDU-by-NHo) horizontal work array WH along
  659: *              .      the bottom edge,
  660: *              .    - and an at-least-KDU-but-more-is-better-by-KDU
  661: *              .      (NVE-by-KDU) vertical work WV arrow along
  662: *              .      the left-hand-edge. ====
  663: *
  664:                KDU = 3*NS - 3
  665:                KU = N - KDU + 1
  666:                KWH = KDU + 1
  667:                NHO = ( N-KDU+1-4 ) - ( KDU+1 ) + 1
  668:                KWV = KDU + 4
  669:                NVE = N - KDU - KWV + 1
  670: *
  671: *              ==== Small-bulge multi-shift QR sweep ====
  672: *
  673:                CALL ZLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NS,
  674:      $                      W( KS ), H, LDH, ILOZ, IHIZ, Z, LDZ, WORK,
  675:      $                      3, H( KU, 1 ), LDH, NVE, H( KWV, 1 ), LDH,
  676:      $                      NHO, H( KU, KWH ), LDH )
  677:             END IF
  678: *
  679: *           ==== Note progress (or the lack of it). ====
  680: *
  681:             IF( LD.GT.0 ) THEN
  682:                NDFL = 1
  683:             ELSE
  684:                NDFL = NDFL + 1
  685:             END IF
  686: *
  687: *           ==== End of main loop ====
  688:    70    CONTINUE
  689: *
  690: *        ==== Iteration limit exceeded.  Set INFO to show where
  691: *        .    the problem occurred and exit. ====
  692: *
  693:          INFO = KBOT
  694:    80    CONTINUE
  695:       END IF
  696: *
  697: *     ==== Return the optimal value of LWORK. ====
  698: *
  699:       WORK( 1 ) = DCMPLX( LWKOPT, 0 )
  700: *
  701: *     ==== End of ZLAQR0 ====
  702: *
  703:       END

CVSweb interface <joel.bertrand@systella.fr>