Annotation of rpl/lapack/lapack/zlaqr0.f, revision 1.2

1.1       bertrand    1:       SUBROUTINE ZLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
                      2:      $                   IHIZ, Z, LDZ, WORK, LWORK, INFO )
                      3: *
                      4: *  -- LAPACK auxiliary routine (version 3.2) --
                      5: *     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..
                      6: *     November 2006
                      7: *
                      8: *     .. Scalar Arguments ..
                      9:       INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N
                     10:       LOGICAL            WANTT, WANTZ
                     11: *     ..
                     12: *     .. Array Arguments ..
                     13:       COMPLEX*16         H( LDH, * ), W( * ), WORK( * ), Z( LDZ, * )
                     14: *     ..
                     15: *
                     16: *     Purpose
                     17: *     =======
                     18: *
                     19: *     ZLAQR0 computes the eigenvalues of a Hessenberg matrix H
                     20: *     and, optionally, the matrices T and Z from the Schur decomposition
                     21: *     H = Z T Z**H, where T is an upper triangular matrix (the
                     22: *     Schur form), and Z is the unitary matrix of Schur vectors.
                     23: *
                     24: *     Optionally Z may be postmultiplied into an input unitary
                     25: *     matrix Q so that this routine can give the Schur factorization
                     26: *     of a matrix A which has been reduced to the Hessenberg form H
                     27: *     by the unitary matrix Q:  A = Q*H*Q**H = (QZ)*H*(QZ)**H.
                     28: *
                     29: *     Arguments
                     30: *     =========
                     31: *
                     32: *     WANTT   (input) LOGICAL
                     33: *          = .TRUE. : the full Schur form T is required;
                     34: *          = .FALSE.: only eigenvalues are required.
                     35: *
                     36: *     WANTZ   (input) LOGICAL
                     37: *          = .TRUE. : the matrix of Schur vectors Z is required;
                     38: *          = .FALSE.: Schur vectors are not required.
                     39: *
                     40: *     N     (input) INTEGER
                     41: *           The order of the matrix H.  N .GE. 0.
                     42: *
                     43: *     ILO   (input) INTEGER
                     44: *     IHI   (input) INTEGER
                     45: *           It is assumed that H is already upper triangular in rows
                     46: *           and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1,
                     47: *           H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
                     48: *           previous call to ZGEBAL, and then passed to ZGEHRD when the
                     49: *           matrix output by ZGEBAL is reduced to Hessenberg form.
                     50: *           Otherwise, ILO and IHI should be set to 1 and N,
                     51: *           respectively.  If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
                     52: *           If N = 0, then ILO = 1 and IHI = 0.
                     53: *
                     54: *     H     (input/output) COMPLEX*16 array, dimension (LDH,N)
                     55: *           On entry, the upper Hessenberg matrix H.
                     56: *           On exit, if INFO = 0 and WANTT is .TRUE., then H
                     57: *           contains the upper triangular matrix T from the Schur
                     58: *           decomposition (the Schur form). If INFO = 0 and WANT is
                     59: *           .FALSE., then the contents of H are unspecified on exit.
                     60: *           (The output value of H when INFO.GT.0 is given under the
                     61: *           description of INFO below.)
                     62: *
                     63: *           This subroutine may explicitly set H(i,j) = 0 for i.GT.j and
                     64: *           j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
                     65: *
                     66: *     LDH   (input) INTEGER
                     67: *           The leading dimension of the array H. LDH .GE. max(1,N).
                     68: *
                     69: *     W        (output) COMPLEX*16 array, dimension (N)
                     70: *           The computed eigenvalues of H(ILO:IHI,ILO:IHI) are stored
                     71: *           in W(ILO:IHI). If WANTT is .TRUE., then the eigenvalues are
                     72: *           stored in the same order as on the diagonal of the Schur
                     73: *           form returned in H, with W(i) = H(i,i).
                     74: *
                     75: *     Z     (input/output) COMPLEX*16 array, dimension (LDZ,IHI)
                     76: *           If WANTZ is .FALSE., then Z is not referenced.
                     77: *           If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
                     78: *           replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
                     79: *           orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
                     80: *           (The output value of Z when INFO.GT.0 is given under
                     81: *           the description of INFO below.)
