File:  [local] / rpl / lapack / lapack / zlaqps.f
Revision 1.11: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 22:19:52 2011 UTC (12 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_8, rpl-4_1_7, rpl-4_1_6, rpl-4_1_5, rpl-4_1_4, HEAD
Cohérence

    1: *> \brief \b ZLAQPS
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZLAQPS + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaqps.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaqps.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaqps.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLAQPS( M, N, OFFSET, NB, KB, A, LDA, JPVT, TAU, VN1,
   22: *                          VN2, AUXV, F, LDF )
   23:    24: *       .. Scalar Arguments ..
   25: *       INTEGER            KB, LDA, LDF, M, N, NB, OFFSET
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            JPVT( * )
   29: *       DOUBLE PRECISION   VN1( * ), VN2( * )
   30: *       COMPLEX*16         A( LDA, * ), AUXV( * ), F( LDF, * ), TAU( * )
   31: *       ..
   32: *  
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> ZLAQPS computes a step of QR factorization with column pivoting
   40: *> of a complex M-by-N matrix A by using Blas-3.  It tries to factorize
   41: *> NB columns from A starting from the row OFFSET+1, and updates all
   42: *> of the matrix with Blas-3 xGEMM.
   43: *>
   44: *> In some cases, due to catastrophic cancellations, it cannot
   45: *> factorize NB columns.  Hence, the actual number of factorized
   46: *> columns is returned in KB.
   47: *>
   48: *> Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.
   49: *> \endverbatim
   50: *
   51: *  Arguments:
   52: *  ==========
   53: *
   54: *> \param[in] M
   55: *> \verbatim
   56: *>          M is INTEGER
   57: *>          The number of rows of the matrix A. M >= 0.
   58: *> \endverbatim
   59: *>
   60: *> \param[in] N
   61: *> \verbatim
   62: *>          N is INTEGER
   63: *>          The number of columns of the matrix A. N >= 0
   64: *> \endverbatim
   65: *>
   66: *> \param[in] OFFSET
   67: *> \verbatim
   68: *>          OFFSET is INTEGER
   69: *>          The number of rows of A that have been factorized in
   70: *>          previous steps.
   71: *> \endverbatim
   72: *>
   73: *> \param[in] NB
   74: *> \verbatim
   75: *>          NB is INTEGER
   76: *>          The number of columns to factorize.
   77: *> \endverbatim
   78: *>
   79: *> \param[out] KB
   80: *> \verbatim
   81: *>          KB is INTEGER
   82: *>          The number of columns actually factorized.
   83: *> \endverbatim
   84: *>
   85: *> \param[in,out] A
   86: *> \verbatim
   87: *>          A is COMPLEX*16 array, dimension (LDA,N)
   88: *>          On entry, the M-by-N matrix A.
   89: *>          On exit, block A(OFFSET+1:M,1:KB) is the triangular
   90: *>          factor obtained and block A(1:OFFSET,1:N) has been
   91: *>          accordingly pivoted, but no factorized.
   92: *>          The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has
   93: *>          been updated.
   94: *> \endverbatim
   95: *>
   96: *> \param[in] LDA
   97: *> \verbatim
   98: *>          LDA is INTEGER
   99: *>          The leading dimension of the array A. LDA >= max(1,M).
  100: *> \endverbatim
  101: *>
  102: *> \param[in,out] JPVT
  103: *> \verbatim
  104: *>          JPVT is INTEGER array, dimension (N)
  105: *>          JPVT(I) = K <==> Column K of the full matrix A has been
  106: *>          permuted into position I in AP.
  107: *> \endverbatim
  108: *>
  109: *> \param[out] TAU
  110: *> \verbatim
  111: *>          TAU is COMPLEX*16 array, dimension (KB)
  112: *>          The scalar factors of the elementary reflectors.
