Annotation of rpl/lapack/lapack/zlaqps.f, revision 1.9

1.1       bertrand    1:       SUBROUTINE ZLAQPS( M, N, OFFSET, NB, KB, A, LDA, JPVT, TAU, VN1,
                      2:      $                   VN2, AUXV, F, LDF )
                      3: *
1.9     ! bertrand    4: *  -- LAPACK auxiliary routine (version 3.3.1) --
1.1       bertrand    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9     ! bertrand    7: *  -- April 2011                                                      --
1.1       bertrand    8: *
                      9: *     .. Scalar Arguments ..
                     10:       INTEGER            KB, LDA, LDF, M, N, NB, OFFSET
                     11: *     ..
                     12: *     .. Array Arguments ..
                     13:       INTEGER            JPVT( * )
                     14:       DOUBLE PRECISION   VN1( * ), VN2( * )
                     15:       COMPLEX*16         A( LDA, * ), AUXV( * ), F( LDF, * ), TAU( * )
                     16: *     ..
                     17: *
                     18: *  Purpose
                     19: *  =======
                     20: *
                     21: *  ZLAQPS computes a step of QR factorization with column pivoting
                     22: *  of a complex M-by-N matrix A by using Blas-3.  It tries to factorize
                     23: *  NB columns from A starting from the row OFFSET+1, and updates all
                     24: *  of the matrix with Blas-3 xGEMM.
                     25: *
                     26: *  In some cases, due to catastrophic cancellations, it cannot
                     27: *  factorize NB columns.  Hence, the actual number of factorized
                     28: *  columns is returned in KB.
                     29: *
                     30: *  Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.
                     31: *
                     32: *  Arguments
                     33: *  =========
                     34: *
                     35: *  M       (input) INTEGER
                     36: *          The number of rows of the matrix A. M >= 0.
                     37: *
                     38: *  N       (input) INTEGER
                     39: *          The number of columns of the matrix A. N >= 0
                     40: *
                     41: *  OFFSET  (input) INTEGER
                     42: *          The number of rows of A that have been factorized in
                     43: *          previous steps.
                     44: *
                     45: *  NB      (input) INTEGER
                     46: *          The number of columns to factorize.
                     47: *
                     48: *  KB      (output) INTEGER
                     49: *          The number of columns actually factorized.
                     50: *
                     51: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
                     52: *          On entry, the M-by-N matrix A.
                     53: *          On exit, block A(OFFSET+1:M,1:KB) is the triangular
                     54: *          factor obtained and block A(1:OFFSET,1:N) has been
                     55: *          accordingly pivoted, but no factorized.
                     56: *          The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has
                     57: *          been updated.
                     58: *
                     59: *  LDA     (input) INTEGER
                     60: *          The leading dimension of the array A. LDA >= max(1,M).
                     61: *
                     62: *  JPVT    (input/output) INTEGER array, dimension (N)
                     63: *          JPVT(I) = K <==> Column K of the full matrix A has been
                     64: *          permuted into position I in AP.
                     65: *
                     66: *  TAU     (output) COMPLEX*16 array, dimension (KB)
                     67: *          The scalar factors of the elementary reflectors.
                     68: *
                     69: *  VN1     (input/output) DOUBLE PRECISION array, dimension (N)
                     70: *          The vector with the partial column norms.
                     71: *
                     72: *  VN2     (input/output) DOUBLE PRECISION array, dimension (N)
                     73: *          The vector with the exact column norms.
                     74: *
                     75: *  AUXV    (input/output) COMPLEX*16 array, dimension (NB)
                     76: *          Auxiliar vector.
                     77: *
                     78: *  F       (input/output) COMPLEX*16 array, dimension (LDF,NB)
1.9     ! bertrand   79: *          Matrix F**H = L * Y**H * A.
1.1       bertrand   80: *
                     81: *  LDF     (input) INTEGER
                     82: *          The leading dimension of the array F. LDF >= max(1,N).
                     83: *
                     84: *  Further Details
                     85: *  ===============
                     86: *
                     87: *  Based on contributions by
                     88: *    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
                     89: *    X. Sun, Computer Science Dept., Duke University, USA
                     90: *
1.9     ! bertrand   91: *  Partial column norm updating strategy modified by
        !            92: *    Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
        !            93: *    University of Zagreb, Croatia.
        !            94: *  -- April 2011                                                      --
        !            95: *  For more details see LAPACK Working Note 176.
1.1       bertrand   96: *  =====================================================================
                     97: *
                     98: *     .. Parameters ..