                     82: *
                     83: *     LDZ   (input) INTEGER
                     84: *           The leading dimension of the array Z.  if WANTZ is .TRUE.
                     85: *           then LDZ.GE.MAX(1,IHIZ).  Otherwize, LDZ.GE.1.
                     86: *
                     87: *     WORK  (workspace/output) COMPLEX*16 array, dimension LWORK
                     88: *           On exit, if LWORK = -1, WORK(1) returns an estimate of
                     89: *           the optimal value for LWORK.
                     90: *
                     91: *     LWORK (input) INTEGER
                     92: *           The dimension of the array WORK.  LWORK .GE. max(1,N)
                     93: *           is sufficient, but LWORK typically as large as 6*N may
                     94: *           be required for optimal performance.  A workspace query
                     95: *           to determine the optimal workspace size is recommended.
                     96: *
                     97: *           If LWORK = -1, then ZLAQR0 does a workspace query.
                     98: *           In this case, ZLAQR0 checks the input parameters and
                     99: *           estimates the optimal workspace size for the given
                    100: *           values of N, ILO and IHI.  The estimate is returned
                    101: *           in WORK(1).  No error message related to LWORK is
                    102: *           issued by XERBLA.  Neither H nor Z are accessed.
                    103: *
                    104: *
                    105: *     INFO  (output) INTEGER
                    106: *             =  0:  successful exit
                    107: *           .GT. 0:  if INFO = i, ZLAQR0 failed to compute all of
                    108: *                the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR
                    109: *                and WI contain those eigenvalues which have been
                    110: *                successfully computed.  (Failures are rare.)
                    111: *
                    112: *                If INFO .GT. 0 and WANT is .FALSE., then on exit,
                    113: *                the remaining unconverged eigenvalues are the eigen-
                    114: *                values of the upper Hessenberg matrix rows and
                    115: *                columns ILO through INFO of the final, output
                    116: *                value of H.
                    117: *
                    118: *                If INFO .GT. 0 and WANTT is .TRUE., then on exit
                    119: *
                    120: *           (*)  (initial value of H)*U  = U*(final value of H)
                    121: *
                    122: *                where U is a unitary matrix.  The final
                    123: *                value of  H is upper Hessenberg and triangular in
                    124: *                rows and columns INFO+1 through IHI.
                    125: *
                    126: *                If INFO .GT. 0 and WANTZ is .TRUE., then on exit
                    127: *
                    128: *                  (final value of Z(ILO:IHI,ILOZ:IHIZ)
                    129: *                   =  (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U
                    130: *
                    131: *                where U is the unitary matrix in (*) (regard-
                    132: *                less of the value of WANTT.)
                    133: *
                    134: *                If INFO .GT. 0 and WANTZ is .FALSE., then Z is not
                    135: *                accessed.
                    136: *
                    137: *     ================================================================
                    138: *     Based on contributions by
                    139: *        Karen Braman and Ralph Byers, Department of Mathematics,
                    140: *        University of Kansas, USA
                    141: *
                    142: *     ================================================================
                    143: *     References:
                    144: *       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
                    145: *       Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
                    146: *       Performance, SIAM Journal of Matrix Analysis, volume 23, pages
                    147: *       929--947, 2002.
                    148: *
                    149: *       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
                    150: *       Algorithm Part II: Aggressive Early Deflation, SIAM Journal
                    151: *       of Matrix Analysis, volume 23, pages 948--973, 2002.
                    152: *
                    153: *     ================================================================
                    154: *     .. Parameters ..
                    155: *
                    156: *     ==== Matrices of order NTINY or smaller must be processed by
                    157: *     .    ZLAHQR because of insufficient subdiagonal scratch space.
                    158: *     .    (This is a hard limit.) ====
                    159:       INTEGER            NTINY
                    160:       PARAMETER          ( NTINY = 11 )
                    161: *
                    162: *     ==== Exceptional deflation windows:  try to cure rare
                    163: *     .    slow convergence by varying the size of the
                    164: *     .    deflation window after KEXNW iterations. ====
                    165:       INTEGER            KEXNW
                    166:       PARAMETER          ( KEXNW = 5 )
                    167: *
                    168: *     ==== Exceptional shifts: try to cure rare slow convergence
                    169: *     .    with ad-hoc exceptional shifts every KEXSH iterations.