  113: *> \endverbatim
  114: *>
  115: *> \param[in,out] VN1
  116: *> \verbatim
  117: *>          VN1 is DOUBLE PRECISION array, dimension (N)
  118: *>          The vector with the partial column norms.
  119: *> \endverbatim
  120: *>
  121: *> \param[in,out] VN2
  122: *> \verbatim
  123: *>          VN2 is DOUBLE PRECISION array, dimension (N)
  124: *>          The vector with the exact column norms.
  125: *> \endverbatim
  126: *>
  127: *> \param[in,out] AUXV
  128: *> \verbatim
  129: *>          AUXV is COMPLEX*16 array, dimension (NB)
  130: *>          Auxiliar vector.
  131: *> \endverbatim
  132: *>
  133: *> \param[in,out] F
  134: *> \verbatim
  135: *>          F is COMPLEX*16 array, dimension (LDF,NB)
  136: *>          Matrix F**H = L * Y**H * A.
  137: *> \endverbatim
  138: *>
  139: *> \param[in] LDF
  140: *> \verbatim
  141: *>          LDF is INTEGER
  142: *>          The leading dimension of the array F. LDF >= max(1,N).
  143: *> \endverbatim
  144: *
  145: *  Authors:
  146: *  ========
  147: *
  148: *> \author Univ. of Tennessee 
  149: *> \author Univ. of California Berkeley 
  150: *> \author Univ. of Colorado Denver 
  151: *> \author NAG Ltd. 
  152: *
  153: *> \date November 2011
  154: *
  155: *> \ingroup complex16OTHERauxiliary
  156: *
  157: *> \par Contributors:
  158: *  ==================
  159: *>
  160: *>    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
  161: *>    X. Sun, Computer Science Dept., Duke University, USA
  162: *> \n
  163: *>  Partial column norm updating strategy modified on April 2011
  164: *>    Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
  165: *>    University of Zagreb, Croatia.
  166: *
  167: *> \par References:
  168: *  ================
  169: *>
  170: *> LAPACK Working Note 176
  171: *
  172: *> \htmlonly
  173: *> <a href="http://www.netlib.org/lapack/lawnspdf/lawn176.pdf">[PDF]</a> 
  174: *> \endhtmlonly 
  175: *
  176: *  =====================================================================
  177:       SUBROUTINE ZLAQPS( M, N, OFFSET, NB, KB, A, LDA, JPVT, TAU, VN1,
  178:      $                   VN2, AUXV, F, LDF )
  179: *
  180: *  -- LAPACK auxiliary routine (version 3.4.0) --
  181: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  182: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  183: *     November 2011
  184: *
  185: *     .. Scalar Arguments ..
  186:       INTEGER            KB, LDA, LDF, M, N, NB, OFFSET
  187: *     ..
  188: *     .. Array Arguments ..
  189:       INTEGER            JPVT( * )
  190:       DOUBLE PRECISION   VN1( * ), VN2( * )
  191:       COMPLEX*16         A( LDA, * ), AUXV( * ), F( LDF, * ), TAU( * )
  192: *     ..
  193: *
  194: *  =====================================================================
  195: *
  196: *     .. Parameters ..
  197:       DOUBLE PRECISION   ZERO, ONE
  198:       COMPLEX*16         CZERO, CONE
  199:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0,
  200:      $                   CZERO = ( 0.0D+0, 0.0D+0 ),
  201:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
  202: *     ..
  203: *     .. Local Scalars ..
  204:       INTEGER            ITEMP, J, K, LASTRK, LSTICC, PVT, RK
  205:       DOUBLE PRECISION   TEMP, TEMP2, TOL3Z
  206:       COMPLEX*16         AKK
  207: *     ..
  208: *     .. External Subroutines ..
  209:       EXTERNAL           ZGEMM, ZGEMV, ZLARFG, ZSWAP
  210: *     ..
  211: *     .. Intrinsic Functions ..
  212:       INTRINSIC          ABS, DBLE, DCONJG, MAX, MIN, NINT, SQRT
  213: *     ..