                     99:       DOUBLE PRECISION   ZERO, ONE
                    100:       COMPLEX*16         CZERO, CONE
                    101:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0,
                    102:      $                   CZERO = ( 0.0D+0, 0.0D+0 ),
                    103:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
                    104: *     ..
                    105: *     .. Local Scalars ..
                    106:       INTEGER            ITEMP, J, K, LASTRK, LSTICC, PVT, RK
                    107:       DOUBLE PRECISION   TEMP, TEMP2, TOL3Z
                    108:       COMPLEX*16         AKK
                    109: *     ..
                    110: *     .. External Subroutines ..
1.5       bertrand  111:       EXTERNAL           ZGEMM, ZGEMV, ZLARFG, ZSWAP
1.1       bertrand  112: *     ..
                    113: *     .. Intrinsic Functions ..
                    114:       INTRINSIC          ABS, DBLE, DCONJG, MAX, MIN, NINT, SQRT
                    115: *     ..
                    116: *     .. External Functions ..
                    117:       INTEGER            IDAMAX
                    118:       DOUBLE PRECISION   DLAMCH, DZNRM2
                    119:       EXTERNAL           IDAMAX, DLAMCH, DZNRM2
                    120: *     ..
                    121: *     .. Executable Statements ..
                    122: *
                    123:       LASTRK = MIN( M, N+OFFSET )
                    124:       LSTICC = 0
                    125:       K = 0
                    126:       TOL3Z = SQRT(DLAMCH('Epsilon'))
                    127: *
                    128: *     Beginning of while loop.
                    129: *
                    130:    10 CONTINUE
                    131:       IF( ( K.LT.NB ) .AND. ( LSTICC.EQ.0 ) ) THEN
                    132:          K = K + 1
                    133:          RK = OFFSET + K
                    134: *
                    135: *        Determine ith pivot column and swap if necessary
                    136: *
                    137:          PVT = ( K-1 ) + IDAMAX( N-K+1, VN1( K ), 1 )
                    138:          IF( PVT.NE.K ) THEN
                    139:             CALL ZSWAP( M, A( 1, PVT ), 1, A( 1, K ), 1 )
                    140:             CALL ZSWAP( K-1, F( PVT, 1 ), LDF, F( K, 1 ), LDF )
                    141:             ITEMP = JPVT( PVT )
                    142:             JPVT( PVT ) = JPVT( K )
                    143:             JPVT( K ) = ITEMP
                    144:             VN1( PVT ) = VN1( K )
                    145:             VN2( PVT ) = VN2( K )
                    146:          END IF
                    147: *
                    148: *        Apply previous Householder reflectors to column K:
1.9     ! bertrand  149: *        A(RK:M,K) := A(RK:M,K) - A(RK:M,1:K-1)*F(K,1:K-1)**H.
1.1       bertrand  150: *
                    151:          IF( K.GT.1 ) THEN
                    152:             DO 20 J = 1, K - 1
                    153:                F( K, J ) = DCONJG( F( K, J ) )
                    154:    20       CONTINUE
                    155:             CALL ZGEMV( 'No transpose', M-RK+1, K-1, -CONE, A( RK, 1 ),
                    156:      $                  LDA, F( K, 1 ), LDF, CONE, A( RK, K ), 1 )
                    157:             DO 30 J = 1, K - 1
                    158:                F( K, J ) = DCONJG( F( K, J ) )
                    159:    30       CONTINUE
                    160:          END IF
                    161: *
                    162: *        Generate elementary reflector H(k).
                    163: *
                    164:          IF( RK.LT.M ) THEN
1.5       bertrand  165:             CALL ZLARFG( M-RK+1, A( RK, K ), A( RK+1, K ), 1, TAU( K ) )
1.1       bertrand  166:          ELSE
1.5       bertrand  167:             CALL ZLARFG( 1, A( RK, K ), A( RK, K ), 1, TAU( K ) )
1.1       bertrand  168:          END IF
                    169: *
                    170:          AKK = A( RK, K )
                    171:          A( RK, K ) = CONE
                    172: *
                    173: *        Compute Kth column of F:
                    174: *
1.9     ! bertrand  175: *        Compute  F(K+1:N,K) := tau(K)*A(RK:M,K+1:N)**H*A(RK:M,K).
1.1       bertrand  176: *
                    177:          IF( K.LT.N ) THEN
                    178:             CALL ZGEMV( 'Conjugate transpose', M-RK+1, N-K, TAU( K ),
                    179:      $                  A( RK, K+1 ), LDA, A( RK, K ), 1, CZERO,
                    180:      $                  F( K+1, K ), 1 )
                    181:          END IF
                    182: *
                    183: *        Padding F(1:K,K) with zeros.