                    170: *     .    ====
                    171:       INTEGER            KEXSH
                    172:       PARAMETER          ( KEXSH = 6 )
                    173: *
                    174: *     ==== The constant WILK1 is used to form the exceptional
                    175: *     .    shifts. ====
                    176:       DOUBLE PRECISION   WILK1
                    177:       PARAMETER          ( WILK1 = 0.75d0 )
                    178:       COMPLEX*16         ZERO, ONE
                    179:       PARAMETER          ( ZERO = ( 0.0d0, 0.0d0 ),
                    180:      $                   ONE = ( 1.0d0, 0.0d0 ) )
                    181:       DOUBLE PRECISION   TWO
                    182:       PARAMETER          ( TWO = 2.0d0 )
                    183: *     ..
                    184: *     .. Local Scalars ..
                    185:       COMPLEX*16         AA, BB, CC, CDUM, DD, DET, RTDISC, SWAP, TR2
                    186:       DOUBLE PRECISION   S
                    187:       INTEGER            I, INF, IT, ITMAX, K, KACC22, KBOT, KDU, KS,
                    188:      $                   KT, KTOP, KU, KV, KWH, KWTOP, KWV, LD, LS,
                    189:      $                   LWKOPT, NDEC, NDFL, NH, NHO, NIBBLE, NMIN, NS,
                    190:      $                   NSMAX, NSR, NVE, NW, NWMAX, NWR, NWUPBD
                    191:       LOGICAL            SORTED
                    192:       CHARACTER          JBCMPZ*2
                    193: *     ..
                    194: *     .. External Functions ..
                    195:       INTEGER            ILAENV
                    196:       EXTERNAL           ILAENV
                    197: *     ..
                    198: *     .. Local Arrays ..
                    199:       COMPLEX*16         ZDUM( 1, 1 )
                    200: *     ..
                    201: *     .. External Subroutines ..
                    202:       EXTERNAL           ZLACPY, ZLAHQR, ZLAQR3, ZLAQR4, ZLAQR5
                    203: *     ..
                    204: *     .. Intrinsic Functions ..
                    205:       INTRINSIC          ABS, DBLE, DCMPLX, DIMAG, INT, MAX, MIN, MOD,
                    206:      $                   SQRT
                    207: *     ..
                    208: *     .. Statement Functions ..
                    209:       DOUBLE PRECISION   CABS1
                    210: *     ..
                    211: *     .. Statement Function definitions ..
                    212:       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
                    213: *     ..
                    214: *     .. Executable Statements ..
                    215:       INFO = 0
                    216: *
                    217: *     ==== Quick return for N = 0: nothing to do. ====
                    218: *
                    219:       IF( N.EQ.0 ) THEN
                    220:          WORK( 1 ) = ONE
                    221:          RETURN
                    222:       END IF
                    223: *
                    224:       IF( N.LE.NTINY ) THEN
                    225: *
                    226: *        ==== Tiny matrices must use ZLAHQR. ====
                    227: *
                    228:          LWKOPT = 1
                    229:          IF( LWORK.NE.-1 )
                    230:      $      CALL ZLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
                    231:      $                   IHIZ, Z, LDZ, INFO )
                    232:       ELSE
                    233: *
                    234: *        ==== Use small bulge multi-shift QR with aggressive early
                    235: *        .    deflation on larger-than-tiny matrices. ====
                    236: *
                    237: *        ==== Hope for the best. ====
                    238: *
                    239:          INFO = 0
                    240: *
                    241: *        ==== Set up job flags for ILAENV. ====
                    242: *
                    243:          IF( WANTT ) THEN
                    244:             JBCMPZ( 1: 1 ) = 'S'
                    245:          ELSE
                    246:             JBCMPZ( 1: 1 ) = 'E'
                    247:          END IF
                    248:          IF( WANTZ ) THEN
                    249:             JBCMPZ( 2: 2 ) = 'V'
                    250:          ELSE
                    251:             JBCMPZ( 2: 2 ) = 'N'
                    252:          END IF
                    253: *
                    254: *        ==== NWR = recommended deflation window size.  At this
                    255: *        .    point,  N .GT. NTINY = 11, so there is enough
                    256: *        .    subdiagonal workspace for NWR.GE.2 as required.