  214: *     .. External Functions ..
  215:       INTEGER            IDAMAX
  216:       DOUBLE PRECISION   DLAMCH, DZNRM2
  217:       EXTERNAL           IDAMAX, DLAMCH, DZNRM2
  218: *     ..
  219: *     .. Executable Statements ..
  220: *
  221:       LASTRK = MIN( M, N+OFFSET )
  222:       LSTICC = 0
  223:       K = 0
  224:       TOL3Z = SQRT(DLAMCH('Epsilon'))
  225: *
  226: *     Beginning of while loop.
  227: *
  228:    10 CONTINUE
  229:       IF( ( K.LT.NB ) .AND. ( LSTICC.EQ.0 ) ) THEN
  230:          K = K + 1
  231:          RK = OFFSET + K
  232: *
  233: *        Determine ith pivot column and swap if necessary
  234: *
  235:          PVT = ( K-1 ) + IDAMAX( N-K+1, VN1( K ), 1 )
  236:          IF( PVT.NE.K ) THEN
  237:             CALL ZSWAP( M, A( 1, PVT ), 1, A( 1, K ), 1 )
  238:             CALL ZSWAP( K-1, F( PVT, 1 ), LDF, F( K, 1 ), LDF )
  239:             ITEMP = JPVT( PVT )
  240:             JPVT( PVT ) = JPVT( K )
  241:             JPVT( K ) = ITEMP
  242:             VN1( PVT ) = VN1( K )
  243:             VN2( PVT ) = VN2( K )
  244:          END IF
  245: *
  246: *        Apply previous Householder reflectors to column K:
  247: *        A(RK:M,K) := A(RK:M,K) - A(RK:M,1:K-1)*F(K,1:K-1)**H.
  248: *
  249:          IF( K.GT.1 ) THEN
  250:             DO 20 J = 1, K - 1
  251:                F( K, J ) = DCONJG( F( K, J ) )
  252:    20       CONTINUE
  253:             CALL ZGEMV( 'No transpose', M-RK+1, K-1, -CONE, A( RK, 1 ),
  254:      $                  LDA, F( K, 1 ), LDF, CONE, A( RK, K ), 1 )
  255:             DO 30 J = 1, K - 1
  256:                F( K, J ) = DCONJG( F( K, J ) )
  257:    30       CONTINUE
  258:          END IF
  259: *
  260: *        Generate elementary reflector H(k).
  261: *
  262:          IF( RK.LT.M ) THEN
  263:             CALL ZLARFG( M-RK+1, A( RK, K ), A( RK+1, K ), 1, TAU( K ) )
  264:          ELSE
  265:             CALL ZLARFG( 1, A( RK, K ), A( RK, K ), 1, TAU( K ) )
  266:          END IF
  267: *
  268:          AKK = A( RK, K )
  269:          A( RK, K ) = CONE
  270: *
  271: *        Compute Kth column of F:
  272: *
  273: *        Compute  F(K+1:N,K) := tau(K)*A(RK:M,K+1:N)**H*A(RK:M,K).
  274: *
  275:          IF( K.LT.N ) THEN
  276:             CALL ZGEMV( 'Conjugate transpose', M-RK+1, N-K, TAU( K ),
  277:      $                  A( RK, K+1 ), LDA, A( RK, K ), 1, CZERO,
  278:      $                  F( K+1, K ), 1 )
  279:          END IF
  280: *
  281: *        Padding F(1:K,K) with zeros.
  282: *
  283:          DO 40 J = 1, K
  284:             F( J, K ) = CZERO
  285:    40    CONTINUE
  286: *
  287: *        Incremental updating of F:
  288: *        F(1:N,K) := F(1:N,K) - tau(K)*F(1:N,1:K-1)*A(RK:M,1:K-1)**H
  289: *                    *A(RK:M,K).