                    184: *
                    185:          DO 40 J = 1, K
                    186:             F( J, K ) = CZERO
                    187:    40    CONTINUE
                    188: *
                    189: *        Incremental updating of F:
1.9     ! bertrand  190: *        F(1:N,K) := F(1:N,K) - tau(K)*F(1:N,1:K-1)*A(RK:M,1:K-1)**H
1.1       bertrand  191: *                    *A(RK:M,K).
                    192: *
                    193:          IF( K.GT.1 ) THEN
                    194:             CALL ZGEMV( 'Conjugate transpose', M-RK+1, K-1, -TAU( K ),
                    195:      $                  A( RK, 1 ), LDA, A( RK, K ), 1, CZERO,
                    196:      $                  AUXV( 1 ), 1 )
                    197: *
                    198:             CALL ZGEMV( 'No transpose', N, K-1, CONE, F( 1, 1 ), LDF,
                    199:      $                  AUXV( 1 ), 1, CONE, F( 1, K ), 1 )
                    200:          END IF
                    201: *
                    202: *        Update the current row of A:
1.9     ! bertrand  203: *        A(RK,K+1:N) := A(RK,K+1:N) - A(RK,1:K)*F(K+1:N,1:K)**H.
1.1       bertrand  204: *
                    205:          IF( K.LT.N ) THEN
                    206:             CALL ZGEMM( 'No transpose', 'Conjugate transpose', 1, N-K,
                    207:      $                  K, -CONE, A( RK, 1 ), LDA, F( K+1, 1 ), LDF,
                    208:      $                  CONE, A( RK, K+1 ), LDA )
                    209:          END IF
                    210: *
                    211: *        Update partial column norms.
                    212: *
                    213:          IF( RK.LT.LASTRK ) THEN
                    214:             DO 50 J = K + 1, N
                    215:                IF( VN1( J ).NE.ZERO ) THEN
                    216: *
                    217: *                 NOTE: The following 4 lines follow from the analysis in
                    218: *                 Lapack Working Note 176.
                    219: *
                    220:                   TEMP = ABS( A( RK, J ) ) / VN1( J )
                    221:                   TEMP = MAX( ZERO, ( ONE+TEMP )*( ONE-TEMP ) )
                    222:                   TEMP2 = TEMP*( VN1( J ) / VN2( J ) )**2
                    223:                   IF( TEMP2 .LE. TOL3Z ) THEN
                    224:                      VN2( J ) = DBLE( LSTICC )
                    225:                      LSTICC = J
                    226:                   ELSE
                    227:                      VN1( J ) = VN1( J )*SQRT( TEMP )
                    228:                   END IF
                    229:                END IF
                    230:    50       CONTINUE
                    231:          END IF
                    232: *
                    233:          A( RK, K ) = AKK
                    234: *
                    235: *        End of while loop.
                    236: *
                    237:          GO TO 10
                    238:       END IF
                    239:       KB = K
                    240:       RK = OFFSET + KB
                    241: *
                    242: *     Apply the block reflector to the rest of the matrix:
                    243: *     A(OFFSET+KB+1:M,KB+1:N) := A(OFFSET+KB+1:M,KB+1:N) -
1.9     ! bertrand  244: *                         A(OFFSET+KB+1:M,1:KB)*F(KB+1:N,1:KB)**H.
1.1       bertrand  245: *
                    246:       IF( KB.LT.MIN( N, M-OFFSET ) ) THEN
                    247:          CALL ZGEMM( 'No transpose', 'Conjugate transpose', M-RK, N-KB,
                    248:      $               KB, -CONE, A( RK+1, 1 ), LDA, F( KB+1, 1 ), LDF,
                    249:      $               CONE, A( RK+1, KB+1 ), LDA )
                    250:       END IF
                    251: *
                    252: *     Recomputation of difficult columns.
                    253: *
                    254:    60 CONTINUE
                    255:       IF( LSTICC.GT.0 ) THEN
                    256:          ITEMP = NINT( VN2( LSTICC ) )
                    257:          VN1( LSTICC ) = DZNRM2( M-RK, A( RK+1, LSTICC ), 1 )
                    258: *
                    259: *        NOTE: The computation of VN1( LSTICC ) relies on the fact that 
                    260: *        SNRM2 does not fail on vectors with norm below the value of
                    261: *        SQRT(DLAMCH('S')) 
                    262: *
                    263:          VN2( LSTICC ) = VN1( LSTICC )
                    264:          LSTICC = ITEMP
                    265:          GO TO 60
                    266:       END IF
                    267: *
                    268:       RETURN
                    269: *
                    270: *     End of ZLAQPS
                    271: *
                    272:       END

CVSweb interface <joel.bertrand@systella.fr>