                    257: *        .    (In fact, there is enough subdiagonal space for
                    258: *        .    NWR.GE.3.) ====
                    259: *
                    260:          NWR = ILAENV( 13, 'ZLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
                    261:          NWR = MAX( 2, NWR )
                    262:          NWR = MIN( IHI-ILO+1, ( N-1 ) / 3, NWR )
                    263: *
                    264: *        ==== NSR = recommended number of simultaneous shifts.
                    265: *        .    At this point N .GT. NTINY = 11, so there is at
                    266: *        .    enough subdiagonal workspace for NSR to be even
                    267: *        .    and greater than or equal to two as required. ====
                    268: *
                    269:          NSR = ILAENV( 15, 'ZLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
                    270:          NSR = MIN( NSR, ( N+6 ) / 9, IHI-ILO )
                    271:          NSR = MAX( 2, NSR-MOD( NSR, 2 ) )
                    272: *
                    273: *        ==== Estimate optimal workspace ====
                    274: *
                    275: *        ==== Workspace query call to ZLAQR3 ====
                    276: *
                    277:          CALL ZLAQR3( WANTT, WANTZ, N, ILO, IHI, NWR+1, H, LDH, ILOZ,
                    278:      $                IHIZ, Z, LDZ, LS, LD, W, H, LDH, N, H, LDH, N, H,
                    279:      $                LDH, WORK, -1 )
                    280: *
                    281: *        ==== Optimal workspace = MAX(ZLAQR5, ZLAQR3) ====
                    282: *
                    283:          LWKOPT = MAX( 3*NSR / 2, INT( WORK( 1 ) ) )
                    284: *
                    285: *        ==== Quick return in case of workspace query. ====
                    286: *
                    287:          IF( LWORK.EQ.-1 ) THEN
                    288:             WORK( 1 ) = DCMPLX( LWKOPT, 0 )
                    289:             RETURN
                    290:          END IF
                    291: *
                    292: *        ==== ZLAHQR/ZLAQR0 crossover point ====
                    293: *
                    294:          NMIN = ILAENV( 12, 'ZLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
                    295:          NMIN = MAX( NTINY, NMIN )
                    296: *
                    297: *        ==== Nibble crossover point ====
                    298: *
                    299:          NIBBLE = ILAENV( 14, 'ZLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
                    300:          NIBBLE = MAX( 0, NIBBLE )
                    301: *
                    302: *        ==== Accumulate reflections during ttswp?  Use block
                    303: *        .    2-by-2 structure during matrix-matrix multiply? ====
                    304: *
                    305:          KACC22 = ILAENV( 16, 'ZLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
                    306:          KACC22 = MAX( 0, KACC22 )
                    307:          KACC22 = MIN( 2, KACC22 )
                    308: *
                    309: *        ==== NWMAX = the largest possible deflation window for
                    310: *        .    which there is sufficient workspace. ====
                    311: *
                    312:          NWMAX = MIN( ( N-1 ) / 3, LWORK / 2 )
                    313:          NW = NWMAX
                    314: *
                    315: *        ==== NSMAX = the Largest number of simultaneous shifts
                    316: *        .    for which there is sufficient workspace. ====
                    317: *
                    318:          NSMAX = MIN( ( N+6 ) / 9, 2*LWORK / 3 )
                    319:          NSMAX = NSMAX - MOD( NSMAX, 2 )
                    320: *
                    321: *        ==== NDFL: an iteration count restarted at deflation. ====
                    322: *
                    323:          NDFL = 1
                    324: *
                    325: *        ==== ITMAX = iteration limit ====
                    326: *
                    327:          ITMAX = MAX( 30, 2*KEXSH )*MAX( 10, ( IHI-ILO+1 ) )
                    328: *
                    329: *        ==== Last row and column in the active block ====
                    330: *
                    331:          KBOT = IHI
                    332: *
                    333: *        ==== Main Loop ====
                    334: *
                    335:          DO 70 IT = 1, ITMAX
                    336: *
                    337: *           ==== Done when KBOT falls below ILO ====
                    338: *
                    339:             IF( KBOT.LT.ILO )
                    340:      $         GO TO 80
                    341: *
                    342: *           ==== Locate active block ====
                    343: *
                    344:             DO 10 K = KBOT, ILO + 1, -1
                    345:                IF( H( K, K-1 ).EQ.ZERO )
                    346:      $            GO TO 20
                    347:    10       CONTINUE
                    348:             K = ILO
                    349:    20       CONTINUE
                    350:             KTOP = K
                    351: *
                    352: *           ==== Select deflation window size:
                    353: *           .    Typical Case:
                    354: *           .      If possible and advisable, nibble the entire
                    355: *           .      active block.  If not, use size MIN(NWR,NWMAX)
                    356: *           .      or MIN(NWR+1,NWMAX) depending upon which has
                    357: *           .      the smaller corresponding subdiagonal entry
                    358: *           .      (a heuristic).