  290: *
  291:          IF( K.GT.1 ) THEN
  292:             CALL ZGEMV( 'Conjugate transpose', M-RK+1, K-1, -TAU( K ),
  293:      $                  A( RK, 1 ), LDA, A( RK, K ), 1, CZERO,
  294:      $                  AUXV( 1 ), 1 )
  295: *
  296:             CALL ZGEMV( 'No transpose', N, K-1, CONE, F( 1, 1 ), LDF,
  297:      $                  AUXV( 1 ), 1, CONE, F( 1, K ), 1 )
  298:          END IF
  299: *
  300: *        Update the current row of A:
  301: *        A(RK,K+1:N) := A(RK,K+1:N) - A(RK,1:K)*F(K+1:N,1:K)**H.
  302: *
  303:          IF( K.LT.N ) THEN
  304:             CALL ZGEMM( 'No transpose', 'Conjugate transpose', 1, N-K,
  305:      $                  K, -CONE, A( RK, 1 ), LDA, F( K+1, 1 ), LDF,
  306:      $                  CONE, A( RK, K+1 ), LDA )
  307:          END IF
  308: *
  309: *        Update partial column norms.
  310: *
  311:          IF( RK.LT.LASTRK ) THEN
  312:             DO 50 J = K + 1, N
  313:                IF( VN1( J ).NE.ZERO ) THEN
  314: *
  315: *                 NOTE: The following 4 lines follow from the analysis in
  316: *                 Lapack Working Note 176.
  317: *
  318:                   TEMP = ABS( A( RK, J ) ) / VN1( J )
  319:                   TEMP = MAX( ZERO, ( ONE+TEMP )*( ONE-TEMP ) )
  320:                   TEMP2 = TEMP*( VN1( J ) / VN2( J ) )**2
  321:                   IF( TEMP2 .LE. TOL3Z ) THEN
  322:                      VN2( J ) = DBLE( LSTICC )
  323:                      LSTICC = J
  324:                   ELSE
  325:                      VN1( J ) = VN1( J )*SQRT( TEMP )
  326:                   END IF
  327:                END IF
  328:    50       CONTINUE
  329:          END IF
  330: *
  331:          A( RK, K ) = AKK
  332: *
  333: *        End of while loop.
  334: *
  335:          GO TO 10
  336:       END IF
  337:       KB = K
  338:       RK = OFFSET + KB
  339: *
  340: *     Apply the block reflector to the rest of the matrix:
  341: *     A(OFFSET+KB+1:M,KB+1:N) := A(OFFSET+KB+1:M,KB+1:N) -
  342: *                         A(OFFSET+KB+1:M,1:KB)*F(KB+1:N,1:KB)**H.
  343: *
  344:       IF( KB.LT.MIN( N, M-OFFSET ) ) THEN
  345:          CALL ZGEMM( 'No transpose', 'Conjugate transpose', M-RK, N-KB,
  346:      $               KB, -CONE, A( RK+1, 1 ), LDA, F( KB+1, 1 ), LDF,
  347:      $               CONE, A( RK+1, KB+1 ), LDA )
  348:       END IF
  349: *
  350: *     Recomputation of difficult columns.
  351: *
  352:    60 CONTINUE
  353:       IF( LSTICC.GT.0 ) THEN
  354:          ITEMP = NINT( VN2( LSTICC ) )
  355:          VN1( LSTICC ) = DZNRM2( M-RK, A( RK+1, LSTICC ), 1 )
  356: *
  357: *        NOTE: The computation of VN1( LSTICC ) relies on the fact that 
  358: *        SNRM2 does not fail on vectors with norm below the value of
  359: *        SQRT(DLAMCH('S')) 
  360: *
  361:          VN2( LSTICC ) = VN1( LSTICC )
  362:          LSTICC = ITEMP
  363:          GO TO 60
  364:       END IF
  365: *
  366:       RETURN
  367: *
  368: *     End of ZLAQPS
  369: *
  370:       END

CVSweb interface <joel.bertrand@systella.fr>