                    359: *           .
                    360: *           .    Exceptional Case:
                    361: *           .      If there have been no deflations in KEXNW or
                    362: *           .      more iterations, then vary the deflation window
                    363: *           .      size.   At first, because, larger windows are,
                    364: *           .      in general, more powerful than smaller ones,
                    365: *           .      rapidly increase the window to the maximum possible.
                    366: *           .      Then, gradually reduce the window size. ====
                    367: *
                    368:             NH = KBOT - KTOP + 1
                    369:             NWUPBD = MIN( NH, NWMAX )
                    370:             IF( NDFL.LT.KEXNW ) THEN
                    371:                NW = MIN( NWUPBD, NWR )
                    372:             ELSE
                    373:                NW = MIN( NWUPBD, 2*NW )
                    374:             END IF
                    375:             IF( NW.LT.NWMAX ) THEN
                    376:                IF( NW.GE.NH-1 ) THEN
                    377:                   NW = NH
                    378:                ELSE
                    379:                   KWTOP = KBOT - NW + 1
                    380:                   IF( CABS1( H( KWTOP, KWTOP-1 ) ).GT.
                    381:      $                CABS1( H( KWTOP-1, KWTOP-2 ) ) )NW = NW + 1
                    382:                END IF
                    383:             END IF
                    384:             IF( NDFL.LT.KEXNW ) THEN
                    385:                NDEC = -1
                    386:             ELSE IF( NDEC.GE.0 .OR. NW.GE.NWUPBD ) THEN
                    387:                NDEC = NDEC + 1
                    388:                IF( NW-NDEC.LT.2 )
                    389:      $            NDEC = 0
                    390:                NW = NW - NDEC
                    391:             END IF
                    392: *
                    393: *           ==== Aggressive early deflation:
                    394: *           .    split workspace under the subdiagonal into
                    395: *           .      - an nw-by-nw work array V in the lower
                    396: *           .        left-hand-corner,
                    397: *           .      - an NW-by-at-least-NW-but-more-is-better
                    398: *           .        (NW-by-NHO) horizontal work array along
                    399: *           .        the bottom edge,
                    400: *           .      - an at-least-NW-but-more-is-better (NHV-by-NW)
                    401: *           .        vertical work array along the left-hand-edge.
                    402: *           .        ====
                    403: *
                    404:             KV = N - NW + 1
                    405:             KT = NW + 1
                    406:             NHO = ( N-NW-1 ) - KT + 1
                    407:             KWV = NW + 2
                    408:             NVE = ( N-NW ) - KWV + 1
                    409: *
                    410: *           ==== Aggressive early deflation ====
                    411: *
                    412:             CALL ZLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
                    413:      $                   IHIZ, Z, LDZ, LS, LD, W, H( KV, 1 ), LDH, NHO,
                    414:      $                   H( KV, KT ), LDH, NVE, H( KWV, 1 ), LDH, WORK,
                    415:      $                   LWORK )
                    416: *
                    417: *           ==== Adjust KBOT accounting for new deflations. ====
                    418: *
                    419:             KBOT = KBOT - LD
                    420: *
                    421: *           ==== KS points to the shifts. ====
                    422: *
                    423:             KS = KBOT - LS + 1
                    424: *
                    425: *           ==== Skip an expensive QR sweep if there is a (partly
                    426: *           .    heuristic) reason to expect that many eigenvalues
                    427: *           .    will deflate without it.  Here, the QR sweep is
                    428: *           .    skipped if many eigenvalues have just been deflated
                    429: *           .    or if the remaining active block is small.
                    430: *
                    431:             IF( ( LD.EQ.0 ) .OR. ( ( 100*LD.LE.NW*NIBBLE ) .AND. ( KBOT-
                    432:      $          KTOP+1.GT.MIN( NMIN, NWMAX ) ) ) ) THEN
                    433: *
                    434: *              ==== NS = nominal number of simultaneous shifts.
                    435: *              .    This may be lowered (slightly) if ZLAQR3
                    436: *              .    did not provide that many shifts. ====
                    437: *
                    438:                NS = MIN( NSMAX, NSR, MAX( 2, KBOT-KTOP ) )
                    439:                NS = NS - MOD( NS, 2 )
                    440: *
                    441: *              ==== If there have been no deflations
                    442: *              .    in a multiple of KEXSH iterations,
                    443: *              .    then try exceptional shifts.
                    444: *              .    Otherwise use shifts provided by
                    445: *              .    ZLAQR3 above or from the eigenvalues
                    446: *              .    of a trailing principal submatrix. ====
                    447: *
                    448:                IF( MOD( NDFL, KEXSH ).EQ.0 ) THEN
                    449:                   KS = KBOT - NS + 1
                    450:                   DO 30 I = KBOT, KS + 1, -2
                    451:                      W( I ) = H( I, I ) + WILK1*CABS1( H( I, I-1 ) )
                    452:                      W( I-1 ) = W( I )
                    453:    30             CONTINUE
                    454:                ELSE
                    455: *
                    456: *                 ==== Got NS/2 or fewer shifts? Use ZLAQR4 or
                    457: *                 .    ZLAHQR on a trailing principal submatrix to
                    458: *                 .    get more. (Since NS.LE.NSMAX.LE.(N+6)/9,
                    459: *                 .    there is enough space below the subdiagonal
                    460: *                 .    to fit an NS-by-NS scratch array.) ====
                    461: *
                    462:                   IF( KBOT-KS+1.LE.NS / 2 ) THEN
                    463:                      KS = KBOT - NS + 1
                    464:                      KT = N - NS + 1
                    465:                      CALL ZLACPY( 'A', NS, NS, H( KS, KS ), LDH,
                    466:      $                            H( KT, 1 ), LDH )
                    467:                      IF( NS.GT.NMIN ) THEN
                    468:                         CALL ZLAQR4( .false., .false., NS, 1, NS,
                    469:      $                               H( KT, 1 ), LDH, W( KS ), 1, 1,
                    470:      $                               ZDUM, 1, WORK, LWORK, INF )
                    471:                      ELSE
                    472:                         CALL ZLAHQR( .false., .false., NS, 1, NS,
                    473:      $                               H( KT, 1 ), LDH, W( KS ), 1, 1,
                    474:      $                               ZDUM, 1, INF )
                    475:                      END IF
                    476:                      KS = KS + INF
                    477: *
                    478: *                    ==== In case of a rare QR failure use
                    479: *                    .    eigenvalues of the trailing 2-by-2
                    480: *                    .    principal submatrix.  Scale to avoid
                    481: *                    .    overflows, underflows and subnormals.
                    482: *                    .    (The scale factor S can not be zero,
                    483: *                    .    because H(KBOT,KBOT-1) is nonzero.) ====
                    484: *
                    485:                      IF( KS.GE.KBOT ) THEN
                    486:                         S = CABS1( H( KBOT-1, KBOT-1 ) ) +
                    487:      $                      CABS1( H( KBOT, KBOT-1 ) ) +
                    488:      $                      CABS1( H( KBOT-1, KBOT ) ) +
                    489:      $                      CABS1( H( KBOT, KBOT ) )
                    490:                         AA = H( KBOT-1, KBOT-1 ) / S
                    491:                         CC = H( KBOT, KBOT-1 ) / S
                    492:                         BB = H( KBOT-1, KBOT ) / S
                    493:                         DD = H( KBOT, KBOT ) / S
                    494:                         TR2 = ( AA+DD ) / TWO
                    495:                         DET = ( AA-TR2 )*( DD-TR2 ) - BB*CC
                    496:                         RTDISC = SQRT( -DET )
                    497:                         W( KBOT-1 ) = ( TR2+RTDISC )*S
                    498:                         W( KBOT ) = ( TR2-RTDISC )*S
                    499: *
                    500:                         KS = KBOT - 1
                    501:                      END IF
                    502:                   END IF
                    503: *
                    504:                   IF( KBOT-KS+1.GT.NS ) THEN
                    505: *
                    506: *                    ==== Sort the shifts (Helps a little) ====
                    507: *
                    508:                      SORTED = .false.
                    509:                      DO 50 K = KBOT, KS + 1, -1
                    510:                         IF( SORTED )
                    511:      $                     GO TO 60
                    512:                         SORTED = .true.
                    513:                         DO 40 I = KS, K - 1
                    514:                            IF( CABS1( W( I ) ).LT.CABS1( W( I+1 ) ) )
                    515:      $                          THEN
                    516:                               SORTED = .false.
                    517:                               SWAP = W( I )
                    518:                               W( I ) = W( I+1 )
                    519:                               W( I+1 ) = SWAP
                    520:                            END IF
                    521:    40                   CONTINUE
                    522:    50                CONTINUE
                    523:    60                CONTINUE
                    524:                   END IF
                    525:                END IF
                    526: *
                    527: *              ==== If there are only two shifts, then use
                    528: *              .    only one.  ====
                    529: *
                    530:                IF( KBOT-KS+1.EQ.2 ) THEN
                    531:                   IF( CABS1( W( KBOT )-H( KBOT, KBOT ) ).LT.
                    532:      $                CABS1( W( KBOT-1 )-H( KBOT, KBOT ) ) ) THEN
                    533:                      W( KBOT-1 ) = W( KBOT )
                    534:                   ELSE
                    535:                      W( KBOT ) = W( KBOT-1 )
                    536:                   END IF
                    537:                END IF
                    538: *
                    539: *              ==== Use up to NS of the the smallest magnatiude
                    540: *              .    shifts.  If there aren't NS shifts available,
                    541: *              .    then use them all, possibly dropping one to
                    542: *              .    make the number of shifts even. ====
                    543: *
                    544:                NS = MIN( NS, KBOT-KS+1 )
                    545:                NS = NS - MOD( NS, 2 )
                    546:                KS = KBOT - NS + 1
                    547: *
                    548: *              ==== Small-bulge multi-shift QR sweep:
                    549: *              .    split workspace under the subdiagonal into
                    550: *              .    - a KDU-by-KDU work array U in the lower
                    551: *              .      left-hand-corner,
                    552: *              .    - a KDU-by-at-least-KDU-but-more-is-better
                    553: *              .      (KDU-by-NHo) horizontal work array WH along
                    554: *              .      the bottom edge,
                    555: *              .    - and an at-least-KDU-but-more-is-better-by-KDU
                    556: *              .      (NVE-by-KDU) vertical work WV arrow along
                    557: *              .      the left-hand-edge. ====
                    558: *
                    559:                KDU = 3*NS - 3
                    560:                KU = N - KDU + 1
                    561:                KWH = KDU + 1
                    562:                NHO = ( N-KDU+1-4 ) - ( KDU+1 ) + 1
                    563:                KWV = KDU + 4
                    564:                NVE = N - KDU - KWV + 1
                    565: *
                    566: *              ==== Small-bulge multi-shift QR sweep ====
                    567: *
                    568:                CALL ZLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NS,
                    569:      $                      W( KS ), H, LDH, ILOZ, IHIZ, Z, LDZ, WORK,
                    570:      $                      3, H( KU, 1 ), LDH, NVE, H( KWV, 1 ), LDH,
                    571:      $                      NHO, H( KU, KWH ), LDH )
                    572:             END IF
                    573: *
                    574: *           ==== Note progress (or the lack of it). ====
                    575: *
                    576:             IF( LD.GT.0 ) THEN
                    577:                NDFL = 1
                    578:             ELSE
                    579:                NDFL = NDFL + 1
                    580:             END IF
                    581: *
                    582: *           ==== End of main loop ====
                    583:    70    CONTINUE
                    584: *
                    585: *        ==== Iteration limit exceeded.  Set INFO to show where
                    586: *        .    the problem occurred and exit. ====
                    587: *
                    588:          INFO = KBOT
                    589:    80    CONTINUE
                    590:       END IF
                    591: *
                    592: *     ==== Return the optimal value of LWORK. ====
                    593: *
                    594:       WORK( 1 ) = DCMPLX( LWKOPT, 0 )
                    595: *
                    596: *     ==== End of ZLAQR0 ====
                    597: *
                    598:       END

CVSweb interface <joel.bertrand@systella.fr>